初等数论第一章第1节 数的整除性
初等数论(1)数的整除
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
例如:(1)若222912842440a ab b bc c c -+-+-+=,求a b c ++的值.(2)求整数,,a b c ,使它们满足不等式222332a b c ab b c +++<++.作比较。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)奇数±奇数=偶数;偶数±偶数=偶数; 奇数±偶数=奇数;偶数×偶数=偶数; 奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性; (5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3. (7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.例如: 1.(1)已知c b a ,,是整数,c b a ++是奇数,判断c b a -+,c b a +-,c b a ++-的奇偶性,说明理由。
(2)你能找到三个整数c b a ,,,使得关系式()()()()2010a b c a b c a b c b c a ++-++-+-=成立吗?如果能找到,请举一例,如果找不到,请说明理由.2、是否存在整数,m n ,满足222010m n +=?3、设1,2,3,,9的任一排列为1239,,,,a a a a ,求证:129(1)(2)(9)a a a ---是一个偶数. 类题:(1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,体现了整体处理的优点,但掩盖了“乘积”为偶数的原因. 解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.例4-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.例4-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.4、有n 个数12,,,n x x x ,它们中的每一个数或者为1,或者为1-,如果1234110n n n x x x x x x x x -++++=,求证:n 是4的倍数。
初等数论 第一章 整除
2022/2/5
*
第1页,本讲稿共58页
数论的基本内容
按照研究方法的不同,数论可分为
初等数论 解析数论 代数数论 几何数论
2022/2/5
*
第2页,本讲稿共58页
参考书目
1、南基洙主编《初等数论》; 2、柯召、孙琦编著《数论讲义》,高等教育 出版社; 3、闵嗣鹤、严士健编《初等数论》,高等教 育出版社; 4、郑克明主编《初等数论》,西南师范大学 出版社。
*
第9页,本讲稿共58页
定理5 鸽巢原理
设n是一个自然数.现有n个盒子和n+1个物体. 无论怎样把这n+1个物体放入这n个盒子中, 一定有一个盒子中被放了两个或两个以上的 物体。
2022/2/5
*
第10页,本讲稿共58页
§2 整除
2022/2/5
*
第11页,本讲稿共58页
定义1
设a,b是整数,a 0,如果存在整数q, 使得b = aq,则称b可被a整除,记作ab , 且称b是a的倍数,a是b的约数(因数、除数); 如果不存在整数q使得b = aq成立,则称b不被
2022/2/5
*
第28页,本讲稿共58页
定理 9
(a1 , a2 , , ak) = 1的充要条件是存在整数x1, x2 , , xk ,使得a1x1 a2x2 akxk = 1. 充分性 若式(1)成立,如果 (a1 , a2 , , ak) = d > 1,那么由dai(1 ≤ i ≤ k)推出 d a1x1 a2x2 akxk = 1,这是不可能的. 所以有(a1, a2, , ak) = 1 . 证毕 .
最大公因数与最小公倍数
2022/2/5
初等数论第一章整除
例1:设 x, y 为整数,且5 | x 9 y 则 5 | 8x 7 y
证:因为 8x 7 y
8( x 9 y) 65y
因为5 | x 9 y
所以有
又
5 | 65y
5 | 8x 7 y
例2:证明若3|n,7|n,则21|n
证:因为3|n,所以n= 3n1 又因为7|n,所以 7 | 3n1 显然有 7 | 7n 1 则有 7 | 7n1 2 3n1 即 7 | n1 有 n1 ห้องสมุดไป่ตู้7n2 即有 n 21n2 所以有21|n
注: (1)连续n个整数中必有一个数被n整除。 可作为一个定理,在证明整除问题时非常 有用。 (2)注意整数的各种表示。 例2: 证明若a不是5的倍数,则
与
中有且仅有一个数被5整除
证明: 这四个数有一个是5的倍数 若 5 | a 1或 又 所以 即 a 1, a 1 有且仅有一个数被5整除
n 是整数,所以 3
n2 2
n3 6
是
注:这里用了连续n个整数的乘积是n!的 倍数的结论.
注:连续n个整数的乘积是n!的倍数。 a、当n个整数都大于零时,由
m( m1)( m n1) n!
C
n m n1
而组合数为整数,可知连续n个整数的乘积是n! 的倍数。 b、当n个整数中有一个为零时,显然成立。
n 注:1、
2、
a b (a b)M1
n
n
a b (a b)M 2 , 2†n
n
3、
(a b) aM3 b ,
n n
例5、试证明任意一个整数与它的各位数 字和的差必能被9整除。
第一章整除性
则a必满足q b a<(q+1) b , 其中q Z,
2
2
分q为偶数时b 0和b 0;q为偶数时b 0和
b 0来讨论q及r的存在性, 进一步证明q, r的唯一性。
例1 求当b=15时, a取下列数值时的不完全 商和余数.
1、a=81; 2、a=-81;
• 例2(1)一个数除以2,余数可能为
例2、任意给出的5个整数中,必有3个数之 和被3整除。
证:设这5个数为ai ,i 1, ,5,记 ai 3qi ri, 0 ri 3, i 1, ,5。 分别考虑以下两种情形:
(i)若在r1, , r5中数0,1,2都出现,不妨设
r1 0, r2 1, r3 2,
此时
a1 a2 a3 3(q1 q2 q3 ) 3
对 于任何偶数 2k, 存在无穷多组以2k为间隔的素数。 对于 k=1,这就是孪生素数猜想,因此人们有时把 Alphonse de Polignac 作为孪生素数猜想的提出者。 不同的 k 对应的素数对的命名也很有趣,k=1 我们 已经知道叫做孪生素数; k=2 (即间隔为4) 的素数 对被称为 cousin prime ;而 k=3 (即间隔为 6) 的素数对竟 然被称为 sexy prime (不过别想歪了,之所以称为 sexy prime 其实是因为 sex 正好是拉丁文中的 6。)
a (a, b)
,
b (a, b)
1
对于两个以上整数的最大公因数问题,不妨设
a1, a2 , , an是任意n个正整数,令 (a1, a2 ) d2 , (d2 , a3 ) d3, , (dn1, an ) dn.
于是我们有
例2、证明:若n是正整数,则 21n 4 是既约分数。 14n 3
初等数论:数的整除性
此时 2b-1=
k
0,3 ,或
2
3k
,这都是不可能的,
所以
k
3
|
2b
1。
17
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 6. 写出不超过 100 的所有的素数。 解: 将不超过 100 的正整数排列如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
若 n 2s,由上式知 n 22, 因为 n 2 > 2,这是不可能的,所以 n 2 | s。
10
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 2. 设 A = { d1, d2, , dk }是 n 的所有约数的集合,
则B
={dn1
,
n d2
,,
n dk
}也是
n
的所有约数的集合。
8
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
推论. 任何大于 1 的合数 a 必有一个不超过 a 的素约数。
证明:使用定理 2 中的记号,有 a = d1d2,
其中 d1 > 1 是最小的素约数,
所以
d2 1
a。证毕。
9
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 1. 设 r 是正奇数,证明:对任意的正整数 n,有
初等数论
第一章 整数的唯一分解定理第一节 整除性教学重点:应用带余数除法定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a . 如果a = bc 里的c 不存在,我们就说b 不能整除a 或a 不被b 整除,记作b |/a . 定理1 (传递性)若a 是b 的倍数,b 是c 的倍数,则a 是c 的倍数, 也就是b |a,c|b ⇒c|a.证 b |a,c|b 就是说存在两个整数1a ,1b 使得111111,(),a ab b bc a a b c a b ===成立因此但是是一个整数,故c|a 定理2 若a ,b 都是m 的倍数,则a ±b 也是m 的倍数.证 a ,b 是m 的倍数的意义就是存在两个整数a 1 , b 1,使得111111,.(),a a m b b m a b a b m a b a b m ==±=±±±因此但是整数,故是的倍数 .定理3 若1212,,,,,,n n a a a m q q q 都是的倍数,是任意个整数,1122.n n q a q a q a m +++ 则是的倍数注:1、显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数.2、若整数a ≠ 0,±1,并且只有约数 ±1和 ±a ,则称a 是素数(或质数);否则称a 为合数.以后若无特别说明,素数总是指正素数.3、下面的结论成立:(ⅰ) a ∣b ⇔ ±a ∣±b ;·(ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数;(ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0;(ⅴi) b ∣a ,a ≠ 0 ⇒ ba ∣a . 定理4(带余数除法) 设a 与b 是两个整数,b ≠ 0,则存在唯一的两个整数q 和r ,使得a = bq + r ,0 ≤ r < |b |. (1)证明 存在性 若b ∣a ,a = bq ,q ∈Z ,可取r = 0. 若b |/a ,考虑集合A = { a + kb ;k ∈Z },其中Z 表示所有整数的集合.在集合A 中有无限多个正整数,设最小的正整数是r = a + k 0b ,则必有0 < r < |b |, (2)否则就有r ≥ |b |. 因为b |/a ,所以r ≠ |b |. 于是r > |b |,即a + k 0b > |b |,a + k 0b - |b | > 0,这样,在集合A 中,又有正整数a + k 0b - |b | < r ,这与r 的最小性矛盾. 所以式(2)必定成立. 取q = - k 0知式(1)成立. 存在性得证.唯一性 假设有两对整数q ',r '与q '',r ''都使得式(1)成立,即a = q ''b + r '' = q 'b + r ',0 ≤ r ', r '' < |b |,则(q '' - q ')b = r ' - r '',|r ' - r ''| < |b |, (3)因此r ' - r '' = 0,r ' = r '',再由式(3)得出q ' = q '',唯一性得证. 证毕3、定义2 称式(1)中的q 是a 被b 除的不完全商,r 是a 被b 除的余数,也叫最小非负剩余,记作r a b =><.第二节 最大公因数与辗转相除法第三节 最小公倍数教学目的:1、掌握最大公因数与最小公倍数性质;2、掌握辗转相除法;3、会求最大公因数与最小公倍数.教学重点:最大公因数与最小公倍数性质教学难点:辗转相除法一、最大公因数定义 设12,,,2).n a a a n n d ≥ 是(个整数若整数是它们之中每一个的因数, 12,,,n d a a a 那么就叫作的一个公因数.整数a 1, a 2, , a k 的公共约数称为a 1, a 2, , a k 的公约数.不全为零的整数a 1, a 2, , a k 的公约数中最大的一个叫做a 1, a 2, , a k 的最大公约数(或最大公因数),记为(a 1, a 2, , a k ).如果(a 1, a 2, , a k ) = 1,则称a 1, a 2, , a k 是互素的(或互质的);如果(a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j ,则称a 1, a 2, , a k 是两两互素的(或两两互质的).显然,a 1, a 2, , a k 两两互素可以推出(a 1, a 2, , a k ) = 1,反之则不然,例如(2, 6, 15) = 1,但(2, 6) = 2.定理1 12,,,n a a a n 若是任意个不全为零的整数,则1212i ,,,,,n n a a a a a a ()与的公因数相同; 1212ii ,,,,,.n n a a a a a a = ()()()证 12,,,.,1,2,,,n i d a a a d a i n = 设是的任一公因数由定义12,1,2,,,,,i n d a i n d a a a = 因而故是的一个公因数,121,2,,,.n n a a a a a 同法可证,的任一个公因数都是,a 的一个公因数 121,2,,,n n a a a a a 故与a 有相同的公因数.定理2 若b 是任一正整数,则(i )0与b 的公因数就是b 的因数, 反之,b 的因数也就是0与b 的公因数 . (ii) (0,b)=b .证 显然0与b 的公因数是b 的公因数 .由于任何非零整数都是0的因数, 故b 的因数也就是0,b 的公因数,于是(i )得证.其次,我们立刻知道b 的最大因数是b ;而0,b 的最大公因数是b 的最大公因数,故(0,b )=b.推论2.1 若b 是任一非零整数,则(0,b )= b .定理3 ,,,,,,)(,).a b c a bq c q a b b c a b b c =+=设是任意三个不全为零的整数,且其中是非零整数,则与有相同的公因数,因而( 定理4 ,(,)a b a b 若是任意两个整数,则就是a = bq 1 + r 1, 0 < r 1 < |b |,b = r 1q 2 + r 2, 0 < r 2 < r 1 ,r k - 1 = r k q k + 1 + r k + 1,0 < r k + 1 < r k , (1)r n - 2 = r n - 1q n + r n , 0 < r n < r n-1 ,r n - 1 = r n q n + 1 .中的最后一个不等于零的余数,即得(,)n a b r =推论4.1 ,(,).a b a b 的公因数与的因数相同例(1)1859,1573185928621431859143.a b =-=-⨯⨯=⨯-=由定理得(,1573)=(1859,1573).1859=11573+2861573=5286+143所以(,1573)=(1859,1573)例(2)169,121484812532512322311212211.a b ==⨯⨯=⨯+=⨯+=⨯+=⨯=由定理得169=1121+48121=2+25所以(169,121)定理5 ,i (,),a b a b a b δδδδ设是任意两个不全为零的整数,()若m 是任一正整数,则(am,bm)=(a,b)m.(ii)若是a,b 的任一公因数,则(,)= 特别地, )(),(,),(b a b b a a = 1. 定理6 1212,,,,,,).n n n a a a n a a a d = 若是个整数,则(二、最小公倍数1、定义 整数a 1, a 2, , a k 的公共倍数称为a 1, a 2, , a k 的公倍数. a 1, a 2, , a k 的正公倍数中的最小的一个叫做a 1, a 2, , a k 的最小公倍数,记为[a 1, a 2, , a k ].2、定理1 下面的等式成立:(ⅰ) [a , 1] = |a |,[a , a ] = |a |;(ⅱ) [a , b ] = [b , a ];(ⅲ) [a 1, a 2, , a k ] = [|a 1|, |a 2| , |a k |];(ⅳ) 若a ∣b ,则[a , b ] = |b |.3、定理2 对任意的正整数a ,b ,有[a , b ] =),(b a ab . 证明:设m 是a 和b 的一个公倍数,那么存在整数k 1,k 2,使得m = ak 1,m = bk 2,因此ak 1 = bk 2 . (1)于是21),(),(k b a b k b a a =. 由于)(),(,),(b a b b a a = 1,所以 t b a b k k b a b ),(),(11|=即,, 其中t 是某个整数. 将上式代入式(1)得到m =),(b a ab t . (2) 另一方面,对于任意的整数t ,由式(2)所确定的m 显然是a 与b 的公倍数,因此a 与b 的公倍数必是式(2)中的形式,其中t 是整数.当t = 1时,得到最小公倍数[a , b ] =),(b a ab . 推论1 两个整数的任何公倍数可以被它们的最小公倍数整除.证明 由式(2)可得证.这个推论说明:两个整数的最小公倍数不但是最小的正倍数,而且是另外的公倍数的约数.推论2 设m ,a ,b 是正整数,则[ma , mb ] = m [a , b ].证明 由定理2及前面的定理2的推论得到[ma , mb ] =),(),(),(22b a mab b a m ab m mb ma ab m === m [a , b ]. 证毕4、定理3 对于任意的n 个整数a 1, a 2, , a n ,记[a 1, a 2] = m 2,[m 2, a 3] = m 3, ,[m n -2, a n -1] = m n -1,[m n -1, a n ] = m n ,则[a 1, a 2, , a n ] = m n .证明:我们有m n = [m n -1, a n ] ⇒ m n -1∣m n ,a n ∣m n ,m n -1 = [m n -2, a n -1] ⇒ m n -2∣m n -1∣m n ,a n ∣m n ,a n -1∣m n -1∣m n ,m n -2 = [m n -3, a n -2] ⇒ m n -3∣m n -2∣m n ,a n ∣m n ,a n -1∣m n ,a n -2∣m n ,m 2 = [a 1, a 2] ⇒ a n ∣m n , ,a 2∣m n ,a 1∣m n ,即m n 是a 1, a 2, , a n 的一个公倍数.另一方面,对于a 1, a 2, , a n 的任何公倍数m ,由定理2的推论及m 2, , m n 的定义,得m 2∣m ,m 3∣m , ,m n ∣m .即m n 是a 1, a 2, , a n 最小的正的公倍数. 证毕推论 若m 是整数a 1, a 2, , a n 的公倍数,则[a 1, a 2, , a n ]∣m .定理4 整数a 1, a 2, , a n 两两互素,即(a i , a j ) = 1,1 ≤ i , j ≤ n ,i ≠ j的充要条件是[a 1, a 2, , a n ] = a 1a 2 a n . (3)证明:必要性 因为(a 1, a 2) = 1,由定理2得到[a 1, a 2] =),(2121a a a a = a 1a 2 . 由(a 1, a 3) = (a 2, a 3) = 1及前面的定理4推论得到(a 1a 2, a 3) = 1,由此及定理3得到[a 1, a 2, a 3] = [[a 1, a 2], a 3] = [a 1a 2, a 3] = a 1a 2a 3 .如此继续下去,就得到式(3).充分性 用归纳法证明. 当n = 2时,式(3)成为[a 1, a 2] = a 1a 2. 由定理2a 1a 2 = [a 1, a 2] =),(2121a a a a ⇒ (a 1, a 2) = 1, 即当n = 2时,充分性成立.假设充分性当n = k 时成立,即[a 1, a 2, , a k ] = a 1a 2 a k ⇒ (a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j .对于整数a 1, a 2, , a k , a k + 1,使用定理3中的记号,由定理3可知[a 1, a 2, , a k , a k + 1] = [m k , a k + 1]. (4)其中m k = [a 1, a 2, , a k ].因此,如果[a 1, a 2, , a k , a k + 1] = a 1a 2 a k a k + 1,那么,由此及式(4)得到[a 1, a 2, , a k , a k + 1] = [m k , a k + 1] =),(11++k k k k a m a m = a 1a 2 a k a k + 1, 即),(1+k k k a m m = a 1a 2 a k , 显然m k ≤ a 1a 2 a k ,(m k , a k + 1) ≥ 1.所以若使上式成立,必是(m k , a k + 1) = 1, (5)并且m k = a 1a 2 a k . (6)由式(6)与式(5)推出(a i , a k + 1) = 1,1 ≤ i ≤ k ; (7)由式(6)及归纳假设推出(a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j . (8)综合式(7)与式(8),可知当n = k + 1时,充分性成立. 由归纳法证明了充分性. 证毕三、辗转相除法本节要介绍一个计算最大公约数的算法——辗转相除法,又称Euclid 算法.它是数论中的一个重要方法,在其他数学分支中也有广泛的应用.1、定义1 下面的一组带余数除法,称为辗转相除法.设a 和b 是整数,b ≠ 0,依次做带余数除法:a = bq 1 + r 1, 0 < r 1 < |b |,b = r 1q 2 + r 2, 0 < r 2 < r 1 ,r k - 1 = r k q k + 1 + r k + 1,0 < r k + 1 < r k , (1)r n - 2 = r n - 1q n + r n , 0 < r n < r n-1 ,r n - 1 = r n q n + 1 .由于b 是固定的,而且|b | > r 1 > r 2 > ,所以式(1)中只包含有限个等式.下面,我们要对式(1)所包含的等式的个数,即要做的带余数除法的次数进行估计.2、引理1 用下面的方式定义Fibonacci 数列{F n }:F 1 = F 2 = 1,F n = F n - 1 + F n - 2,n ≥ 3,那么对于任意的整数n ≥ 3,有F n > α n - 2, (2)其中α =251+.证明:容易验证α 2 = α + 1.当n = 3时,由F 3 = 2 >251+= α 可知式(2)成立.假设式(2)对于所有的整数k ≤ n (n ≥ 3)成立,即F k > α k - 2,k ≤ n ,则F n + 1 = F n + F n - 1 > α n - 2 + α n - 3 = α n - 3(α + 1) = α n - 3α 2 = α n - 1,即当k = n + 1时式(2)也成立.由归纳法知式(2)对一切n ≥ 3成立.证毕. 定理11(1),1,,;k k k k a P b r k n --=-= 若a,b 是任意两个正整数,则Q其中 0111201121,,,0,1,,k k k k k k k k P P q P q P P Q Q Q q Q Q ----===+===+ 其中k=2,,n.推论1.1若a,b 是任意两个不全为零的整数,则存在两个整数s,t 使得as+bt=(a,b).定理2 若a,b,c 是三个整数,且(a,c)=1.则i ()ab,c 与b,c 有相同的公因数,ii () (ab,c)=(b,c),,.b c 上面假定了至少有一不为零推论2.1 ,.ab c b 若(a,c)=1,c 则推论2.2 1212,,,,,,.n m a a a b b 设及b 是任意两组整数1212,,,,,,.n m a a a b b 若前一组中任意整数与后一组中任意整数互质,则与b 互质例2 用辗转相除法求(125, 17),以及x ,y ,使得125x + 17y = (125, 17).解:做辗转相除法:125 = 7⋅17 + 6,q 1 = 7,r 1 = 6,17 = 2⋅6 + 5, q 2 = 2,r 2 = 5,6 = 1⋅5 + 1, q 3 = 1,r 3 = 1,5 = 5⋅1, q 4 = 5.由定理4,(125, 17) = r 3 = 1.利用定理2计算(n = 3)P 0 = 1,P 1 = 7,P 2 = 2⋅7 + 1 = 15,P 3 = 1⋅15 + 7 = 22,Q 0 = 0,Q 1 = 1,Q 2 = 2⋅1 + 0 = 2,Q 3 = 1⋅2 + 1 = 3,取x = (-1)3 - 1Q 3 = 3,y = (-1)3P 3 = -22,则125⋅3 + 17⋅(-22) = (125, 17) = 1.例3 求(12345, 678).解:(12345, 678) = (12345, 339) = (12006, 339) = (6003, 339)= (5664, 339) = (177, 339) = (177, 162) = (177, 81)= (96, 81) = (3, 81) = 3.例4 在m 个盒子中放若干个硬币,然后以下述方式往这些盒子里继续放硬币:每一次在n (n < m )个盒子中各放一个硬币.证明:若(m , n ) = 1,那么无论开始时每个盒子中有多少硬币,经过若干次放硬币后,总可使所有盒子含有同样数量的硬币.解:由于(m , n ) = 1,所以存在整数x ,y ,使得mx + ny = 1. 因此对于任意的自然数k ,有1 + m (-x + kn ) = n (km + y ),这样,当k 充分大时,总可找出正整数x 0,y 0,使得1 + mx 0 = ny 0 .上式说明,如果放y 0次(每次放n 个),那么在使m 个盒子中各放x 0个后,还多出一个硬币.把这个硬币放入含硬币最少的盒子中(这是可以做到的),就使它与含有最多硬币的盒子所含硬币数量之差减少1. 因此经过若干次放硬币后,必可使所有盒子中的硬币数目相同.四、小结.第四节 素数、整数的唯一分解定理教学目的:1、掌握素数的一系列性质;2、理解并掌握唯一分解定理.教学重点:素数的性质及唯一分解定理的证明及应用教学难点:唯一分解定理的证明及应用教学课时:4课时教学过程一、素数1、定义 大于1的整数,如果只有平凡因子,就叫素数,否则叫合数.2、定理1 设a 是任意大于1的整数,则a 除1以外的最小正因子p 是素数,并且当a 是合数时,则a p ≤ .3、定理2 设p 是素数,a 是任意整数,则a p |或1),(=a p .4、定理3 设p 是素数,p|ab , 则p|a 或p|b.5、定理4 素数有无穷多个.6、定理2 形如4n-1型的素数有无穷多个.例1 写出不超过100的所有的素数。
初等数论习题
《初等数论》习题Gonao第一章 整除理论第一节 数的整除性例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r + 2 r + " + n r 。
例2 设A = { d 1, d 2, ", d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n "也是n 的所有约数的集合。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3," 。
问:d (1) + d (2) + " + d (1997)是否为偶数?例4 设凸2n 边形M 的顶点是A 1, A 2, ", A 2n ,点O 在M 的内部,用1, 2, ", 2n 将M 的2n 条边分别编号,又将OA 1, OA 2, ", OA 2n 也同样进行编号,若把这些编号作为相应的线段的长度,证明:无论怎么编号,都不能使得三角形OA 1A 2, OA 2A 3, ", OA 2n A 1的周长都相等。
例5 设整数k ≥ 1,证明:(ⅰ) 若2k ≤ n < 2k + 1,1 ≤ a ≤ n ,a ≠ 2k ,则2k |/a ; (ⅱ) 若3k ≤ 2n − 1 < 3k + 1,1 ≤b ≤ n ,2b − 1 ≠ 3k ,则3k |/2b − 1。
例6 证明:存在无穷多个正整数a ,使得n 4 + a (n = 1, 2, 3, ")都是合数。
例7 设a 1, a 2, ", a n 是整数,且a 1 + a 2 + " + a n = 0,a 1a 2"a n = n ,则4⏐n 。
例8 若n 是奇数,则8⏐n 2 − 1。
例9 d (1)2 + d (2)2 + " + d (1997)2被4除的余数是多少?例10 证明:方程a 12 + a 22 + a 32 = 1999 无整数解。
初等数论(课堂PPT)
正整数集: 1,2,3,… n,…记作N*。
正整数、零、负整数统称为整数。所有整数构成 的集合叫做整数集,记作Z。
2
1.1 进位制与计数法
▪ 学习目标:
▪ 1.掌握常用进位制与计数法
▪ 2.熟练掌握二进位制与十进位制的互化, 并能解决相关的实际应用问题。
教学后记:能达到预期教学目标,效果较好,各 种进位制的应用可适当增加些习题。
8
本章讨论整数的整除性及与其有关的数的分解最大公因数最小公倍数正约数的个数与总和高斯函数正值函数的整除性等整数的基本概念性质和方法
高等师范院校小学教育专业数 学教材《初等数论》课件
制作:孙素慧
1
第一章整数的整除性
本章讨论整数的整除性及与其有关的数的分 解、最大公因数、最小公倍数、正约数的个数与 总和、高斯函数、正值函数的整除性等整数的基 本概念、性质和方法。
数简记为an …a2a1a0。当an≠0时,an…a2a1a0表示n+1位 十进制正整数,把它写成不同计数单位的数之和的 形式为:
an…a2a1a0=an×10n+an-1×10n-1 +…+a1×10+a0
4
例1 已知 a 3 a 1 ,b 3 0 ,且 a 3 a 2 a 1 a 1 a 2 a 3 b 3 b 2 b 1 . 求 证 : b3b2b1+ b1b2b3=1089. 例 2 一 个 六 位 数 2 a b c d e 与 3 之 积 等 于 a b c d e 9 , 求 这 个六位数.
6
例3 把110111(2)化为十进位制数
例4 把49化为二进位制数
例5 现有1克、2克、4克、8克、16克的砝码各一个 ,若只能将砝码放在天平的一端,问能称出多少种不 同质量的物品?若称23克的物品,应该如何选配上 述砝码?
初等数论-第一章
有可能是不唯一的。
例 当 a5, b2时 , 可 有 5 ( 2) ( 3) ( 1) , 即 q3,r1; 或 5 ( 2) ( 2) 1, 即 q2,r1
证明分析:作序列
,- 3 b ,- 2 b ,- b ,0,b ,2 b ,3 b , 2 2 2 22 2
则a必满足q b a<(q+1) b , 其中qZ,
(i)m是任一正整数,则
(am,bm) (a,b)m
(ii)若
是a,
b的任一公因数,则
a
,
b
a,
b
,
特别
a (a, b)
,
b (a, b)
1
对于两个以上整数的最大公因数问题,不妨设
a1,a2, ,an是 任 意 n个 正 整 数 , 令 (a1,a2)d2,(d2,a3)d3, ,(dn1,an)dn.
3、带余数除法
定 理 4 若 a,b是 两 个 整 数 , 其 中 b0, 则 存 在 着 两 个 整 数 q及 r, 使 得 abqr, 0rb () 成 立 , 而 且 q及 r是 唯 一 的 。 ()式 中 的 q及 r分 别 叫 a被 b除 所 得 的 不 完 全 商 和 余 数 。
证明分析:作整数序列 ,-3b,-2b,-b,0,b,2b,3b,
,b)
2
即当a与b是正整数时,只要使用被2除的除法运算和 减法运算就可以计算出(a,b)
例1、求(12345,678)
解: (12345,678)=(12345,339) =(12006,339)=(6003,339) =(5664,339) =(177,339) =(177,162) =(177,81) =(96,81) =(3,81)=3
初等数论(1)整除
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性;(5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3.(7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.数的整除一、知识点讲解1、设,a b 是整数,0b ≠,若存在整数q ,使得a bq =,则称b 整除a ,记为|b a ,并称b 是a 的一个约数(或因子),而a 是b 的倍数。
如果不存在上述的整数q ,则称b 不整除a ,记作†b a 。
补充:关于整除的一些小结论:一个整数被2,3,4,5,7,8,9,11,13等整除的特征.(1)一个整数能被2或5整除的特征是:这个数的末位数字能被2或5整除。
(2)一个整数能被3或9整除的特征是:这个数的各位数之和能被3或9整除。
(3)一个整数能被4或25整除的特征是:这个数的末两位数能被4或25整除。
(4)一个整数能被8或125整除的特征是:这个数的末三位数能被8或125整除。
初等数论第一章
第一章 整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节 整除定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a 。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1 下面的结论成立:(ⅰ) a ∣b ⇔ ±a ∣±b ; (ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数;(ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0。
例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r+ 2 r+ + n r。
例2 设A = { d 1, d 2, , d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n也是n 的所有约数的集合。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3, 。
问:d (1) + d (2) + + d (1997)是否为偶数?例4 证明:存在无穷多个正整数a ,使得n 4 + a (n = 1, 2, 3, )都是合数。
例5 设a 1, a 2, , a n 是整数,且a 1 + a 2 + + a n = 0,a 1a 2 a n = n ,则4∣n 。
初等数论第一、二章
例7 设a,b,c是三个互不相等的正整数,
求证: a
3
b ab , b c bc , c a ca
3 3 3 3
3
三数中至少有一个能被10整除。 例8 设n 为自然数,求证:
A 3237 632 855 235
n n n
n
能被1985整除。
例9 设p为大于5的素数 ,
如果允许b取负值,则要求 0 r b . 思考 28 6 14 3 4 (余 2) 正确吗?
带余数除法的第二种表示 定理 若a, b是两个整数,其中b 0,则存在着两个整数 a bq r, 0r b q及r,使得
成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b , 则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r , 分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
• 1、定义:设a,b是整数,b≠0。如果存在一个 整数q使得等式: a=bq 成立,则称b能整除a或a能被b整除,记b∣a; 如果这样的q不存在,则称b不能整除a,记为b | a。
注:显然每个非零整数a都有约数 1,a,称这四个 数为a的平凡约数,a的另外的约数称为非平凡约数。
• 素数: –定义 设整数n≠0,±1.如果除了平凡因数 ±1,±n以外,n没有其他因数,那么,n 叫做素数(或质数或不可约数),否则,n 叫做合数. –规定:若没有特殊说明,素数总是指正整 数,通常写成p或 p1, p2,…, pn. –例 整数2,3,5,7都是素数,而整数4,6, 8,10,21都是合数.
初等数论
• ⑷性质:定理1.3.3推论1(裴蜀恒等式)
• 如果两个数a,b的最大公约数是d,那么存在两
个整数x与y,使得等式ax+by=d成立.(可以推 广到n个数的情况) • 推论2:两个数a,b互质的必要且充分条件是存 在整数x与y,使ax+by=1成立。 推论1的推广 设 a1 ,a2 , …, an ∈N+ (n≥2) ,则一定存在整数 s1, s2, …, sn,使 a1s1+a2s2 + … + ansn= (a1 ,a2 , …,an ) .
第一章 整数的整除性
主要内容
整除的定义、性质,奇数和偶数,带余除法 定理、余数,最大公因数、最小公倍数、辗转相 除法、互素、两两互素、素数、合数、算术基本 定理
1.1整除 1、整除的概念:
• 定义1.1 设 a,b ∈Z ,b≠0,如果存在 q ∈Z ,使得等式 a=bq成立.我们就说,a 能被b整除或b整除a ,记作b | a. • 如果整数 q 不存在( 即对任何整数 q,恒有 bq ≠a ),那么就说a不能被 b 整除 (或者说b 不能整除a),记作 b |a。
σ( a )表示正整数 a 的所有正约数的和,如 σ(2) = 3, σ( 4 ) = 7,等等。 σ1( a)表示正整数 a 的所有正约数的乘积.如 σ1( 4 ) = 8 , σ1( 10 ) = 100,等等.
我喜欢数学
• 定理1. 26 如果自然数a的标准分解式为
a p1 p2
1
2
特别地,n 个偶数的积是 2n 的倍数( n∈N+).
性质2 (关于奇数)
(1) 双数个奇数的和是偶数;
(2) 单数个奇数的和是奇数;
(3) 任意个奇数的积还是奇数。
性质3 奇数与偶数的和是奇数. 性质4 任一奇数与任一偶数不相等.
初等数论-第一章
取
则
x (1)31Q3 3,
y (1)3 P 22, 3
125 3+17(-22)=(125,17)=1
定理2、
若a, b, c是三个整数,且(a, c) 1,则
(i)ab, c与b, c有相同的公因数, (ii ) (ab, c) (b, c), 上面假定了b, c至少有一不为零。
如果不存在整数q使得a bq成立,则称a不被b整除, 记为b † a。
2、整除的基本定理
定理1(传递性):ab,bc ac 定理2:若a,b都是m的倍数,则ab都是m的倍数
定理3
若a1 , a2 ,, an都是m的倍数,q1 , q2 ,, qn
是任意n个整数,则a1q1 a2 q2 an qn是m的倍数
rn 1 rn qn 1 +rn 1,
定理4
rn 1 0。
若a, b是任意两个正整数,则(a, b) rn ,
rn是上式中最后一个不等于零的余数。
推论4.1
a, b的公因数与(a, b)的因数相同。
说明: (1)利用辗转相除法可以求两个整数的最大公因数
(2 )辗转相除法中所包含的等式个数, 即所要做的带余数除法的次数估计为 2 log b n log 2
数的倍数,则d就叫作a1 , a2 , , an的一个公倍数。所有公 倍数中最小的一个叫最小公倍数,记作[a1 , a2 , , an ]。
定理3
定理4
[a1, a2 ,, an ] [ a1 , a2 ,, an ].
设a, b是任意两个正整数,则(i)a, b的所有公倍数
即当a与b是正整数时,只要使用被2除的除法运算和 减法运算就可以计算出(a,b) 例1、求(12345,678)
初等数论 第一章 整数的可除性
第一章整数的可除性§1 整除整数集对于加、减、乘三种运算都是封闭的,但是对于除法运算不封闭。
为此,我们引进整除的概念。
定义1设a,b∈Z,b≠0,如果存在q∈Z,使得等式a=bq成立,那么称b 整除a或a被b整除,记作:b|a,此时称b为a的因数(约数),a为b的倍数。
如果不存在满足等式a=bq的整数q,那么称b不能整除a或a不被b整除,记作b| a。
定理1设a,b,c∈Z,b≠0,c≠0,则(1)如果c|b,b|a,那么c|a;(2)如果b|a,那么bc|ac;反之亦真;(3)如果c|a,c|b,那么,对于任意m,n∈Z,有c|(ma+nb);(4)如果b|a,a≠0,那么|b|≤|a|;(5)如果b|a,a|b,那么|b|=|a|。
证明可选证。
定理2(带余除法)设a,b∈Z,b≠0,则存在q,r∈Z,使得a=bq+r,0≤r<|b|,并且q及r是唯一的。
证明当b|a时,取q=a/b,r=0即可。
当b!|a时,考虑集合E={a-bk|k∈Z },易知E中有正整数,因此E中有最小正整数,设为r=a-bk>0,下证:r<|b|。
因为b!|a,所以r≠|b|,若r>|b|,则r’=r-|b|>0,又r’∈E,故与r的最小性矛盾,从而存在q,r∈Z,使得a=bq+r,0≤r<|b|。
唯一性。
设另有q’,r’∈Z,使得a=bq’+r’,0≤r’<|b|,则b(q-q’)=r’-r,于是b|(r’-r),但由于0≤|r’-r|<|b|,故r’-r=0,即r=r’,从而q=q’。
定义2等式a=bq+r,0≤r<|b|中的整数q称为a被b除所得的(不完全)商,整数r称为a被b除所得的余数。
注r=0的情形即为a被b整除。
例1 设b=15,则当a=255时,a=17b+0,故q=17,r=0;当a=417时,a=27b+12,故q=27,r=12;当a=-81时,a=-6b+9,故q=-6,r=9。
初等数论第一章第1节 数的整除性
2证明 : a | 2n, a | 2kn, 而2kn (2k -1)n n an n, a | an n, 又a | an, a | n.
3证明 : mq np (mn pq) (m p)(n q), 又 m p|mn pq, m p|mq np.
初等数论
第一章 整除理论
第一节 数的整除性
定义
设a, b是整数, b 0, 如果存在整数c, 使得a bc成立, 则称b整除a, 记作b | a. 如果不存在整数c, 使得a bc成立, 则称b不整除a, 记作b a. |
性质
(1)a | b a | b; (2)a | b, b | c a | c; (3)b | ai (i 1, 2,, k ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数); (4)b | a bc | ac(其中c是任意的非零整数); (5)b | a, a 0 b a ; (6)b | a, a b a 0.
练习题
1证明: 若3| n且7 | n, 则21| n.
2 设a 2k -1, k Z , 若a | 2n, 则a | n.
3 证明: 若m - p | mn pq, 则m - p | mq np.
1证明 : 3 | n,可设n 3m, 由7 | n得, 7 | 3m, 而7 | 7m, 所以7 | (7m - 2 3m), 即7 | m, 21| 3m, 即21| n.
证明 : (1) a | b, b aq,b aq, a | b; (2) a | b, b | c, b q1a, c q2b, c q1q2 a, a | c; (3) b | ai (i 1, 2, , k ), ai qi b(i 1, 2, , k ), ai xi qi xi b(i 1, 2, , k ), a1 x1 a2 x2 ak xk b(q1 x1 q2 x2 qk xk ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数);
初等数论
设 a , b 是 整 数 , b 0 , 依 次 做 带 余 数 除 法
a b q 1 r 1 , 0 r 1b ,
b r 1 q 2 r 2 , 0 r 2 r 1 ,
L L
r k 1 r k q k 1 r k 1 , 0 r k 1 r k ,
第三节 整除的进一步性质及最小公倍数
第 二 节 习 题 第 二 题 要 求 证 明 (a,b)ax0by0 成 立 , 其 中 的 x0和 y0与 a,b的 关 系 如 何 ? 进 一 步 , 辗 转 相 除 法 中 任 意 rk与 a,b的 关 系 又 如 何 ? 定理1、若a, b是任意两个正整数,则
(i)若在r1,L,r5中数0, 1, 2都出现,不妨设
r1 0,r2 1,r3 2,
此时
a1a2a3 3(q1q2q3)3
可以被3整除。
(ii)若在r1,L ,r5中数0, 1, 2至少有一个不出现,
这样至少有3个ri要取相同的值,不妨设
r1 r2 r3 r(r 0,1或2),
此时
a1 a2 a3 3(q1 q2 q3)3r
2、任意整数的最大公因数可转化为正整数来讨论
定 理 1 若 a1,a2,L,an是 任 意 n个 不 全 为 零 的 整 数 , 则 ( i) a1,a2,L,an与 a1,a2,L,an的 公 因 数 相 同 ; (ii)(a1,a2,L,an)(a1,a2,L,an).
3、下面先讨论两个非负整数的最大公因数 定理2、设b是任一正整数,则(i)0与b的公因数就是
P 0 1 , P 1 7 , P 2 2 7 1 1 5 , P 3 1 1 5 7 2 2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题
例1 已知a, b, c, d , t Z , 且t |10a b, t |10c d . 求证 : t | ad bc.
证明 : ad bc c(10a b) a(10c d ) t 10a b, t 10c d t ad bc.
例2 设a, b是两个给定的非零整数, 且有整数x, y, 使得ax by 1.求证 : 若a | n, b | n, 则ab | n.
证明 : n n(ax by ) nax nby 又 ab | na, ab | nb ab n.
例3 已知a, b, c, d Z 且a c | ab cd . 求证 : a c | ad bc.
证明 : a c | (a c)(b d ), a c | ab cd (ad bc ) 又a c ab cd , a c ad bc.
(4) b | a, a bq, ac bcq, bc | ac(其中c是任意的非零整数); (5) b | a, a bq,| a || b || q |, a 0, q 0,| q | 1, b a ; (6) b | a, a bq, 由(5)知, 若a 0, 则 b a 与 a b 矛盾, a 0.
2证明 : a | 2n, a | 2kn, 而2kn (2k -1)n n an n, a | an n, 又a | an, a | n.
3证明 : mq np (mn pq) (m p)(n q), 又 m p|mn pq, m p|mq np.
挑战自我
• 在已知数列1,4,8,10,16,19,21, 25,30,43中,相邻若干个数之和Байду номын сангаас被11 整除的数组共有多少组?
初等数论
第一章 整除理论
第一节 数的整除性
定义
设a, b是整数, b 0, 如果存在整数c, 使得a bc成立, 则称b整除a, 记作b | a. 如果不存在整数c, 使得a bc成立, 则称b不整除a, 记作b a. |
性质
(1)a | b a | b; (2)a | b, b | c a | c; (3)b | ai (i 1, 2,, k ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数); (4)b | a bc | ac(其中c是任意的非零整数); (5)b | a, a 0 b a ; (6)b | a, a b a 0.
证明 : (1) a | b, b aq,b aq, a | b; (2) a | b, b | c, b q1a, c q2b, c q1q2 a, a | c; (3) b | ai (i 1, 2, , k ), ai qi b(i 1, 2, , k ), ai xi qi xi b(i 1, 2, , k ), a1 x1 a2 x2 ak xk b(q1 x1 q2 x2 qk xk ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数);
练习题
1证明: 若3| n且7 | n, 则21| n.
2 设a 2k -1, k Z , 若a | 2n, 则a | n.
3 证明: 若m - p | mn pq, 则m - p | mq np.
1证明 : 3 | n,可设n 3m, 由7 | n得, 7 | 3m, 而7 | 7m, 所以7 | (7m - 2 3m), 即7 | m, 21| 3m, 即21| n.