初等数论 第一章 整除理论
初等数论(1)整除
本讲中所涉及的数都是整数,所用的字母除特别申明外也都表示整数. ⑪整除设a 、b 是给定的数,0b ≠.若存在整数c ,使得a bc =,则称b 整除a ,记作b a ∣,并称b 是a 的一个约数(或因子),而称a 为b 的一个倍数.如果不存在上述的整数c ,则称b 不能整除a ,记作b a Œ.由整除的定义,容易推出整除的几个简单性质: ①若b ∣c ,且c a ∣,则b a ∣,即整除性质具有传递性. ②若b a ∣,且b c ∣,则()ba c ±∣,即某一个整数倍数的集合关于加法和减法运算封闭.反复应用这一性质,易知:若b a ∣及bc ∣,则对任意整数u 、v 有()b au cv +∣.更一般地,若1a ,2a , ,n a 都是b 的倍数,则12()n ba a a ++ ∣. ③若b a ∣,则或者0a =,或者||a b ≥.因此,若b a ∣且a b ∣,则||||a b =.④(带余除法)对任意两个整数a 、b (0)b >,则存在整数q 和r ,使得a b q r =⋅+,其中0r b <≤,并且q 和r 由上述条件惟一确定.整数q 称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数.r 共有b 种可能的取值,若0r =,即为前面说的a 被b 整除.易知,带余除法中的商实际上是a b ⎡⎤⎢⎥⎣⎦(不超过ab的最大整数),而带余除法的核心是关于余数的不等式:0r b <≤.⑤证明b a ∣的基本手法是将a 分解为b 与一个整数之积.在比较初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生.下面两个整除分解式在这类论证中应用较多. 若n 是正整数,则1221()()n n n n n n x y x y x x y xy y -----=-++++ ;若n 是正奇数,则1221()()n n n n n n x y x y x x y xy y ----+=+-+-+ .⑫最大公约数与最小公倍数最大公约数是数论中的一个重要概念.设a 、b 不全为零,同时整除a 、b 的整数称为它们的公约数.因为a 、b 不全为零,故由整除的性质③推知,a 、b 的公约数只有有限多个,将其中最大的一个称为a 、b 的最大公约数,用符号()a b ,表示. 当()1a b =,时,即a ,b 的公约数只有1±,称a 与b 互素(或互质).对于多于两个的不全为零的整数a ,b , ,c ,可类似的定义它们的最大公约数()a b c ,,,.若()a b c ,,,1=,则称a ,b , ,c 互素.但此时并不能推出a ,b , ,c 两两互素;但反过来,若a ,b , ,c 两两互素,则显然有()a b c ,,,1=. 由定义容易得到最大公约数的一些简单性质:任意改变a 、b 的符号和先后顺序不改变()a b ,的值,4整除即有()()()a b b a a b ±±==,,,;()a b ,作为b 的函数,以a 为周期,即()()a b a a b +=,,. 下面给出最大公约数的若干性质,它们是解决关于公约问题的基础.①设a 、b 是不全为0的整数,则存在整数x 、y ,使得()ax by a b +=,.如果00x x y y =⎧⎨=⎩是满足上式的一组整数,则00x x buy y au =+⎧⎨=-⎩(其中u 为任意整数)也是满足上式的整数.这表明,满足上式的x 、y 有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 则相应的为负(正)数.特别的,两个整数a 、b 互素的充分必要条件是存在整数x 、y ,使得1ax by +=,这通常称为a 、b 适合的裴蜀(Bezout )等式.事实上,条件的必要性是性质①的特例.反过来,若有x 、y 使等式成立,设()a b d =,,则d a ∣且d b ∣,故d ax ∣及d by ∣,于是()d ax by +∣,即1d ∣,从而1d =. ②若m a ∣,m b ∣,则()m a b ,∣,即a 、b 任一个公约数都是它们的最大公约数的约数.③若0m >,则()()ma mb m a b =,,. ④若()a b d =,,则1a b d d ⎛⎫= ⎪⎝⎭,.因此,由两个不互素的整数,可自然地产生一对互素的整数. ⑤若()1a m =,,()1b m =,,则()1ab m =,.这表明,与一个固定整数互素的整数构成的集合关于乘法封闭.由此可以推出:若()1a b =,,则对任意0k >与()1k a b =,,进而对任意0l >有()1k l a b =,.⑥设bac ∣,若()1b c =,,则b a ∣. ⑦设正整数a 、b 之积是一个整数的k 次幂(2)k ≥.若()1a b =,,则a 、b 都是整数的k 次幂.一般地,设正整数a b c ,,,之积是一个整数的k 次幂,若a b c ,,,两两互素,则a b c ,,,都是整数的k 次幂.下面介绍最小公倍数.设a 、b 是两个非零整数,一个同时为a 、b 倍数的数称为它们的一个公倍数.a 、b 的公倍数有无穷多个,其中最小的正数称为a 、b 的最小公倍数,记作[]a b ,.对于多个非零整数a b c ,,,,可类似地定义它们的最小公倍数[]a b c ,,,. ⑧a 与b 的任意公倍数都是[]a b ,的倍数.对于多于两个整数的情形,类似的结论也成立. ⑨两个整数a 、b 的最大公约数与最小公倍数满足()[]||a b a b ab =,,. 思考:对于多于两个整数的情形,类似的结论不成立,请举出例子.⑩若a b c ,,,两两互素,则有[]||a b c ab c = ,,,.由此以及性质⑧可知若ad ∣,b d ∣, ,c d ∣,且a b c ,,,两两互素,则有ab c d ∣.⑬素数及唯一分解定理大于1的整数n 总有两个不同的正约数:1和n .若n 仅有这两个正约数(称为n 没有真约数),则称n 为素数(或质数).若n 有真约数,即n 可表示为a b ⋅的形式(这里a 、b 为大于1的整数),则称n 为合数.于是,正整数被分成三类,数1单独作一类,素数类及合数类.素数在正整数中特别重要,我们常用字母p 表示素数.由定义易得出下面的基本结论: ①大于1的整数必有素约数.②设p 是素数,n 是任意一个整数,则或者p 整除n ,或者p 与n 互素.事实上,p 与n 的最大公约数()p n ,必整除p ,故由素数的定义推知,或者()1p n =,,或者()p n p =,,即或者p 与n 互素,或者p n ∣.③设p 是素数,a 、b 为整数.若p ab ∣,则a 、b 中至少有一个数被p 整除.特别地可以推出,若素数p 整除(1)n a n ≥,则pa ∣. ④素数有无穷多个.思考:如何证明素数有无穷多个?(提示:用反证法,假设素数只有有限多个,为12k p p p ,,,,考虑数121k N p p p =+ ,利用性质⑬.①)⑤每个大于1的正整数都可以分解为有限个素数的积;并且,若不计素因数在乘积中的次序,这样的分解是唯一的.将n 的素因数分解中的相同的素因子收集在一起,可知每个大于1的正整数n 可惟一的表示为1212k a a a k n p p p = ,其中12k p p p ,,,是互不相同的素数,12k a a a ,,,是正整数,这称为n 的标准分解.⑥n 的全部正约数为1212k b b b k p p p ,其中i b 是满足0(12)i i b a i k = ,,,≤≤的任意整数. 由此易知,若记()n τ为n 的正约数的个数,()n σ为n 的正约数之和,则有12()(1)(1)(1)k n a a a τ=+++ ,121111212111()111k a a a k k p p p n p p p σ+++---=⋅---. 虽然素数有无穷多个,但它们在自然数中的分布却极不规则.给定一个大整数,判断它是否为素数,通常是极其困难的,要作出其标准分解,则更加困难.证明某些特殊形式的数不是素数(或者给出其为素数的必要条件),是初等数论中较为基本的问题,在数学竞赛中尤为常见.处理这类问题的基本方法是应用各种分解技术,指出所涉及数的一个真约数.【例 1】 证明:⑪设0m n >≥,有22(21)1)n m+-∣(2;⑫对正整数n ,记()S n 为n 的十进制表示中各个数位数码之和,则99()n S n ⇔∣∣. ⑬设p 和q 均为自然数,使得111112313181319p q =-+--+ ,证明:p 可被1979整除.【解析】 ⑪11112222221(21)[(2)21]mn n m n n ++-++-=-+++ 122(21)(21)n m+⇒--∣,又122221(21)(21)n nn+-=-+,从而122(21)(21)nn ++-∣. 于是由整除的传递性,有22(21)1)nm+-∣(2.⑫设101010k k n a a a =⨯++⨯+ ,其中09i a ≤≤,且0k a ≠,则01()k S n a a a =+++ .于是有1()(101)(101)k k n S n a a -=-++- .对1i k ≤≤,由整除分解式知9(101)i -∣,故上式右端k 个加项中的每一个都是9的倍数,从而由整除的性质知,它们的和也被9整除,即9(())n S n -∣.由此容易推出结论的两个方面. ⑶11111112231319241318p q ⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭ 11111112313192659⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭11111166013196611318989990⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111197966013196611318989990⎛⎫=⨯+++ ⎪⨯⨯⨯⎝⎭【点评】 整除的性质②提供了证明12()n ba a a +++ ∣的一种基本的想法,我们可以试着去证明更强的(也往往是更容易证明的)命题:1i n ∀≤≤,有i ba ∣.这一更强的命题当然不一定成立,即使在它不成立的时候,上述想法仍有一种常常有效的变通:将12n a a a +++ 适当的分组成为12k c c c ++ ,而(12)i bc i k = ,,,∣. 例1⑫的证明,实际上给出了更强的结论,9())n n S n ∀-,∣(,即()(m od 9)S n n ≡.有些情形,我们能够由正整数十进制表示中的数字的性质,推断这个整数能否被另一个整数整除,这样的结论,常称为整除的数字特征.被2、3、5、10整除的数的数字特征是显而易见的.【变式】 设1k ≥是一个奇数,证明:(2)12)k k k n n n ∀++++ ,Œ(.【解析】1n =结论显然成立.设2n ≥,记所涉及的和为A ,则 22(2)(3(1))(2)k k k k k k A n n n =++++-+++ .因为k 是正奇数,故由整除分解式可知,对每个2i ≥,数(2)k k i n i ++-被(2)2i n i n ++-=+整除,故2A 被2n +除得的余数是2,从而A 不可能被2n +整除(注意22n +>).【点评】 论证中我们应用了“配对法”,这是数论中变形和式的一种常用手法.【变式】 设m 、n 为正整数,2m >,证明:(21)(21)m n -+Œ. 【解析】 当n m =时,结论平凡;当n m <时,结果可由1212121n m m -++<-≤推出来(注意2m >,并运用整除的性质③); 当n m >的情形可化为上述特殊情形:由带余除法,n mq r =+,0r m <≤,而0q >.由于21(21)221n mq r r +=-++,由整除分解式知(21)(21)m mq --∣;而0r m <≤,故由上面证明了的结论知(21)(21)m r -+Œ(注意0r =时,结论平凡).从而当n m >时也有(21)(21)m r -+Œ.这就证明了本题结论.【例 2】 设10a m n >>,,,证明:()(11)1m n m n a a a --=-,,. 【解析】 设(11)m n D a a =--,.通过证明()(1)m n a D -,∣及()(1)m n D a -,∣来推导出()1m n D a =-,,这是数论中证明两数相等的常用手法.∵()m n m ,∣,()m n n ,∣,由整除分解式即知()(1)(1)m n m a a --,∣,以及()(1)(1)m n n a a --,∣,故可知,()1m n a -,整除(11)m n a a --,,即()(1)m n a D -,∣. 为了证明()(1)m n D a -,∣,设()d m n =,. ∵0m n >,,∴可以选择0u v >,使得mu nv d -=.∵(1)m D a -∣,∴(1)mu D a -∣.同样,(1)nv D a -∣.故()mu nv D a a -∣,从而由mu nv d -=,得(1)nv d D a a -∣. 此外,因1a >,及(1)m D a -∣,故()1D a =,,进而()1nv D a =,.于是,从()mu nv D a a -∣可导出(1)d D a -∣,即()(1)m n D a -,∣. 综上所述,可知()1m n D a =-,.【变式】 记2210kk F k =+,≥.证明:若m n ≠,则()1m n F F =,. 【解析】 论证的关键是利用(2)n m F F -∣(例1⑪),即存在一个整数x 使得2m n F xF +=.不妨设m n >,()m n d F F =,,则由存在一个整数x 使得2m n F xF +=,推出2d ∣,所以1d =或2.但n F 显然是奇数,故必须1d =.【点评】(0)k F k ≥称为费马(Fermat )数.本变式表明,费马数两两互素,这是费马数的一个有趣的基本性质.利用这一性质,可以证明素数有无穷多个的结论.无穷数列{}(0)k F k ≥中的项两两互素,所以每个k F 的素约数与这个数列中其他项的素约数不同,因此素数必然有无穷多个.【变式】 设0m n >,,22()mn m n +∣,则m n =. 【解析】 设()m n d =,,则11m m d n n d ==,,其中11()1m n =,.于是,条件转化为221111()m n m n +∣,故有22111()m m n +∣,从而211m n ∣.但11()1m n =,,故211()1m n =,.结合211m n ∣,可知必须11m =.同理11n =,因此m n =.【点评】 对两个给定的不全为零的整数,我们常借助它们的最大公约数,并应用性质⑵-④,产生两个互素的整数,以利用互素的性质作进一步论证(参见性质⑵-⑤,⑵-⑥.就本题而言,由于mn 为二次式,22m n +为二次齐次式,上述手段的实质是将问题化归成m 、n 互素这种特殊情形.在某些问题中,已知的条件(或者已经证明的结论)c a ∣并不使用,我们可以试着选取c 的一个恰当的约束b ,并从c a ∣过度到较弱的结论b a ∣,以期望后者提供适宜于进一步论证的信息.在本例中,我们就是由221111()m n m n +∣产生了211m n ∣,进而推导出11m =.【变式】 m 个盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是()1m n =,. 【解析】 设()1m n =,,则有u v ∈Z ,使得1(1)(1)un vm v m v =+=-++,此式说明:对盒子连续加球u 次,可使1m -个盒子各增加了v 个,一个增加(1)v +个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若()1m n d =>,,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为||1d m d n d >,,,所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须()1m n =,.【例 3】 设正整数a 、b 、c 的最大公约数为1,并且abc a b=-.证明:a b -是一个完全平方数.【解析】 方法一:设()a b d =,,则1a da =,1b db =,其中11()1a b =,.由于()1a b c =,,,故有()1d c =,. 于是问题中的等式转化为1111da b ca cb =-,由此可见11a cb ∣.因11(,)1a b =,故1a c ∣. 同样可得1b c ∣.再由11(,)1a b =便推出11a b c ∣(参考性质⑵-⑧⑨).设11c a b k =,其中k 是一个正整数.一方面,显然k 整除c ;另一方面,结合1111da b ca cb =-, 得11()d k a b =-,故k d ∣.从而()k c d ,∣.但()1c d =,,故1k =. 因此11d a b =-.故211()a b d a b d -=-=.这就证明了a b -是一个完全平方数. 方法二:记a b k -=,则已知等式可化为2()k c b b -=.记()k b c d -=,. 若1d >,则d 有素因子p .由上式知2p b ∣,故p ∣b .结合()p b c -∣及p k ∣,得出p c ∣及p a ∣,这与()1a b c =,,相违. 因此1d =,进而知k 与c b -都是完全平方数.【变式】 设k 为正奇数,证明:(12)(12)k k k n n ++++++ ∣.【解析】 因为(1)122n n n ++++= ,故问题等价于证明:(1)n n +整除2(12)k k k n +++ .因n 与1n +互素,所以这又等价于证明2(12)k k k n n +++ ∣.事实上,由于k 是奇数,故由整除的分解式,可知2(12)k k k n +++= [1(1)][2(2)][(1)1]2k k k k k k k n n n n +-++-++-++ 是n 的倍数.同理,2(12)[1][2(1)][1]k k k k k k k k k n n n n ++=+++-+++ 是1n +的倍数.【点评】 整除问题中,有时直接证明b a ∣不容易.若b 可分解为11b b b =,其中12()1b b =,,则我们可以将原命题b a ∣分解为等价的两个命题1b a ∣以及2b a ∣.本例应用了这一手法.更一般地,为了证明b a ∣,可将b 分解为若干两两互素的整数12n b b b ,,,之积,而证明等价的(12)i b a i n = ,,,∣(参见性质⑵-⑩).【例 4】 设正整数a 、b 、c 、d 满足ab cd =,证明:a b c d +++不是素数. 【解析】 方法一:由ab cd =,可设a d m c b n ==,其中m 和n 是互素的正整数,由a m c n=意味着有理数ac 的分子、分母约去了某个正整数u 后,得到既约分数mn,因此a my =,c nu =.同理,有正整数使得b nv =,d mv =.因此,()()a bcd m n u v +++=++是大于1的整数之积,从而不是素数. 方法二:由ab cd =,得cd b a=.因此a b c d +++=cd a c d a +++()()a c a d a ++=.因为a b c d +++是整数,故()()a c a d a++也是整数,若它是一个素数,设为p ,则有()()a c a d ap ++=,可见p整除()()a c a d ++,从而p 整除a c +或a d +.不妨设()pa c +∣ ,则a c p +≥,结合⑶-③推出a d a +≤,矛盾.【变式】 设a 、b 是正整数,满足2223a a b b +=+,则a b -和221a b ++都是完全平方数. 【解析】 已知关系式即为2()(221)a b a b b -++=,论证的关键是证明正整数a b -与221a b ++互素.记(221)d a b a b =-++,.若d 有素因子p ,从而由性质⑶-①知2p b ∣.因p 是素数,故p b ∣.结合()p a b -∣知p a ∣.再由(221)p a b ++∣推导出p ∣1,矛盾,故1d =. 从而由性质⑶-①推知正整数a b -与221a b ++都是完全平方数.【例 5】 证明:两个连续正整数之积不能是完全平方,也不能是完全立方. 【解析】 反证法,假设有正整数x ,y 使得2(1)x x y +=.则24(1)4x x y +=22(21)41x y ⇔+=+(212)(212)1x y x y ⇔+++-=.因左边两个因数都是正整数,故有21212121x y x y ++=⎧⎨+-=⎩,解得0x y ==,矛盾.然而对于方程3(1)x x y +=,上面的分解方法不易奏效.采用另一种分解:设所说的方程有正整数解x 、y ,则由于x 和1x +互素,而它们的积是一个完全立方数,故x 与1x +都是正整数的立方,即3x u =,31x v +=,y uv =,u 、v 都是正整数,由此产生331v u -=,易知这不可能.不难看到,用类似的论证,可以证明连续两个正整数之积不会是整数的k 次幂(这里2k ≥).【变式】 给定的正整数2k ≥,证明:连续三个正整数的积不能是整数的k 次幂. 【解析】 假设有正整数2x ≥及y ,使得(1)(1)k x x x y -+=.注意到上述式子左端的三个因数1x -、x 、1x +并非总两两互素,因此不能推出它们都是k 次方幂.克服这个困难的一种方法是将其变形为2(1)k x x y -=.因x 和21x -互素,故可由上式推出,有正整数a 、b ,使得k x a =,21k x b -=,ab y =,由此我们有221()k k k k a b a b =-=-22224221()()k k k k a b a a b a b b ----=-++++ ,由于2x ≥,故2a ≥,又2k ≥,故上式后一个因数必大于1,导出矛盾.【点评】 实际上,连续四个正整数的积也不能是整数的k 次幂,由于证明需要使用二项式定理,所以将在以后介绍.【例 6】 (09年集训队测试题)设n 是一个合数.证明存在正整数m ,满足|m n ,m n 3()()d n d m ≤.这里()d k 表示正整数k 的正约数的个数.【解析】 若n 有一个素因子p 满足p n >,令nm p=,则有m n <由p n >知()1m p =,,因此()()()2()d n d p d m d m ==.又由n 是合数知1m >,即()2d m ≥.因此2()()d n d m ≤.现在设n n 1m 为n n 2m 为1nm 的不n 21m >. 若不然,则1n m 没有大于1n 1n m 是合数,则它在区间1(1]n m ,内至少有一个因子,矛盾!因此1nm 是素数.但前面已假设n 的所有素因子都不大于n ,又1n n m n =1n n m =2m n 21m =矛盾!由21m >知121m m m >,且12m m 是n 的因子,由1m 的选取可知12m m n >,因此令312nm m m =,则有(123)i m n i =,,.因此,333123123123()()()()()max{()()()}d n d m m m d m d m d m d m d m d m =≤≤,,,故取123m m m ,,中因子数最多的一个为m 即可. 【点评】 以上用到一个基本的事实:若u v ,为正整数,则()()()d uv d u d v ≤,这可用数()d x 的计算公式推出来.【变式】 求出最小的正整数n ,使其恰有144个不同的正约数,且其中有10个连续约数.【解析】 从n 有10个连续正约数条件出发,我们不难得到n 必须被23410 ,,,,整除,对n 进行质因数分解进行讨论.n 是322357,,,的倍数,设n 的标准分解式为312235k r r r r k n p = ,则 12343211r r r r ,,,≥≥≥≥.又n 的正约数的个数12()(1)(1)(1)144k d n r r r =+++= ,而 1234(1)(1)(1)(1)432248r r r r ++++⨯⨯⨯=≥,因此 56(1)(1)(1)3k r r r +++ ≤.所以,在56k r r r ,,,中最多还有一个不为0. 要使n 最小,则5502k r =,≤≤.于是n 的形式为 35124235711r r r r r n =,此处12345321102r r r r r ,,,,≥≥≥≥≤≤.从而有1234(1)(1)(1)(1)144r r r r ++++=或12345(1)(1)(1)(1)(1)144r r r r r +++++=.显然当12345r r r r r ≥≥≥≥时,n 最小.由144222233=⨯⨯⨯⨯⨯,试算满足上式的数组12345()r r r r r ,,,,,得数组(52111),,,,可使n 最小.这样,最小的52235711110880n =⨯⨯⨯⨯=.习题 1. 证明:⑪2001001 共能被1001整除; ⑫设正整数n 的十进制表示为10k n a a a = (090i k a a ≠,≤≤),记 01()(1)k k T n a a a =-++- (由n 个各位起始的数字的正、负交错和). 证明:()n T n -被11整除.由此得出被11整除的数的数字特征:11整除n 的充分必要条件是11整除()T n .【解析】 ⑪2001001 共201101=+367(10)1=+33663653(101)[(10)(10)101]=+-+-+ ,所以 1001∣2001001 0. ⑫()n T n -=0011()(10)[10(1)]k k k k a a a a a a -++++⨯-- .按i 为偶数、奇数分别用整除分解式可以得到数10(1)i i i i a a ⨯--被11整除.因此()n T n -被11整除,故问题中结论的两方面均成立.习题 2. 利用Bezout 等式证明,任给整数n ,分数214143n n ++是既约分数.【解析】 ∵3(143)2(214)1n n +-+=,∴(214,143)n n ++1=.所以原命题成立.习题 3. 证明:对任意给定的正整数1n >,都存在连续n 个合数. 【解析】 容易验证,(1)!2,(1)!3,(1)!(1)n n n n +++++++ 是n 个连续的合数.习题 4. 求自然数N ,使它能被5和49整除,并且包括1和N 在内,它共有10个约数.【解析】 把N 写成素因数分解形式1223n a a a n N p = ,其中012i a i n = ,,,,≥. 则它所有约数的个数为12(1)(1)(1)10n a a a +++= , 由于25|7|N N ,,则34121a a ++,≥≥3, 因此125n a a a a ,,,,必然都为0,即3457a a N =. 由于34(1)(1)1025a a ++==⨯,可得3414a a ==,, 即本题有唯一解457N =⋅.习题 5. 求所有的正整数对()a b ,,使得22(7)|()ab b a b a b ++++. 【解析】 由条件,22(7)|()ab b a b a b b ++++,而222()(7)7a b a b b a ab b b a ++=+++-,故22(7)|(7)ab b b a ++-.⑴当270b a ->时,要使22(7)|(7)ab b b a ++-,必须2277b a ab b -++≥,易知这不可能; ⑵当270b a -=时,即27b a =,此时a b ,应具有277*a k b k k ==∈N ,,的形式,经检验, 2()(77)a b k k =,,满足要求;⑶当270b a -<时,要使22(7)|(7)ab b b a ++-,必须2277a b ab b -++≥,那么2222777a b ab b ab b +++>⇒<≥,于是1b =或2b =.①1b =时,由题中条件2157788a a a a a ++=-+++是自然数,可知11a =或49a =,得解 ()(111)a b =,,或(491),;②2b =时,由22(7)|(7)ab b b a ++-得7449a a -+是自然数,而74249a a -<+,所以74149a a -=+,此时133a =非自然数,舍去. 综上,所有解为2()(111)(491)(77)*a b k k k =∈N ,,,,,,,.建国60周年(四)我古老而年轻的祖国啊,我是你广袤大地上一棵稚嫩的幼苗,摇曳在你温暖呵护的怀抱,我是你无垠天空中一只飞翔的小鸟,鸣唱在你春风和煦的心头,我的血管里,涌动着黄河的波浪,我的心灵里,开放着文明的鲜花,我心中的理想,正展现在祖国蔚蓝的天空里。
初等数论(1)数的整除
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
例如:(1)若222912842440a ab b bc c c -+-+-+=,求a b c ++的值.(2)求整数,,a b c ,使它们满足不等式222332a b c ab b c +++<++.作比较。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)奇数±奇数=偶数;偶数±偶数=偶数; 奇数±偶数=奇数;偶数×偶数=偶数; 奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性; (5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3. (7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.例如: 1.(1)已知c b a ,,是整数,c b a ++是奇数,判断c b a -+,c b a +-,c b a ++-的奇偶性,说明理由。
(2)你能找到三个整数c b a ,,,使得关系式()()()()2010a b c a b c a b c b c a ++-++-+-=成立吗?如果能找到,请举一例,如果找不到,请说明理由.2、是否存在整数,m n ,满足222010m n +=?3、设1,2,3,,9的任一排列为1239,,,,a a a a ,求证:129(1)(2)(9)a a a ---是一个偶数. 类题:(1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,体现了整体处理的优点,但掩盖了“乘积”为偶数的原因. 解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.例4-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.例4-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.4、有n 个数12,,,n x x x ,它们中的每一个数或者为1,或者为1-,如果1234110n n n x x x x x x x x -++++=,求证:n 是4的倍数。
初等数论第一章整除
例1:设 x, y 为整数,且5 | x 9 y 则 5 | 8x 7 y
证:因为 8x 7 y
8( x 9 y) 65y
因为5 | x 9 y
所以有
又
5 | 65y
5 | 8x 7 y
例2:证明若3|n,7|n,则21|n
证:因为3|n,所以n= 3n1 又因为7|n,所以 7 | 3n1 显然有 7 | 7n 1 则有 7 | 7n1 2 3n1 即 7 | n1 有 n1 ห้องสมุดไป่ตู้7n2 即有 n 21n2 所以有21|n
注: (1)连续n个整数中必有一个数被n整除。 可作为一个定理,在证明整除问题时非常 有用。 (2)注意整数的各种表示。 例2: 证明若a不是5的倍数,则
与
中有且仅有一个数被5整除
证明: 这四个数有一个是5的倍数 若 5 | a 1或 又 所以 即 a 1, a 1 有且仅有一个数被5整除
n 是整数,所以 3
n2 2
n3 6
是
注:这里用了连续n个整数的乘积是n!的 倍数的结论.
注:连续n个整数的乘积是n!的倍数。 a、当n个整数都大于零时,由
m( m1)( m n1) n!
C
n m n1
而组合数为整数,可知连续n个整数的乘积是n! 的倍数。 b、当n个整数中有一个为零时,显然成立。
n 注:1、
2、
a b (a b)M1
n
n
a b (a b)M 2 , 2†n
n
3、
(a b) aM3 b ,
n n
例5、试证明任意一个整数与它的各位数 字和的差必能被9整除。
初等数论 第一章 整除理论
第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2++a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。
不妨设d1是其中最小的。
若d1不是素数,则存在e1 > 1,e2 > 1,使得d1= e1e2,因此,e1和e2也是a的正的非平凡约数。
这与d1的最小性矛盾。
所以d1是素数。
证毕。
推论任何大于1的合数a必有一个不超过证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。
证毕。
例1设r是正奇数,证明:对任意的正整数n,有n + 2|/1r + 2 r + + n r 。
§1.1整除的概念及带余除法
第一章整数的可除性整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的§1整除的概念及带余数除法一、整除的概念定义1 设a,b是整数,b≠ 0,如果存在整数q,使得成立,则称a能被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数q使得a = bq成立,则称a不被b整除,记为显然每个非零整数a称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
定理1 下面的结论成立:∣a⇔±b∣±a;(ⅱ) c ∣b,b∣a⇒c∣a;(ⅲ) b∣a i,i = 1, 2, …, n⇒b∣a1q1+a2q2+…+a n q n,此处q i(i = 1, 2, , n)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒|b|≤|a|;b∣a且|a|<|b|⇒a = 0。
2) 设a 与b 是两个整数,b > 0,则存在q 和r ,使得a = bq + r ,0 ≤ r <b (2) 成立且q。
中的q 叫做a 被b 除所得的不完全商,r 叫做a 被例1 若1n >,且111nn -+ 求n222x y z +=的整数解能否全是奇数?为什300”位于哪个字母的下面A B C D E F G1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 …….解:观察可以发现两行7个数组成一组故300=7×42+6与6同在字母D 的下面例4 a 除以b 商为c ,余数为r ,则am 除以bm 商为 , 余数为 。
m N +∈3某整数除以3余2,除以4余1,该整数除以12,余 ?三、整除的特征从正整数121n n N a a a a a a -=的末位a 起向左每k 个数码分为一节,最后剩下若有不足k 个数码的也为一节,记为()1()(),,,k k t k A A A并记()1()()()k k k t k S N A A A =+++----数节和1()1()2()()()(1)t k k k k t k S N A A A A -'=-++-----数节代数和1、设d 是10k 的约数,则()k d N d A ⇔推论:能被2或5整除的数的特征是:这个数的末一位数能被2或5整除。
初等数论第一章5
第五节 辗转相除法
因此对于任意的自然数k,有 1 m(x kn) = n(km y), 这样,当k充分大时,总可找出正整数x0,y0 ,使 得 1 mx0 = ny0 。 上式说明,如果放y0次(每次放n个),那么在使 m个盒子中各放x0个后,还多出一个硬币。把这 个硬币放入含硬币最少的盒子中(这是可以做 到的),就使它与含有最多硬币的盒子所含硬 币数量之差减少1。因此经过若干次放硬币后, 必可使所有盒子中的硬币数目相同。
求出整数x,y,使得
ax by = (a, b) 。
(4)
为此所需要的除法次数是O(log10b)。但是如果只
需要计算(a, b)而不需要求出使式(4)成立的整
数x与y,则所需要的除法次数还可更少一些。
第五节 辗转相除法
例1 设a和b是正整数,那么只使用被2除的除法
运算和减法运算就可以计算出(a, b)。
P0 =1,P1 =q1,Pk =qkPk 1 Pk 2,k 2,
Q0 =0,Q1 =1,Qk =qkQk 1 Qk 2,k 2,
则
aQk bPk = (1)k 1rk,k = 1, 2, , n . 证明 当k = 1时,式(3)成立。 当k = 2时,有 Q2 = q2Q1 Q0 = q2,P2 = q2P1 P0 = q2q1 1, (3)
Fk > k 2,k n,
则
第五节 辗转相除法
Fn + 1 = Fn Fn 1 > n 2 n 3 = n 3( 1) =
n 3 2 = n 1,
即当k = n 1时式(2)也成立。由归纳法知式(2)
对一切n 3成立。 证毕。
初等数论:数的整除性
此时 2b-1=
k
0,3 ,或
2
3k
,这都是不可能的,
所以
k
3
|
2b
1。
17
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 6. 写出不超过 100 的所有的素数。 解: 将不超过 100 的正整数排列如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
若 n 2s,由上式知 n 22, 因为 n 2 > 2,这是不可能的,所以 n 2 | s。
10
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 2. 设 A = { d1, d2, , dk }是 n 的所有约数的集合,
则B
={dn1
,
n d2
,,
n dk
}也是
n
的所有约数的集合。
8
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
推论. 任何大于 1 的合数 a 必有一个不超过 a 的素约数。
证明:使用定理 2 中的记号,有 a = d1d2,
其中 d1 > 1 是最小的素约数,
所以
d2 1
a。证毕。
9
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 1. 设 r 是正奇数,证明:对任意的正整数 n,有
初等数论第一章6
留作习题。
第六节 算术基本定理
推论1 使用式(2)中的记号,有
(ⅰ) n的正因数d必有形式
d
p 1 1
p 2 2
pk k,
iZ,0 i i,1 i k;
(ⅱ) n的正倍数m必有形式
m
p1 1
p2 2
pkk M,
MN,iN,i i,1 i k。
第六节 算术基本定理
推论2 设正整数a与b的标准分解式是
ab = cn ,(a, b) = 1,
(5)
则存在正整数u,v,使得
a = un,b = vn,c = uv,(u, v) = 1。
证明
设
c
p 1 1
p 2 2
p k k
,其中
p1, p2,
, pk
是互不相同的素数,i(1 i k)是正整数。
第六节 算术基本定理
又设
a
p1 1
p2 2
pk k
有一个能被另一个整除。
5.
证明:
1
1 2
n1(n
2)不是整数。
6. 设a, b是正整数, 证明:存在a1, a2, b1, b2,
使得 a = a1a2,b = b1b2,(a2, b2) = 1,
并且[a, b] = a2b2。
证明 为了叙述方便,不妨假定a,b,c是正
整数。
(ⅰ) 设
a
p1 1
p2 2
pkk,b
p1 1
p1 2
p k k
第六节 算术基本定理
其中p1, p2, , pk是互不相同的素数, i,i(1 i
k)都是非负整数。由定理1推论2 ,有
(a,b)
p1 1
初等数论
第一章 整除理论§1.1 整数与自然数及整除的基本性质整数集},3,2,1,0,1,2,3,{ ---=Z ,整数中的四则运算我们已在中小学学习过,需要注意的是,任何下有界的非空整数集总含有它的最小元,这一性质也称为最小整数原理.同样地,一个上有界的非空整数集总含有它的最大元,自然数即是正整数,全体自然数集用N 表示.定义1.1.1 设0,,≠∈a Z b a ,如Z d ∈∃使得b ad =,则称a 整除b ,记为b a ,这里a 称为b 的约数或因数(或因子),b 称为a 的倍数.如果a 不能整除b ,则记为b a |/.例如3|1010|312|924|6,15|536|126|3///--,,,,,等等。
值得注意的是,由于Z a ∈∀,有00=⋅a ,若,0≠a 则0|a ,所以0被任何整数整除.定理1.1.1 (i ) .||||b a b a b a b a ⇔-⇔-⇔(ii )(传递性) c a c b b a ||,|⇒.(iii ) 若b d a d |,|,则by ax d Z y x +∈∀|,,有.(iv ) bn an b a n ||,0⇔≠∀(v ) b a a b b a ±=则若,|,|.(vi ) b a b b a ≤≠则且若,0,|.证明 仅证(iii ).因为,,|,|2,1Z d d b d a d ∈∃故使得a dd =1,b dd =2,⇒∀)(,,2121y d x d d y dd x dd by ax Z y x +=+=+∈有,而Z y d x d ∈+21,故by ax d +|.证毕.在此定理中的(iii )显然有如下推广:定理1.1.2 若Z x m i a d i i ∈∀=则),,,2,1(| ,有∑=mi i i x a d 1|.例1 证明 若2|n, 3|n, 则6|n.证明 由于2|n,得n=2k(Z k ∈),由条件知3|2n,又由定理1.1.1中(iv )与(ii )可得3|3k,所以由定理1.1.1(iii )知3|(3k-2k),即3|k,再由定理1.1.1(iv )知k ⨯⨯2|32,即6|n.证毕.定理1.1.3 设b a ,是两个整数,其中0>b ,则存在两个唯一得整数r q 和,使得r bq a +=, b r <≤0 (1)成立证明 考虑数列,3,2,,0,,2,3,b b b b b b ---那么a 必在上述序列的某两之间,或是其中某一项,即存在一个整数q 使得b q a qb )1(+<≤ 成立.令.0,b r r qb a <≤=-则有故有(1)成立.再证唯一性.设11,r q 是满足(1)的另一对整数,因为r bq r q b +=+111,于是r r q q b -=-11)(.所以r r q q b -=-11.由于1r r 与都是小于b 的非负整数.故上式右边小于b ,如果q q ≠1,则上式左边b ≥,这不可能,故必q q =1.由此及上式知r r =1.证毕.定义1.1.2 我们把(1)式中q 叫做a 被b 除得出的不完全商,r 叫做a 被b 除所得到的余数.也叫做非负最小剩余.常记作r a b =><.以后总假定除数0>b 以及因数为正.在不致引起混淆的情况下,b a ><中的b 常略去不写.显然有如下结论:定理1.1.4 对于整数0,,,21>b b a a 其中,有(i ) 〉〉〈+〉〈〈=〉+〈2121a a a a .(ii ) 〉〉〈-〉〈〈=〉-〈2121a a a a .(iii ) 〉〉〉〈〈〈=〉〈2121,a a a a .证明 仅证(i )与(iii ).(ii )读者自证.设〉〈+=111a bq a ,〉〈+=222a bq a . 〉〉〈+〉〈〈+=〉〈+〉〈21321a a bq a a .于是〉〉〈+〉〈〈+++=〉〈+〉〈++=+21321212121)()(a a q q q b a a q q b a a .所以由定理1.1.3知(i )成立.又设 〉〈+=2121,a a bq a a ,于是))((221121〉〈+〉〈+=a bd a bd a a〉〉〈〈+-〉〈+〉〈+=21122121)(a a q a d a d d bd b从而 〉〉〉〈〈〈=〉〉〈〈2121,a a a a ,由定义知〉〉〉〈〈〈=〉〉〉〈〈〈=〉〈212121,a a a a a a由此(iii )得证.§2 最大公因数与辗转相除法定义1.2.1 设n a a a ,,,21 是n 个不全为零的整数.若整数d 是它们之中每一个因数,那么d 就叫做n a a a ,,,21 的一个公因数(或称为公约数).整数n a a a ,,,21 的公因数中最大的一个叫做最大公因数(或称为最大公约数),记作(n a a a ,,,21 ),若(n a a a ,,,21 )=1,我们称n a a a ,,,21 互素.注: n(n>1)个整数的公因数必有限.由最大公因数的定义知(n a a a ,,,21 )=),,,(21n a a a .而一组不全为零的整数的最大公因数等于它们当中全体不为零的整数的最大公因数,所以只须讨论全体正整数的最大公因数.首先将介绍辗转相除法求最大公因数.定理1.2.1 设c b a ,,是任意三个不全为零的整数,且c bq a +=,其中q 是整数,则),(),(c b b a =.证明 b d a d |,|∀,则由定理1.1.1知c d bq a d |).(|即-+,由d 的任意性知c b a |),(,故),(),(c b b a ≤.反之,c d b d |,|∀,由定理1.1.1知a d |,由d 的任意性知a c b |),(,于是),(),(b a c b ≤.综上),(),(c b b a =.证毕.设0,0>>b a ,由定理1.1.3(带余数除法)则有11r bq a +=, )|(01a b b r /<<221r q r b +=, )|(0112b r r r /<<3321r q r r +=, )|(01223r r r r /<<(1) n n n n r q r r +=--12, )|(0211---/<<n n n n r r r r 11+-=n n n q r r , )|(1-/n n r r 由于余数)1(n i r i ≤≤是正整数且逐次减小,所以经有限步后必有一个余数为零.即01=+n r .由(1)及定理1.2.1则得下述结论: 定理1.2.2 若任给整数0,0>>b a ,则n r b a =),(. 证明 由定理1.2.1得),(),(),(),(),0(2111b a r r r r r r r r n n n n n n n n ======---+ . 证毕.定理1.2.3 设0,0>>b a ,对于如上辗转相除法(1).有 n k r b U a V k k k k ,,2,1,)1(1 =-=-- (2) 这里⎩⎨⎧+===+===----211021110,1,1,,1k k k k k k k k V V q V V V U U q U q U U (3) 证明 可用数学归纳法来证明.由(1) 11r bq a +=,可写成 11111)1(r b U a V --=-. 由b q q a q r r b q a q r q r b )1()(1222212221+-=-+-=+=得,即21222)1(r b U a V --=-. 所以当2,1==k k 定理成立.下证由1+k k 到也成立.由于 111-k +++=k k k r r q r , )()1()()1(111121b U a V q b U a V r k k k k k k k k -----=-+---+ 所以)()1(1111b U a V q b U a V r k k k k k k k -+-=-+--+ b U a V b U U q a V V q k k k k k k k k 111111)()(++-+-+-=+-+=证毕.例1.2.1 求(299,247) 解.013339,1339152,39524247,522471299+⨯=+⨯=+⨯=+⨯=故 13)247,299(=由定理1.2.3即得如下推论: 推论1.2.1 若Z y x d b a ∈=,,),(则有使得 d by ax =+.证明 令k k k k U y V x )1(,)1(1-=-=-则有 d r by ax k ==+. 证毕.由例1.2.1知 13,3,247,299====k r n b a .由上面的等式 333b b U a V =-.而1,4,1321===q q q ,由(3)可得6,533==U V ,即1324762995=⨯-⨯. 所以d by ax y x =+-==有6,5.推论1.2.2b a 与的因数是),(b a 的因数. 证明 b a ,∀的公因数d ',则.|,|.|,|d d by ax d b d a d '+'''即所以证毕.定理1.2.4 设),(),(,1),(c b c ab c a ==则. 证明 设1),(,,,),(1111====c b d c c d b b d c b 且则(否则,若1),(11>c b ;反证d 不是b a 与的最大公因数),于是),(),(),(1111c ab d d c d ab c ab ==. 再证若.1),(11=c ab .|,|.1),(111c d ab d d c ab ''>'=则若d '无大于1的因子整除1b .则a d |',又c c |'.c d c d |,|1''于是.所以1),(>'≥d c a .此与1),(11=c b 矛盾.总之,.1),(11=c ab 于是d c ab d c ab ==),(),(11.证毕.推论1.2.3 设b c ab c c a |,|,1),(则=. 证明 因为.|,),(),(b c c c b c ab 即==证毕.。
初等数论§1整除
rn 1 rn q n 1 , ( rn 1 0 )
2012-6-19
18
定理2 在上面的表达式( * )中,有 ( a , b ) rn , ( rn 1 0 ). 证明:令 ( a , b ) d , 则 d a , d b .
a b q 1 r1 b r1 q 2 r2 rn 2 rn 1 q n rn rn 1 rn q n 1 rn 1
注 : a 1 , a 2 , , a n 两 两 互 质 a 1 , a 2 , , a n 互 质 .
例1
已知两个自然数的和为165,它们的最大公约数
为15,求这两个数。
15与150,或30与135,或45与120, 或60与105,或75与90.
2012-6-19
16
练习:100个正整数之和为101101,则它们的最大
第一章
整数的可除性
整除性理论是初等数论的基础,本章要介绍 带余数除法,辗转相除法,最大公约数,最小公 倍数, 数 x 、 x 的 性 质 , 算术基本定理以及 函 它们的一些应用。
2012-6-19
1
中小学数学中的一些数论问题: 1.狐狸在跑道上跳远,每次跳远150CM从起点开始每
2012-6-19
6
定理4 设a与b是两个整数,b > 0,则存在唯一
的两个整数q和r,使得 证明: 存在性:考虑整数序列 , 3 b , 2 b , b , 0 , b , 2 b , 3 b , 则a必在序列的某两项之间, 即存在一个整数q,使得 q b a ( q 1) b
2012-6-19
10
例6 已知: 782 + 8161能被57整除, 求证:783 +8163也能被57整除。 证明:783 + 8163 = 7 ( 782 + 8161 )-7 × 8161 + 8163 = 7 ( 782 + 8161 ) + 8161 × 57 ∵782 + 8161和57都能被57整除 ∴原式得证。
初等数论第一章引言
4、 a 0 a, a Z .
5、任意的a , b Z,必有x Z , 使得 a b x .
5就是法的定: a b x.
0引言 自然数与整数
二、在整数集中可以作乘法运算(*),但不
一定可作其逆运算除法运算,乘法运算满足
1、 合律: (a b) c a (b c ), a , b, c Z . 2、 交律: a b b a , a , b Z . 3、相消律: 若a 0, a b a c b c , a , b, c Z .
0引言 自然数与整数
以上列举了一些熟知的有关整数的知识.对 自然数来说它的最重要、最本质的性质是 归纳原理:设S是N的一个了集,满足条件:
i) 1 s. ii)如果n S n 1 S .
那么, S N .
0引言 自然数与整数
这原理是我们常用的数学归纳的基础,实 际上两者是一回事. 定理1(数学归纳法) 设P(a)是关于自然数n的一
种性质或命题.如果
i) n 1, p(1)成立. ii)由p( n)成立 p( n 1)成立.
那么, p(n)所有的自然n成立.
0引言 自然数与整数
这原理是我们常用的数学归纳的基础,实 际上两者是一回事. 定理1(数学归纳法) 设P(n)是关于自然数n的一
种性质或命题.如果
i) n 1, p(1)成立. ii)由p( n)成立 p( n 1)成立.
入这”个盒子中,一定有一个盒子中被放了
两个或两个以上的物体.
那么, p(n)所有的自然n成立.
S:p( n )成立的所有的自然n的集合 .
0引言 自然数与整数
由归纳原理还可推出两个在数学中,特别是 初等数论中常用的自然数的重要性质.
初等数论第一、二章
例7 设a,b,c是三个互不相等的正整数,
求证: a
3
b ab , b c bc , c a ca
3 3 3 3
3
三数中至少有一个能被10整除。 例8 设n 为自然数,求证:
A 3237 632 855 235
n n n
n
能被1985整除。
例9 设p为大于5的素数 ,
如果允许b取负值,则要求 0 r b . 思考 28 6 14 3 4 (余 2) 正确吗?
带余数除法的第二种表示 定理 若a, b是两个整数,其中b 0,则存在着两个整数 a bq r, 0r b q及r,使得
成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b , 则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r , 分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
• 1、定义:设a,b是整数,b≠0。如果存在一个 整数q使得等式: a=bq 成立,则称b能整除a或a能被b整除,记b∣a; 如果这样的q不存在,则称b不能整除a,记为b | a。
注:显然每个非零整数a都有约数 1,a,称这四个 数为a的平凡约数,a的另外的约数称为非平凡约数。
• 素数: –定义 设整数n≠0,±1.如果除了平凡因数 ±1,±n以外,n没有其他因数,那么,n 叫做素数(或质数或不可约数),否则,n 叫做合数. –规定:若没有特殊说明,素数总是指正整 数,通常写成p或 p1, p2,…, pn. –例 整数2,3,5,7都是素数,而整数4,6, 8,10,21都是合数.
初等数论
• ⑷性质:定理1.3.3推论1(裴蜀恒等式)
• 如果两个数a,b的最大公约数是d,那么存在两
个整数x与y,使得等式ax+by=d成立.(可以推 广到n个数的情况) • 推论2:两个数a,b互质的必要且充分条件是存 在整数x与y,使ax+by=1成立。 推论1的推广 设 a1 ,a2 , …, an ∈N+ (n≥2) ,则一定存在整数 s1, s2, …, sn,使 a1s1+a2s2 + … + ansn= (a1 ,a2 , …,an ) .
第一章 整数的整除性
主要内容
整除的定义、性质,奇数和偶数,带余除法 定理、余数,最大公因数、最小公倍数、辗转相 除法、互素、两两互素、素数、合数、算术基本 定理
1.1整除 1、整除的概念:
• 定义1.1 设 a,b ∈Z ,b≠0,如果存在 q ∈Z ,使得等式 a=bq成立.我们就说,a 能被b整除或b整除a ,记作b | a. • 如果整数 q 不存在( 即对任何整数 q,恒有 bq ≠a ),那么就说a不能被 b 整除 (或者说b 不能整除a),记作 b |a。
σ( a )表示正整数 a 的所有正约数的和,如 σ(2) = 3, σ( 4 ) = 7,等等。 σ1( a)表示正整数 a 的所有正约数的乘积.如 σ1( 4 ) = 8 , σ1( 10 ) = 100,等等.
我喜欢数学
• 定理1. 26 如果自然数a的标准分解式为
a p1 p2
1
2
特别地,n 个偶数的积是 2n 的倍数( n∈N+).
性质2 (关于奇数)
(1) 双数个奇数的和是偶数;
(2) 单数个奇数的和是奇数;
(3) 任意个奇数的积还是奇数。
性质3 奇数与偶数的和是奇数. 性质4 任一奇数与任一偶数不相等.
初等数论-第一章
取
则
x (1)31Q3 3,
y (1)3 P 22, 3
125 3+17(-22)=(125,17)=1
定理2、
若a, b, c是三个整数,且(a, c) 1,则
(i)ab, c与b, c有相同的公因数, (ii ) (ab, c) (b, c), 上面假定了b, c至少有一不为零。
如果不存在整数q使得a bq成立,则称a不被b整除, 记为b † a。
2、整除的基本定理
定理1(传递性):ab,bc ac 定理2:若a,b都是m的倍数,则ab都是m的倍数
定理3
若a1 , a2 ,, an都是m的倍数,q1 , q2 ,, qn
是任意n个整数,则a1q1 a2 q2 an qn是m的倍数
rn 1 rn qn 1 +rn 1,
定理4
rn 1 0。
若a, b是任意两个正整数,则(a, b) rn ,
rn是上式中最后一个不等于零的余数。
推论4.1
a, b的公因数与(a, b)的因数相同。
说明: (1)利用辗转相除法可以求两个整数的最大公因数
(2 )辗转相除法中所包含的等式个数, 即所要做的带余数除法的次数估计为 2 log b n log 2
数的倍数,则d就叫作a1 , a2 , , an的一个公倍数。所有公 倍数中最小的一个叫最小公倍数,记作[a1 , a2 , , an ]。
定理3
定理4
[a1, a2 ,, an ] [ a1 , a2 ,, an ].
设a, b是任意两个正整数,则(i)a, b的所有公倍数
即当a与b是正整数时,只要使用被2除的除法运算和 减法运算就可以计算出(a,b) 例1、求(12345,678)
初等数论第一章7
第七节 函数[x]与{x}
因为x与y都是无理数,所以我们有
n < kx < n 1,n < my < n 1,
k 1 k m 1 m , , n1 x n n1 y n km 1 1 km 1 , n1 x y n
n < k m < n 1, 这是不可能的。
n ] [ n2 ]) 2([ n2 ] [ n3 ]) 3([ n3 ] [ n4 ]) p p p p p p n ]。 r p
[
r 1
即式(1)成立。
证毕。
第七节 函数[x]与{x}
推论 设n是正整数,则
n! p
p n
n ] [ pr r 1
;
(ⅴ) [x] = [ x ]
(ⅵ) {x} =
若 xZ 若 xZ
[ x] 1 0 1 { x }
;
若 xZ 若 xZ
.
第七节 函数[x]与{x}
定理2 设a与b是正整数,则在1, 2, , a中能被
b整除的整数有个
a [。 ] b
证明 能被b整除的正整数是b, 2b, 3b, ,因此, 若数1, 2, , a中能被b整除的整数有k个,则 kb a < (k 1)b k <k1
所以,所求的最大整数是k = 47。
第七节 函数[x]与{x}
例2 设x与y是实数,则
[2x] [2y] [x] [x y] [y]。
解
(4)
设x = [x] ,0 < 1,y = [y] ,0
< 1,则 [x] [x y] [y] = 2[x] 2[y] [ ], [2x] [2y] = 2[x] 2[y] [2] [2]。 (5) (6)
初等数论 第一章 整数的可除性
第一章整数的可除性§1 整除整数集对于加、减、乘三种运算都是封闭的,但是对于除法运算不封闭。
为此,我们引进整除的概念。
定义1设a,b∈Z,b≠0,如果存在q∈Z,使得等式a=bq成立,那么称b 整除a或a被b整除,记作:b|a,此时称b为a的因数(约数),a为b的倍数。
如果不存在满足等式a=bq的整数q,那么称b不能整除a或a不被b整除,记作b| a。
定理1设a,b,c∈Z,b≠0,c≠0,则(1)如果c|b,b|a,那么c|a;(2)如果b|a,那么bc|ac;反之亦真;(3)如果c|a,c|b,那么,对于任意m,n∈Z,有c|(ma+nb);(4)如果b|a,a≠0,那么|b|≤|a|;(5)如果b|a,a|b,那么|b|=|a|。
证明可选证。
定理2(带余除法)设a,b∈Z,b≠0,则存在q,r∈Z,使得a=bq+r,0≤r<|b|,并且q及r是唯一的。
证明当b|a时,取q=a/b,r=0即可。
当b!|a时,考虑集合E={a-bk|k∈Z },易知E中有正整数,因此E中有最小正整数,设为r=a-bk>0,下证:r<|b|。
因为b!|a,所以r≠|b|,若r>|b|,则r’=r-|b|>0,又r’∈E,故与r的最小性矛盾,从而存在q,r∈Z,使得a=bq+r,0≤r<|b|。
唯一性。
设另有q’,r’∈Z,使得a=bq’+r’,0≤r’<|b|,则b(q-q’)=r’-r,于是b|(r’-r),但由于0≤|r’-r|<|b|,故r’-r=0,即r=r’,从而q=q’。
定义2等式a=bq+r,0≤r<|b|中的整数q称为a被b除所得的(不完全)商,整数r称为a被b除所得的余数。
注r=0的情形即为a被b整除。
例1 设b=15,则当a=255时,a=17b+0,故q=17,r=0;当a=417时,a=27b+12,故q=27,r=12;当a=-81时,a=-6b+9,故q=-6,r=9。
初等数论第一章第1节 数的整除性
2证明 : a | 2n, a | 2kn, 而2kn (2k -1)n n an n, a | an n, 又a | an, a | n.
3证明 : mq np (mn pq) (m p)(n q), 又 m p|mn pq, m p|mq np.
初等数论
第一章 整除理论
第一节 数的整除性
定义
设a, b是整数, b 0, 如果存在整数c, 使得a bc成立, 则称b整除a, 记作b | a. 如果不存在整数c, 使得a bc成立, 则称b不整除a, 记作b a. |
性质
(1)a | b a | b; (2)a | b, b | c a | c; (3)b | ai (i 1, 2,, k ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数); (4)b | a bc | ac(其中c是任意的非零整数); (5)b | a, a 0 b a ; (6)b | a, a b a 0.
练习题
1证明: 若3| n且7 | n, 则21| n.
2 设a 2k -1, k Z , 若a | 2n, 则a | n.
3 证明: 若m - p | mn pq, 则m - p | mq np.
1证明 : 3 | n,可设n 3m, 由7 | n得, 7 | 3m, 而7 | 7m, 所以7 | (7m - 2 3m), 即7 | m, 21| 3m, 即21| n.
证明 : (1) a | b, b aq,b aq, a | b; (2) a | b, b | c, b q1a, c q2b, c q1q2 a, a | c; (3) b | ai (i 1, 2, , k ), ai qi b(i 1, 2, , k ), ai xi qi xi b(i 1, 2, , k ), a1 x1 a2 x2 ak xk b(q1 x1 q2 x2 qk xk ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数);
初等数论1 整除理论
aQk bPk = (1)k 1rk,k = 1, 2, , n 。
(3)
利用辗转相除法可以求出整数x,y,使得
ax by = (a, b) 。
(4)
为此所需要的除法次数是O(log10b)。
GCD和LCM
辗转相除法/Euclid算法
但是,如果只需要计算(a, b)而不需要求出使式(4)成立的整数x与y,则 所需要的除法次数还可更少一些。
7)、素数大小粗糙的估计 pn p1p2pn-1 1,n 1。 pn 22n。 (n) (log2n)/2。
8)、素数定理: (n) ~ n (n )
ln n
素数搜寻
寻找素数的方法:Eratosthenes筛法。
素性判定
确定型算法 试除法 尝试从2到√N的整数是否整除N。
推论 若 (a, bi) = 1,1 i n,则(a, b1b2bn) = 1。
定理
对于任意的n个整数a1, a2, , an ,记 (a1, a2) = d2, (d2, a3) = d3,
,
(dn-2, an-1) = dn-1,
(dn-1, an) = dn,
则
dn = (a1, a2, , an)。
只需证明对于每个i,1 i k,都有miQ。
这一点在实际计算中是很有用的。
对于多项式f(x),要验证命题“mf(n),nZ”是否成立, 可以验证“mf(r),r = 0, 1, , m 1”是否成立。 这需要做m次除法。
但是,若分别验证“mif(ri),ri = 0, 1, , mi 1,1 i k”是否成立, 则总共需要做m1 m2 mk次除法,显然远远少于m1×m2××mk = m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+ a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a 且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。
不妨设d1是其中最小的。
若d1不是素数,则存在e1 > 1,e2 > 1,使得d1 = e1e2,因此,e1和e2也是a的正的非平凡约数。
这与d1的最小性矛盾。
所以d1是素数。
证毕。
推论任何大于1的合数a必有一个不超过证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。
证毕。
例1设r是正奇数,证明:对任意的正整数n,有n+ 2|/1r+ 2r+ +n r。
解 对于任意的正整数a ,b 以及正奇数k ,有a k +b k = (a + b )(a k - 1 - a k - 2b + a k - 3b 2 -+ b k - 1) = (a + b )q ,其中q 是整数。
记s = 1r + 2 r + + n r ,则2s = 2 + (2 r + n r ) + (3 r + (n - 1)r ) + +(n r + 2 r ) = 2 + (n + 2)Q ,其中Q 是整数。
若n + 2∣s ,由上式知n + 2∣2,因为n + 2 > 2,这是不可能的,所以n + 2|/s 。
例2 设A = { d 1, d 2, , d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n Λ 也是n 的所有约数的集合。
解 由以下三点理由可以证得结论:(ⅰ) A 和B 的元素个数相同;(ⅱ) 若d i ∈A ,即d i ∣n ,则|i d n n ,反之亦然;(ⅲ) 若d i ≠ d j ,则ji d n d n ≠。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3, 。
问:d (1) + d (2) + + d (1997)是否为偶数?解 对于n 的每个约数d ,都有n = d ⋅d n ,因此,n 的正约数d 与dn 是成对地出现的。
只有当d =d n ,即n = d 2时,d 和dn 才是同一个数。
故当且仅当n 是完全平方数时,d (n )是奇数。
因为442 < 1997 < 452,所以在d (1), d (2),, d (1997)中恰有44个奇数,故d (1) + d (2) ++ d (1997)是偶数。
例4 设凸2n 边形M 的顶点是A 1, A 2, , A 2n ,点O 在M 的内部,用1, 2, , 2n 将M 的2n 条边分别编号,又将OA 1, OA 2, , OA 2n 也同样进行编号,若把这些编号作为相应的线段的长度,证明:无论怎么编号,都不能使得三角形OA 1A 2,OA 2A 3, , OA 2n A 1的周长都相等。
解 假设这些三角形的周长都相等,记为s 。
则2ns = 3(1 + 2 + + 2n ) = 3n (2n + 1),即2s = 3(2n + 1),因此2∣3(2n + 1),这是不可能的,这个矛盾说明这些三角形的周长不可能全都相等。
例5 设整数k ≥ 1,证明:(ⅰ) 若2k ≤ n < 2k + 1,1 ≤ a ≤ n ,a ≠ 2k ,则2k|/a ; (ⅱ) 若3k ≤ 2n - 1 < 3k + 1,1 ≤ b ≤ n ,2b - 1 ≠ 3k ,则3k |/2b - 1。
解(ⅰ) 若2k|a,则存在整数q,使得a=q2k。
显然q只可能是0或1。
此时a= 0或2k,这都是不可能的,所以2k|/a;(ⅱ) 若 3k|2b-1,则存在整数q,使得2b-1=q3k,显然q只可能是0,1, 或2。
此时2⋅,这都是不可能的,所以2b-1= 0,3k,或k33k|/2b- 1。
例6写出不超过100的所有的素数。
解将不超过100的正整数排列如下:1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 8788 89 9091 92 93 94 95 96 97 98 99 100按以下步骤进行:(ⅰ) 删去1,剩下的后面的第一个数是2,2是素数;(ⅱ) 删去2后面的被2整除的数,剩下的2后面的第一个数是3,3是素数;(ⅲ) 再删去3后面的被3整除的数,剩下的3后面的第一个数是5,5是素数;(ⅳ) 再删去5后面的被5整除的数,剩下的5后面的第一个数是7,7是素数;照以上步骤可以依次得到素数2, 3, 5, 7, 11, 。
由定理2推论可知,不超过100的合数必有一个不超过10的素约数,因此在删去7后面被7整除的数以后,就得到了不超过100的全部素数。
在例6中所使用的寻找素数的方法,称为Eratosthenes筛法。
它可以用来求出不超过任何固定整数的所有素数。
在理论上这是可行的;但在实际应用中,这种列出素数的方法需要大量的计算时间,是不可取的。
例7证明:存在无穷多个正整数a,使得n4+a(n = 1, 2, 3, )都是合数。
解取a = 4k4,对于任意的n∈N,有n4+ 4k4 = (n2+ 2k2)2- 4n2k2 = (n2+ 2k2+ 2nk)(n2+ 2k2- 2nk)。
因为n2+ 2k2- 2nk = (n-k)2+k2≥k2,所以,对于任意的k= 2, 3, 以及任意的n∈N,n4+a是合数。
例8设a1, a2, , a n是整数,且a1+a2+ +a n = 0,a1a2 a n = n,则4∣n。
解如果2|/n,则n, a1, a2, , a n都是奇数。
于是a1+a2+ +a n是奇数个奇数之和,不可能等于零,这与题设矛盾,所以2∣n,即在a1, a2, , a n中至少有一个偶数。
如果只有一个偶数,不妨设为a1,那么2|/a i(2 ≤i≤n)。
此时有等式a2+ +a n = -a1,在上式中,左端是(n- 1)个奇数之和,右端是偶数,这是不可能的,因此,在a1, a2, , a n中至少有两个偶数,即4∣n。
例9若n是奇数,则8∣n2- 1。
解设n = 2k+ 1,则n2- 1= (2k+ 1)2- 1 = 4k(k+ 1)。
在k和k+1中有一个是偶数,所以8∣n2-1。
例9的结论虽然简单,却是很有用的。
例如,使用例3中的记号,我们可以提出下面的问题:问题d(1)2+d(2)2+ +d(1997)2被4除的余数是多少?例10证明:方程a12+a22+a32 = 1999(1) 无整数解。
解若a1,a2,a3都是奇数,则存在整数A1,A2,A3,使得a12 = 8A1+ 1,a22 = 8A2+ 1,a32 = 8A3+ 1,于是a12+a22+a32 = 8(A1+A2+A3) + 3。
由于1999被8除的余数是7,所以a1,a2,a3不可能都是奇数。
由式(1),a1,a2,a3中只能有一个奇数,设a1为奇数,a2,a3为偶数,则存在整数A1,A2,A3,使得a12 = 8A1+ 1,a22 = 8A2+r,a32 = 8A3+s,于是a12+a22+a32 = 8(A1+A2+A3) + 1 +r+s,其中r和s是整数,而且只能取值0或4。
这样a12+a22+a32被8除的余数只可能是1或5,但1999被8除的余数是7,所以这样的a1,a2,a3也不能使式(2)成立。
综上证得所需要的结论。
习题一1. 证明定理1。
2. 证明:若m-p∣mn+pq,则m-p∣mq +np。
3.证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p是n的最小素约数,n= pn1,n1> 1,证明:若p >3n,则n1是素数。
5. 证明:存在无穷多个自然数n,使得n 不能表示为a2+p(a > 0是整数,p为素数)的形式。
第二节带余数除法在本节中,我们要介绍带余数除法及其简单应用。
定理1(带余数除法) 设a与b是两个整数,b≠ 0,则存在唯一的两个整数q和r,使得a = bq+r,0 ≤r < |b|。
(1)证明存在性若b∣a,a = bq,q∈Z,可取r = 0。
若b|/a,考虑集合A = { a +kb;k∈Z },其中Z表示所有整数的集合,以后,仍使用此记号,并以N表示所有正整数的集合。
在集合A中有无限多个正整数,设最小的正整数是r = a +k0b,则必有0 < r < |b|, (2) 否则就有r ≥ |b|。
因为b|/a,所以r≠ |b|。
于是r > |b|,即a +k0b > |b|,a +k0b- |b| > 0,这样,在集合A中,又有正整数a +k0b-|b| < r,这与r的最小性矛盾。
所以式(2)必定成立。
取q = - k0知式(1)成立。