高效音频功率放大器-模电课程设计

合集下载

模电课程设计报告-音频放大器

模电课程设计报告-音频放大器

模电课程设计报告1)设计题目:音频功率放大电路2)设计任务:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8Ω。

设计要求:频带宽50HZ ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。

3)原理电路和程序设计:(1)方案比较:①利用运放芯片 LM317和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。

②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+15v,另一端接地,输出功率大于8w。

通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。

而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。

(2)整体电路框图(3)单元电路设计及元器件选择:(4)系统的电路总图4)理论计算:①放大倍数分析由于电路引入电压串联负反馈(图中R6,R7,C4组成反馈网络),所以其阻态为电压串联负反馈,由电压串联负反馈放大倍数公式(Aus=1+R7/R6)可知,其放大倍数约为11.303。

②频率响应分析中频电压放大倍数:11.303.③反馈对输入输出电阻的影响由于电路引入电压串联负反馈,故其输入电阻增大,输出电阻减小,增大驱动负载的能力。

输出电阻:Rof=Ro/(1+AF),输入电阻:Rif=(1+AF)Ri。

4)电路调试过程与结果:①测量输出电压放大倍数测试条件:直流电源电压15v,输入信号10mv,输入频率0.1KHz。

数据分析:理论计算中频放大倍数为11.303,由于输入信号频率为0.1KHz,在中频放大范围内,所以测试结果与理论计算值误差很小。

仿真截图:②测量允许的最大输入信号(0.1KHz )和最大不失真功率测试条件:直流电源电压15v 。

当输入信号越来越大时,该放大电路开始出现失真,经过测试,其允许的最大不失真输入信号为Ui=790mv。

模电课程设计(音频功率放大电路)

模电课程设计(音频功率放大电路)

1、设计题目:音频功率放大电路2、设计任务目的与要求:要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8Ω。

指标:频带宽50HZ ~20kHZ ,输出波形基本不失真;电路输出功率大于8W ;输入灵敏度为100mV ,输入阻抗不低于47K Ω。

3、整体电路设计:⑴方案比较:①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v 和-30v 并且电源功率至少要50w ,输出功率30w 。

②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v ,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w 。

通过比较,方案①的输出功率有30w ,但其输入要求比较苛刻,添加了实验难度。

而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。

⑵整体电路框图:⑶单元电路设计及元器件选择: ①单元电路设计:功率放大器按输出级静态工作点的位置可分为甲类、乙类和甲乙类三种;若按照输出级与负载的耦合方式,甲乙类又可分为电容耦合(OTL 耦合)、直接耦合(OCL 电路)和变压器耦合三种。

变压器耦合容易实现阻抗匹配,但体积大,较笨重。

又OCL电路电源输入要求较高,所以采用OTL电路。

采用单电源的OTL 电路不需要变压器中间抽头,但需要在输出端接上大电容,且低频特性不如OCL 好。

根据“虚短”、“虚断”的原理,利用电阻的比值,可求得电路所需的放大倍数,其中可加入一个电位器替代反馈电阻,这样就能够实现电路放大倍数的调整。

因为功率放大电路是追求在电源电压确定的情况下,输出尽可能大的功率,可以采取OTL电路来实现。

为了提高转换功率,我们要对电路进行改善,这主要围绕功率放大电路频率响应的改善和消除非线性失真来改进电路,因此要用到若干个电阻电容来保护电路。

OTL电路会产生交越失真,为了消除这种失真,应当设置合适的静态工作点,使电路中的两只放大管均工作在临界导通或微导通的状态,这可以通过加入两个二极管来实现,因为二极管具有单向导电性。

模拟电路综合课程设计音响放大器设计

模拟电路综合课程设计音响放大器设计
一、设计目的
1、解集成功率放大器内部电路工作原理 2、掌握其外围电路的设计与主要性能参数 测试方法 3、掌握音响放大器的设计方法与电子线路 系统的装调技术
二、设计任务
设计一个音响放大器,要求具有音频放大、 音频信号滤波、音调控制、功率放大,并具有 较大的输出功率。
有3片集成运放模块LM741,1片集成功放模 块LA4102,高阻话筒20kΩ一个,其输出信号 为5mV,电源电压VCC=+6V,-VEE=-6V。
四、总体思路
话筒 话音 放大器
二阶有源 低通滤波
音调 控制器
功率 放大
扬声器
五、实验安排
• 设计讲解,并在实验台上完成主要组成电路实验 • 自学芯片引脚及功能 • 完成芯片及辅助元件的总体布局设计 • 完成话音放大器的焊接和调试 • 完成二阶低通滤波电路的焊接和调试 • 完成音调控制电路的焊接和调试 • 完成功率放大电路的焊接和调试 • 整体调试
三、设计要求
1、基本要求 设计实现一个音响放大器,达到下列主要 技术指标: 输出额定功率:Po不小于0.3W; 频率响应:fl=50Hz,fh=20kHz; 输入阻抗:Ri>>20KΩ; 负载电阻:RL=10Ω。
2、发挥部分 音响放大可实现较好的音调控制,音调 控制特性达到如下指标: 1kHz处增益为0dB, 125hZ和8kHz处
六、考核方式
本课程考核方式如下: 平时 20% 实验 50% 报告 30%
附1、器件清单
话音放大:1/4 LM324,LM741 二阶低通滤波:1/4 LM324,LM741 音调控制:1/4 LM324,LM741 功率放大:LA4102 电阻:10kΩ×5
Байду номын сангаас10kΩ×3 30kΩ

模电课程设计音响放大器(功率放大器)(最全)word资料

模电课程设计音响放大器(功率放大器)(最全)word资料

沈阳工业大学信息科学与工程学院设计题目:音响放大器专业:小组成员:2021年11月29日第一章方案设计与论证1.基本要求:(1)正弦信号输入电压幅度为5~700mV,等效负载电阻为R L为8Ω条件下,应满足:①额定输出功率P OR ≥10W;②带宽B W ≥50~10 000Hz;③在P OR下和B W内的非线性失真系数≤ 3%;④在P OR下的效率≥ 55%⑤在前置放大级输入端交流短接到地时,R L=8Ω上的交流声功率≤10mW;⑥整体电路的联调与试听。

(2)设计并制作满足本设计任务要求的稳压电源2.设计方案:由于设计要求不是对单一信号频率实施放大,而是对一个输入电压变化幅度大(5—700mV),频带范围宽(50—10000Hz)的频带信号实施功率放大,所以不能只从简单的功率放大上考虑,至少应从以下几方面作较为全面的考虑:1、解决本设计的电路对信号源,尤其是信号幅度小的时候的影响。

2、要求对整个频带内不同频率成分,不同电压幅度信号都要均匀放大。

因此,本设计所要求的功率放大电路,应该是一个既能有效实施隔离,完成电路阻抗匹配;又能在所规定的频带内进行信号均衡放大额定一种实用型电路。

所以将输入信号通过均衡电路处理之后,送入功率放大器,提升到所需的额定输出功率。

依据设计要求,我们可确定音响放大器的基本组成框图如下,电路由话音放大器、电子混响器、前置放大器、音调控制器、功率放大器以及稳压电源组成:话音放大器:话音放大器的作用是不失真地放大音频信号。

电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。

混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。

音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。

功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率。

第二章各模块电路原理与仿真1、话音放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20K 亦有低输出阻抗的话筒如(20欧,200欧等),所以话筒放大器的作用是不失真地放大声音信号(最高频率达到10KHz)。

音频功率放大器设计TDA2030模电课设

音频功率放大器设计TDA2030模电课设

号计设课程目题高保真音频功率放大器设计院学业专级班姓名指导教师日月年武汉理工大学《模拟电子技术基础》课程设计说明书课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 高保真音频功率放大器设计初始条件:可选元件:集成功放LA4100或LA4102;集成功放4430;集成功放TD2030;集成功放TDA2004、2009;集成功放TA7240AP(集成功放的选择应满足技术指标)。

电容、电阻、电位器若干;或自备元器件。

直流电源±12V,或自备电源。

可用仪器:示波器,万用表,毫伏表要求完成的主要任务:(1)设计任务根据技术指标和已知条件,选择合适的功放电路,如:OCL、OTL或BTL电路。

完成对高保真音频功率放大器的设计、装配与调试。

(2)设计要求①输出功率10W/8Ω;频率响应20~20KHz;效率>60﹪;失真小。

②选择电路方案,完成对确定方案电路的设计。

计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。

(选做:用PSPICE或EWB软件完成仿真)③安装调试并按规定格式写出课程设计报告书。

时间安排:1、年月日集中,作课设具体实施计划与课程设计报告格式的要求说明。

2、年月日,查阅相关资料,学习电路的工作原理。

2、年月日至年月日,方案选择和电路设计。

2、年月日至年月日,电路调试和设计说明书撰写。

3、年月日上交课程设计成果及报告,同时进行答辩。

指导教师签名:年月日日系主任(或责任教师)签名:年月1武汉理工大学《模拟电子技术基础》课程设计说明书摘要本文设计的高保真音频功率放大器,带八欧负载,输出功率可达10W,整体电路分为四级:电源、前置放大电路、音调调节电路、功率放大电路;正负电源用7815和7915设计,前置放大和音调调节电路用NE5532设计,功率放大电路用TDA2030设计,制作和调试后,各项指标已实现。

关键字:音频功率放大器,音调调节,TDA2030,NE5532。

模电课设报告-音频功率放大器1

模电课设报告-音频功率放大器1

模电课设报告-音频功率放大器11.设计思路此次课程设计要求我们做一款音频功率放大器,通过在网上查找资料,我们发现TDA203是一款性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA2030在内的几种。

TDA2030集成电路的另一特点是输出功率大,而保护性能以较完善。

根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。

另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。

然而在TDA2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。

TDA2030集成电路的第三个特点是外围电路简单,使用方便。

现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。

TDA2030在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%)、在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。

该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。

该电路可供低频课程设计选用。

12.电路选择通过学习模电,我们对OCL、OTL和BTL 功率放大电路有的一定的认识,经过比较,我们决定选择其一进行设计。

下面是对三个功放电路的比较及介绍:2.1 OCL电路简介:OCL电路称为无输出电容功放电路,是在OTL 电路的基础上发展起来的。

主要特点:1采用双电源供电方式,输出端直流电位为零;由于没有输出电容,低频特性很好扬声器一端接地,一端直接与放大器输出端连接,因此须设置保护电路;2具有恒压输出特性;允许选择4Ω、8Ω或16Ω负载;3最大输出电压振幅为正负电源值,额定输出功率约为/(2RL)2.2 OTL电路简介:OTC称为无输出变压器功放电路。

高效音频功率放大器-模电课程设计报告

高效音频功率放大器-模电课程设计报告

高效音频功率放大器-模电课程设计报告高效音频功率放大器一、设计任务与要求1、设计任务设计并制作一个高效率音频功率放大器。

功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。

2、设计要求(1)3 dB通频带为300~3400Hz,输出正弦信号无明显失真。

(2)最大不失真输出功率≥1W。

(3)输入阻抗>10kΩ,电压放大倍数1~20连续可调。

(4)低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。

(5)在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。

3、设计说明(1)采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。

本设计中如果采用D 类放大方式,不允许使用D类功率放大集成电路。

图1 D类放大原理框图(2)效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),制作时要注意便于效率测试。

、(3)在整个测试过程中,要求输出波形无明显失真。

二、方案论证与比较根据设计任务的要求,对本系统的电路的设计方案分别进行论证与比较。

1、高效率功率放大器⑴高效率功放类型的选择方案一:采用A类、B类、AB类功率放大器。

这三类功放的效率均达不到题目的要求。

方案二:采用D类功率放大器。

D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。

由于输出管工作在开关状态,故具有极高的效率。

理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。

图2 脉宽调制器电路①脉宽调制器(PWM)方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。

方案二:采用图2所示方式来实现。

三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。

模电课程设计——OTL音频功率放大器

模电课程设计——OTL音频功率放大器

OTL—音频功率放大器一、设计任务与要求1.设音频信号为vi=10mV, 频率f=1KHz;2.额定输出功率Po≥2W;3.负载阻抗RL=8Ω;4.失真度γ≤3%;5.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源二、设计思路:1.功率放大器的作用是给负载RL 提供一定的输出功率,当RL 一定时,希望输出功率尽可能大,输出信号的非线性失真可能小,且效率尽可能高。

由于OTL 电路采用直接耦合方式,为了保证电路工作稳定,必须采取有效措施抑制零点漂移。

为了获得足够大的输出功率驱动负载工作,故需要有足够高的电压放大倍数。

因此,性能良好的OTL 功率放大器应由输入级、推动级和输出级等部分组成。

2. OTL 功放各级的作用和电路结构特征1) 输入级:主要作用是抑制零点漂移,保证电路工作稳定,同时对前级(音调控制级)送来的信号作低失真,低噪声放大。

为此,采用带恒流源的,由复合管组成的差模放大电路,且设置的静态偏置电流较小。

2) 推动级的作用是获得足够高的电压放大倍数,以及为输出级提供足够大的驱动电流,为此,可采用带集电极有源负载的共射放大电路,其静态偏置电流比输入级大。

3) 输出级的主要作用是级负载提供足够大的输出信号功率,可采用由复合管构成的甲乙灯互补对称功放或准互补功放电路。

此外,还应考虑为稳定静态工作点须设置直流负反馈电路,为稳定电压放大倍数和改善电路性能须设置交流负反馈电路,以及过流保护电路等。

电路设计时,各级应设置合适的静态工作点,在组装完毕后须进行静态和动态测试,在小型不失真的情况下,使输出功率最大。

动态测试时,要注意消振和接好保险丝,以防损坏元器件。

三、1 直流电源部分(1)变压:用变压器(220~15 的变压器)将交流220 变为副边电压U2=15v,(2)整流部分:用桥式整流法对交流进行整流,(用1N4007 二极管)整流后电压为Uo1=0.9U2=13.5V(3)滤波部分:用大电容(4700uf 的电解电容),因为设计中要求输出正负12V 所以要用两个大电容,滤波之后电压为Uo2=1.2U2=18V (4)稳压:分别用LM7812 和LM7912 进行稳压,将电压稳定在正负12V,要注意对稳压块的保护,所以安装保护二极管,最后的输出部分应装发光二极管,观察电路是否导通。

高校电机专业的模电课程设计:音频功率放大器

高校电机专业的模电课程设计:音频功率放大器

安阳师范学院电机系课程设计报告(模拟电子线路)一、设计目的根据设计要求,完成对音频功率放大器的设计。

进一步加强对模拟电子技术知识的理解和对Protel软件的应用。

了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法。

学习音频功率放大器的设计方法与小型电子线路系统的安装调试方法。

二、设计要求内容:设计并制作一OCL音频功率放大器和与之匹配的直流稳压电源。

指标:P oM≥5W;fL≤50Hz,fH≥15KHz;中点电位≤100mV;负载:8.2Ω;输入电压50mV。

三、方案选择音频功率放大器的主要作用是向负载提供功率,要求输出功率尽可能大效率尽可能高、非线性失真尽可能小。

输出功率指的是功放提供给负载级的功率,为达到这一要求,功放管的电压和电流变化范围应尽可能大。

功率放大器的效率指的是负载上得到的功率与电源提供的直流电源的功率之比,为达到这一要求必须选择合适的电路,下文中会有描述。

非线性失真要小:功率放大器是在大信号状态下工作的,电压、电流摆动幅度交大,很容易超出管子特性曲线的线性变化范围而进入非线性区,造成输出信号波形的非线性失真。

因此,功率放大器比小信号的电压放大器的非线性失真严重。

为了减小这种失真,本设计选择下文所述方案。

功率放大器的常见电路形式有单电源供电的OTL电路和正负双电源供电的OCL电路。

有集成运放和晶体管组成的功率放大器,也有专用集成电路功率放大器芯片。

根据设计指标及要求,选择NE5532功放芯片的双电源供电的OCL互补推挽对称功放电路。

此推挽功率放大器工作在甲乙类状态,其目的是为了减小交越失真。

电路在工作时由于每管的工作点稍高于截止点,因此有一很小的静态工作电流I,这样便可克服管子的截止区电压,使两只管子交CQ替工作处的负载电流按标准正弦规律变化,从而克服了交越失真。

OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号,以驱动负载的工作。

OTL音频功率放大器--模电课设报告

OTL音频功率放大器--模电课设报告

课程设计说明书课程设计名称:模拟电路课程设计课程设计题目:OTL音频功率放大器学院名称:南昌航空大学信息工程学院专业:通信工程班级:学号:姓名:评分:教师:2013年 3 月13日模拟电路 课程设计任务书2012-2013 学年第 2学期 第 1 周- 3 周题目 OTL 音频功率放大器内容及要求一、设计要求1. 设音频信号为vi=10mV , 频率f =1KHz 。

2.额定输出功率Po ≥2W ;3.负载阻抗RL=8Ω; 4.失真度γ≤3%进度安排第1周:查阅资料,到机房学习仿真软件,确定方案,完成原理图设计及仿真;第2周:领元器件、仪器设备,制作、焊接、调试电路,完成系统的设计;第3周:检查设计结果、撰写课设报告。

学生姓名:指导时间:周一、周三、周四下午指导地点:E 楼 311室 任务下达2013 年2月25日 任务完成 2013 年 3 月15日 考核方式1.评阅 □√2.答辩 □3.实际操作 □√4.其它□ 指导教师系(部)主任摘要功率放大器的作用是给音响放大器的负载提供一定的输出功率。

当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。

如今功率放大器常见的是OTL和OCL电路。

本文设计的是一个OTL音频放大器,该放大器采用LM386芯片,确保功率大于2W,并减少失真。

关键词:OTL功频放大电路,交越失真,输出功率目录第一章设计任务 (5)1.1课设题目 (5)1.2设计内容与要求 (5)第二章电路设计原理 (5)2.1电路原理 (5)2.2设计思路 (6)2.3OTL功放各级的作用和电路结构特征 (6)2.4功放计算过程 (7)第三章安装与调试 (8)3.1电路调整与测试 (8)3.2通电观察 (8)第四章仿真结果与说明 (9)第五章结论 (10)第六章参考文献 (10)附录元器件清单 (11)LM386的特性 (11)UA741的特性 (12)第一章设计任务1.1课设题目OTL音频功率放大器1.2设计内容与要求1.设音频信号为vi=10mV, 频率f=1KHz。

模电课设—音频功率放大器报告

模电课设—音频功率放大器报告

学号:课程设计题目音频功率放大器的设计仿真与实现学院信息工程学院专业班级姓名指导教师年月日课程设计任务书学生:专业班级:指导教师:工作单位:信息工程学院题目: 音频功率放大器的设计仿真与实现初始条件:可选元件:集成功放,电容、电阻、电位器若干;或自选元器件。

可用仪器:示波器,万用表,毫伏表等。

要求完成的主要任务:(1)设计任务根据技术指标和已知条件,选择合适的功放电路,如:OCL、OTL或BTL电路。

完成对音频功率放大器的设计、仿真、装配与调试,并自制直流电源。

(2)设计要求①输出功率10W/8Ω;频率响应20~20KHz;效率>60﹪;失真小。

②选择电路方案,完成对确定方案电路的设计。

③利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并仿真实现系统功能。

④安装调试并按规要求格式完成课程设计报告书。

⑤选做:利用仿真软件的PCB设计功能进行PCB设计。

时间安排:1、2016年12月查阅资料,确定设计方案;2、2017年01月4日-2017年01月7日完成仿真、制作实物等;3、2017年01月8日-2017年01月9日调试修改;4、2017年01月9日-2017年01月10日完成课程设计报告;5、2016年01月11日完成答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)1引言 (1)2音频功率放大器的工作原理及组成 (2)2.1前置放大电路 (2)2.2功率放大电路 (2)3方案设计与选择 (4)3.1 功率放大器的选择 (4)3.1.1 OTL互补对称功率放大器 (4)3.1.2用集成器件TDA2030实现 (5)3.1.3 基于TDA2030的双电源互补对称功放 (6)3.1.4 基于TDA2030的双电源桥式推挽互补对称功放 (6)3.1.5 比较与选择 (8)3.2 整体电路 (8)3.2.1 主要元件:TDA2030 (8)3.2.2 放大电路的基本设计 (9)3.3 各模块功能与设计 (10)3.3.1 放大模块 (10)3.3.2 输入模块 (11)4电路原理及分析 (13)4.1电路图 (13)4.2 波特图输出如图 (14)4.3 输入输出波形仿真 (15)4.3.1 仿真波形情况 (15)4.3.2 灵敏度测量 (16)5 实际测试 (17)6 主要元件介绍及参数 (18)6.1 TDA2030 (18)6.1.1 TDA2030参数 (18).6.1.2 TDA2030介绍 (19)6.2 1N4007G基本参数 (19)6.3 2N2222A基本参数 (19)7 电路仿真与调试 (20)7.1 Proteus仿真 (20)7.2 Multisim软件对直流稳压电源仿真 (21)8 实物展示 (22)9 元件清单 (23)10 心得体会 (24)参考文献 (25)摘要音响放大器的设计目的是为了更好的掌握集成功率放大器部电路工作原理,学会其外围电路的设计与主要性能参数测量方法以及掌握音响放大器的设计与电子线路系统的装试和调试技术。

模电课程设计-音频功率放大器

模电课程设计-音频功率放大器

摘要这次的模拟电路课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放,比如手机、MP4播放器、笔记本电脑、电视机、音响设备等给我们的生活和学习工作带来了不可替代的方便享受。

我主要采用了两种方法对其进行了分析和设计,一种利用了A386集成芯片对其进行放大输出,另一种是利用二极管进行偏置的互补对称电路,即分立元件进行设计放大。

期间遇到了不少问题,不过好在在老师的指导,同学的帮助下终于成功调试成功,听到了悦耳的嗡嗡声,设计题目也算比较圆满的完成了。

在设计的过程中,首先对自己的设计思路有个整体的认识,即对音频功率放大器的原理了解,在查阅了很多资料,以及对实验器材有了初步了解以后,利用课本及一些资料上所描述的同相放大电路和甲乙类互补对称功率放大电路的基本知识,通过对两种方法的对比评析确定了下面的课程设计。

总体设计步骤↓↓↓↓1 设计概述1、1音频功率放大器的设计作为模拟电子课程设计课题设计,本课题提出的音频功率放大器性能指标比较低,主要采用理论课程里介绍的运算放大集成电路和功率放大集成电路来构成音频功率放大器。

1、1、1 设计任务和要求采用运算放大集成电路和功率放大集成电路设计音频功率放大器,其要求如下:①输入信号为vi=10mV, 频率f=1KHz;②额定输出功率Po≥2W;③ 负载阻抗RL =8Ω。

1、1、2 功率放大器的基本原理音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。

其原理如图(一)所示,前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。

后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。

设计时首先根据技术指标要求,对整机电路做出适当安排,确定各级的增益分配,然后对各级电路进行具体的设计。

max Po =8W,输出电压U = L R Po max =8V ,要使输入为10mv 的信号放大到输出的8V ,所需的总放大倍数为800。

模电课程设计(高保真音频功率放大器)

模电课程设计(高保真音频功率放大器)

1 初始条件和设计要求1.1 初始条件具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

1.2 设计要求1、不失真输出功率≥2.4 W,频率响应:20HZ~20KHZ2、输入阻抗≥ 50KΩ,输入电压≤ 5mv3、具备高音和低音的音调控制功能4、效率>60%5、安装调试并完成符合学校要求的设计说明书3.1 电路组成我们设计的电路有两部分组成:(1)直流稳压电源首先我们考虑到直流稳压电源是每个电子设备的基础器件,应该与主电路分开设计,单独放置一个模块。

其次我们设计的是高保真音频功率放大器,因此对直流电源有着很高的要求,要尽可能的滤掉交流分量,达到稳压效果,使输出信号失真度达到最小。

(2)双声道高低音音频功率放大器实验要求是要有高低音可调电路,但是我们考虑到信号是由左右声道组成,所以为了达到最好的输出效果,我们设计了高低音调节外兼有左右声道的立体声高保真音频功率放大器。

此音频功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。

4.1 直流稳压电源4.1.1 直流稳压电源原理图图4-1-14.1.2 直流稳压电源所选元件双24V变压器,二极管1N4007,1000uf电解电容,0.33uf独石电容,三端稳压管LM7815,LM7915,0.1uf瓷片电容,220uf电解电容4.1.3 直流稳压电源原理直流稳压电源分为四部分:变压,整流,滤波,稳压。

变压:此处我们选择双24V的交流变压器,输出相位相反的24V交流电。

整流:我们选择了耐压较好的整流二极管1N4007。

滤波:我们放置了多组电容,达到最好的滤波效果。

首先电流经过二极管整流后,先经过两个1000uf的大电容,滤掉直流中的交流分量,此处电容越大越好。

经过初步电容滤波的输出电压V0=(1.1-1.2)V2。

然后在经过两个0.33uf的电容,用以抵消输出端较长接线的电感效应,以防止自激震荡,还可抑制电源的高频脉冲干扰,一般取0.1-1uf。

模电课程设计之音频功率放大器

模电课程设计之音频功率放大器

、设计题目:音频功率放大电路 二、设计的任务和要求1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。

2、性能指标:频带宽50H Z 〜20kH Z ,输出波形基本不失真;电路输出功率大于8四输入灵敏度为100mV 输入阻抗不低于47K 。

三、原理电路和程序设计3.1、方案的确定及论证 1、OTA 互补对称功率放大器OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图3-1 为单电源OTL 互补对称功率 放大电路。

电路中T1是推动级(电压放大,也叫 激励级),其中Rb1、Rb2是T1的基极偏置电阻,Re 为T1发射极电阻,Rb 为T1集电极负载电阻,它们共同构成 T1的稳定静态工作点;T2、T3组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2为输出耦合电容。

功率放大器采用射极输出器,提高了输入电阻 和带负载的能力。

性能分析: 乙类互补推挽功放(OTL )的输出功率的计算公式如下: 输出功率:P o =Ul o =Ut7R L._ 2 2 2输出最大功率:Rm=UI 。

二U O /R L =U om /2R L =V Cc /8R L11=R L显然P om 与电源电压及负载有关当输入功率为8w,阻抗8w 时,有Pom=V/8RV Cc =8*8*8 ~22.6V 则电路所需的电源为 22.6v 。

2、用集成器件实现Tda2030简介:TDA203(是德律风根生产的音频功放电路,采用 V 型5脚单列直插式塑料封装结构。

该集成电路广泛应用于汽车立体声收录音机、中功率音 响设备,具有体积小、输出功率大、失真小等特点。

并具有内部保护电路。

电路特点:[1].外接元件非常少。

(基本应用电路图3-2 ) [2].输出功率大,Po=18W (RL 二④)。

[3].采用超小型封装(TO-220),可提高组装密度。

[4].开机冲击极小。

武汉理工模电课程设计——音频功放

武汉理工模电课程设计——音频功放

课程设计任务书学生姓名:张建朋专业班级:电信 1002 指导教师:刘运苟工作单位:信息工程学院题目:音频功率放大器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、不失真输出功率≥2.4 W,频率响应:20HZ~20KHZ2、输入阻抗≥ 50KΩ,输入电压≤ 5mv3、具备高音和低音的音调控制功能4、效率>60%5、安装调试并完成符合学校要求的设计说明书时间安排:一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 模电课设概述 (1)1.1设计背景 (1)1.2设计目的及意义 (2)1.3设计时间 (2)1.4开发环境Multisim介绍 (2)2 课程设计内容 (3)2.1课程设计题目 (3)2.2课程设计统一技术要求 (3)2.3音频功率放大器各个电路介绍 (4)2.3.1直流稳压电源 (4)2.3.2前置放大 (5)2.3.3带通滤波电路 (5)2.3.4音调控制 (7)2.3.5功率放大 (10)2.4音频功率放大整体电路图 (11)2.5 仿真过程及分析 (12)2.6 实际安装与调试 (18)3心得体会 (21)4参考文献 (22)5本科生课程设计成绩评定表 (23)1 模电课设概述1.1 设计背景音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。

一、早期的晶体管功放半导体技术的进步使晶体管放大器向前迈进了一大步,自从有了晶体管,人们就开始用它制造功率放大器,早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效音频功率放大器一、设计任务与要求1、设计任务设计并制作一个高效率音频功率放大器。

功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。

2、设计要求(1)3 dB通频带为300~3400Hz,输出正弦信号无明显失真。

(2)最大不失真输出功率≥1W。

(3)输入阻抗>10kΩ,电压放大倍数1~20连续可调。

(4)低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。

(5)在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。

3、设计说明(1)采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。

本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图1 D类放大原理框图(2)效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),制作时要注意便于效率测试。

、(3)在整个测试过程中,要求输出波形无明显失真。

二、方案论证与比较根据设计任务的要求,对本系统的电路的设计方案分别进行论证与比较。

1、高效率功率放大器⑴高效率功放类型的选择方案一:采用A类、B类、AB类功率放大器。

这三类功放的效率均达不到题目的要求。

方案二:采用D类功率放大器。

D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。

由于输出管工作在开关状态,故具有极高的效率。

理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。

图2 脉宽调制器电路①脉宽调制器(PWM)方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。

方案二:采用图2所示方式来实现。

三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。

若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。

②高速开关电路a. 输出方式方案一:选用推挽单端输出方式(电路如图3所示)。

电路输出载波峰-峰值不可能超过5V电源电压,最大输出功率远达不到题目的基本要求。

图3 高速开关电路方案二:选用H桥型输出方式(电路如图4所示)。

此方式可充分利用电源电压,浮动输出载波的峰-峰值可达10V,有效地提高了输出功率,且能达到题目所有指标要求,故选用此输出电路形式。

图4 高速开关电路b. 开关管的选择。

为提高功率放大器的效率和输出功率,开关管的选择非常重要,对它的要求是高速、低导通电阻、低损耗。

方案一:选用晶体三极管、IGBT管。

晶体三极管需要较大的驱动电流,并存在储存时间,开关特性不够好,使整个功放的静态损耗及开关过程中的损耗较大;IGBT管的最大缺点是导通压降太大。

方案二:选用VMMOSFET管。

VMOSFET管具有较小的驱动电流、低导通电阻及良好的开关特性,故选用高速VMOSFET管。

③滤波器的选择方案一:采用两个相同的二阶Butterworth低通滤波器。

缺点是负载上的高频载波电压得不到充分衰减。

方案二:采用两个相同的四阶Butterworth低通滤波器,在保证20kHz频带的前提下使负载上的高频载波电压进一步得到衰减。

三、主要电路工作原理分析与计算1、D类放大器的工作原理一般的脉宽调制D 类功放的原理方框图如图 5 所示。

图 6 为工作波形示意,其中(a)为 输入信号;(b)为锯齿波与输入信号进行比较的波形;(c)为调制器输出的脉冲(调宽脉冲);(d)为功率放大器放大后的调宽脉冲;(e)为低通滤波后的放大信号。

图5 D 类放大器的工作原理图6 D 类放大器的工作波形示意图2、D 类功放各部分电路分析与计算(1)脉宽调制器①三角波产生电路。

该电路我们采用满幅运放TLC4502及高速精密电压比较器LM311来实现(电路如图7所示)。

TLC4502不仅具有较宽的频带,而且可以在较低的电压下满幅输出,既保证能产生线性良好的三角波,而且可达到发挥部分对功放在低电压下正常工作的要求。

载波频率的选定既要考虑抽样定理,又要考虑电路的实现,选择150 kHz 的载波,使用四阶Bultterworth LC 滤波器,输出端对载频的衰减大于60dB ,能满足题目的要求,所以我们选用载波频率为150 kHz 。

电路参数的计算:在5V 单电源供电下,我们将运放5脚和比较器3脚的电位用R 8调整为2.5 V ,同时设定输出的对称三角波幅度为1 V(V p-p =2V)。

若选定R 10为100 k Ω,并忽略比较器高电平时R 11上的压降,则R 9的求解过程如下:取R9为39 k Ω。

图7 三角波产生电路选定工作频率为f=150 kHz ,并设定R 7+R 6=20k Ω,则电容C 3的计算过程如下: 对电容的恒流充电或放电电流为则电容两端最大电压值为其中T 1为半周期,T 1=T/2=1/2。

V f c4的最大值为2V ,则取C 4=220 pF ,R 7=10k Ω,R 6采用20 k Ω可调电位器。

使振荡频率在150 kHz 左右有较大的调整范围。

图8 比较器电路②比较器。

选用LM311精密、高速比较器,电路如图8所示,因供电为5V 单电源,为给V+=V-提供2.5V 的静态电位,取R12=R15,R13=R14,4个电阻均取10 k Ω。

由于三角波Vp-p=2V ,所以要求音频信号的Vp-p 不能大于2V ,否则会使功放产生失真。

⑵ 前置放大器电路如图9所示。

设置前置放大器,可使整个功放的增益从1~20连续可调,而且也保证了比较器的比较精度。

当功放输出的最大不失真功率为1W 时,其8Ω上的电压V p-p =8V ,此时送给比较器音频信号的V p-p 值应为2V ,则功放的最大增益约为4(实际上,功放的最大不失真功率要略大于1W ,其电压增益要略大于4)。

因此必须对输入的音频信号进行前置放大,其增益应大于5。

前放仍采用宽频带、低漂移、满幅运放TLC4502,组成增益可调的同相宽带放大器。

选择同相放大器的目的是容易实现输入电阻R i ≥10k Ω的要求。

同时,采用满幅运放可在降低电源电压时仍能正常放大,取V +=V cc /2=2.5V ,要求输入电阻R i 大于10k Ω,故取R 1=R 2=51k Ω,则R i =51/2=25.5k Ω,反馈电阻采用电位器R 4,取R 4=20k Ω,反相端电阻R 3取2.4k Ω,则前置放大器的最大增益Av 为图 9 前置放大器电路调整R 4使其考虑到前置放大器的最大不失真输出电压的幅值V om <2.5V ,取V的音频最大幅度V im <(V om /A v )=2/8=250mV 。

超过此幅度则输出会产生削波失真。

⑶ 驱动电路如图10所示。

器并联运用以获得较大的电流输出,送给由晶体三极管组成的互补对称式射极跟随器驱4 .220 1 1 + = + = RR A 增益约为 8,则整个功放的电压增益从 0~32 可调。

om=2.0V ,则要求输入 将 PWM 信号整形变换成互补对称的输出驱动信号,用 CD40106 施密特 触发动的输出管,保证了快速驱动。

驱动电路晶体三极管选用2SC8050和2SA8550对管。

⑷ H 桥互补对称输出电路对VMOSFET 的要求是导通电阻小,开关速度快,开启电小。

因输出功率稍大于1W ,属小功率输出,可选用功率相对较小、输入电容较小、容易快速驱动的对管,IRFD120和IRFD9120 VMOS 对管的参数能够满足上述要求,故采用之。

实际电路如图11所示。

互补PWM 开关驱动信号交替开启Q 5和Q 8或Q 6和Q 7,分别经两个4阶Butterworth滤波器滤波后推动喇叭工作。

图10 驱动电路图11 H 桥互补对称输出及低通滤波电路⑸低通滤波器本电路采用4阶Butterworth低通滤波器(如图11)。

对滤波器的要求是上限频率≥20 kHz,在通频带内特性基本平坦。

采用了电子工作台(EWB)软件进行仿真,从而得到了一组较佳的参数:L1=22μH,L2=47μH,C1=l.68μH,C2=1μH。

19.95 kHz处下降2.464 dB,可保证20 kHz 的上限频率,且通带内曲线基本平坦;100 kHz、150 kHz处分别下降48 dB、62 dB,完全达到要求。

四、系统测试及数据分析1、测试使用的仪器2、测试数据(1)最大不失真输出功率测试数据如下表所示:⑵通频带的测量测试数据如下表所示由表看出通频带BW0.7≈fH≈20 kHz,满足发挥部分的指标要求。

⑶效率的测量测试数据如下表所示:⑷测量输出功率200mW时的最低电源电压测量结果:Vcc=4.12 V。

3、测量结果分析①功放的效率和最大不失真输出功率与理论值还有一定差别,其原因有以下几个方面:a.功放部分电路存在的静态损耗,包括PWM调制器、音频前置放大电路、输出驱动电路及桥输出电路。

这些电路在静态时均具有一定的功率损耗,实测结果其5V 电源的静态总电流约为30 mA,即静态功耗P 损耗=5×=1 mW。

那么这部分的损耗对总的效率影响很大,特别对小功率输出时影响更大,这是影响效率提高的一个很重要的方面。

b.功放输出电路的损耗,这部分的损耗对效率和最大不失真输出功率均有影响。

此外,H 桥的互补激励脉冲达不到理想同步,也会产生功率损耗。

五、进一步改进的措施1、尽量设法减小静态功耗①尽量减小运放和比较器的静态功耗。

实测两个比较器(LM311)的静态电流约为15 mA,这部分损耗就占了静态损耗的一半功率。

这是由于在选择器件时几个方面不能完全兼顾所致。

若选择同时满足几方面要求的器件,这部分的功耗是完全可以大幅度降低的。

②我们选用的VMOSFET 管的导通电阻还不是很小,若能换成导通电阻更小的VM0SFET 管,则整个功放的效率和最大不失真输出功率还可进一步提高。

③低通滤波器电感的直流内阻需进一步减小。

六、结束语对于本系统设计,有些指标还有待于进一步提高。

例如,在功放效率、最功率等方面还有较大的潜力可挖,这些都有待于我们择来进一步完善。

大不失真输出通过对电路的改进和对元器件的最佳选。

相关文档
最新文档