【初中数学】知识点大全(包含初一、初二、初三)

合集下载

初一到初三数学知识点

初一到初三数学知识点

初一到初三数学知识点初一到初三数学知识点总结:1. 有理数的运算:包括加法、减法、乘法、除法以及它们的混合运算。

掌握有理数的运算规则,如正负数的加减法,以及乘除法的符号变化。

2. 代数初步:学习代数式的基本运算,包括合并同类项、去括号、分配律等。

理解变量和常数的概念,以及如何表示简单的代数表达式。

3. 一元一次方程:学习解一元一次方程的方法,如移项、合并同类项、系数化为1等。

理解方程的解和解方程的概念。

4. 二元一次方程组:掌握二元一次方程组的解法,如代入法和加减消元法。

理解方程组的解和解方程组的概念。

5. 不等式:学习不等式的基本概念,包括不等号的含义、不等式的解集和解不等式的方法。

6. 函数的初步:了解函数的概念,包括自变量、因变量、函数的表达式和函数图像。

学习简单的线性函数和它们的图像。

7. 几何初步:学习点、线、面的基本性质,以及平面几何的基本概念,如角度、线段、平行线、垂线等。

8. 三角形:掌握三角形的分类,如等边、等腰、直角三角形等。

学习三角形的内角和定理、外角定理以及三角形的面积计算。

9. 四边形:了解四边形的基本性质,包括平行四边形、矩形、菱形、正方形等。

学习四边形的性质和面积计算。

10. 圆:学习圆的基本性质,包括圆心、半径、直径、圆周角、弦、弧等。

掌握圆的面积和周长的计算方法。

11. 立体几何:了解立体图形的基本性质,如长方体、正方体、圆柱、圆锥、球等。

学习立体图形的表面积和体积的计算。

12. 概率初步:学习概率的基本概念,包括随机事件、概率的计算方法和简单的概率问题。

13. 统计初步:了解数据的收集、整理和描述方法,包括数据的分类、图表的绘制和基本的统计量计算。

14. 数列:学习数列的基本概念,包括等差数列和等比数列的定义、通项公式和求和公式。

15. 代数方程:学习一元二次方程的解法,如配方法、公式法、因式分解法等。

了解高次方程和方程组的解法。

16. 函数和图象:进一步学习函数的性质,包括函数的单调性、奇偶性、极值和最值。

初一到初三所有数学知识点归纳

初一到初三所有数学知识点归纳

初一到初三所有数学知识点归纳
初一到初三的数学知识点包括但不限于,初一阶段主要学习整数、分数、小数、百分数、代数方程、一元一次方程、一元一次不等式、平面图形的认识、周长和面积的计算等;初二阶段主要学习二次根式、实数的运算、整式的加减乘除、二元一次方程组、二次根式的运算、平面直角坐标系、线性函数、多边形的性质、圆的性质等;初三阶段主要学习立体图形的认识、三角形的性质、相似三角形、勾股定理、解直角三角形的应用问题、一元二次方程、二次函数、函数的概念和性质、统计与概率等。

在初一阶段,学生主要学习了数的基本性质,包括自然数、整数、分数、小数、百分数等的认识和运算规律,以及简单的代数方程和不等式的解法。

在初二阶段,学生开始接触到更加抽象的数学概念,如二次根式、实数的性质和运算规律,以及平面直角坐标系和线性函数的初步认识。

在初三阶段,学生将学习到更加深入的数学知识,包括立体图形的认识和计算、三角形的性质和计算、二次函数的图像和性质,以及统计与概率的初步应用。

除了以上列举的数学知识点外,初一到初三阶段的数学教学还包括了数学思维的培养、数学问题的解决方法、数学公式的推导和
运用等方面的内容。

这些知识点和能力的培养旨在帮助学生建立起扎实的数学基础,为将来更深入的数学学习打下坚实的基础。

初一到初三的数学知识点总结

初一到初三的数学知识点总结

初一到初三的数学知识点总结数学是一门基础学科,对于初中学生来说,数学知识的掌握和理解是非常重要的。

下面将对初一到初三的数学知识点进行总结,帮助学生加深对这些知识的理解。

1. 整数与有理数初一开始,我们学习了整数与有理数的概念。

整数包括正整数、负整数和零。

有理数是整数和分数的统称,可以表示为有限小数或无限循环小数。

通过整数和有理数的学习,我们能够更好地理解数轴的概念,并且能够进行整数和有理数的加减乘除运算。

2. 代数式与方程式在初二的数学学习中,我们开始接触代数式与方程式的概念。

代数式是由变量、常数与运算符号组成的式子,可以进行各种运算。

方程式是含有等号的代数式,我们通过解方程可以求得方程的解,从而解决实际问题。

代数式与方程式的学习帮助我们培养了分析和解决问题的能力,并且为接下来的数学学习打下了基础。

3. 几何图形与几何运动初一和初二的数学学习中,我们学习了几何图形的性质和几何运动的概念。

几何图形包括线段、直线、射线、角、多边形等,通过学习它们的性质和特点,我们能够准确地描述和识别各种几何图形。

几何运动是指平移、旋转、翻转等操作,通过学习几何运动,我们能够对图形进行变换和推理。

4. 函数与图像初三的数学学习中,我们开始接触函数与图像的概念。

函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值,并且每个自变量只有一个因变量对应。

函数的图像是指将自变量和因变量的值绘制在坐标系中得到的图形。

通过学习函数与图像,我们能够进一步理解函数的性质和特点,例如增减性、奇偶性等,并且能够利用函数的图像解决实际问题。

5. 统计与概率初三的数学学习中,我们学习了统计与概率的概念。

统计是指通过收集、整理和分析数据,以得到有关事物的信息。

我们学习了统计图表的绘制和数据的分析方法,能够对数据进行描述和比较。

概率是指事件发生的可能性,通过学习概率,我们能够对事件的可能性进行量化,并且可以利用概率解决实际问题。

以上是初一到初三的数学知识点的简要总结。

初一到初三数学所有知识点

初一到初三数学所有知识点

初一到初三数学所有知识点初一数学:1.数的概念:自然数、整数、有理数、实数2.数的运算:加减法、乘除法,混合运算,分数的加减乘除3.算术基本定理:素数与合数,质因数分解,最大公因数与最小公倍数4.约分与通分:分数的约分与通分,化简真分数与带分数5.小数的概念与运算:小数的加减乘除,小数、分数、百分数的相互转化6.数轴与坐标系:数轴的表示法,坐标系的概念,平面直角坐标系的表示法7.基本图形的认识:点、线、面的认识,正方形、长方形、圆、三角形的概念8.数学语言的运用:数学语言与符号的运用,数学问题的表述和解决初二数学:1.整式的知识:整式的定义,同类项的概念,整式的加减乘除,公式的应用2.分式的知识:分式的定义,基本性质,分式的约分、通分、加减、乘除法3.二次根式的知识:二次根式的化简、加减、乘除法,含有二次根式的方程4.平面图形的认识:多边形的概念、性质及全等条件,相似图形的概念及应用5.圆的知识:圆的概念、性质及判定方法,圆上的重要点、弧和角6.三角形和四边形的知识:三角形的角度和边长关系、中线、中位线、高,四边形的性质、面积公式7.比例和增减比:比例的定义、性质及应用,增减比的概念及应用8.百分数和利率:百分数的概念、性质及应用,利率的概念、计算方法及应用初三数学:1.函数与方程:函数的概念、性质及图像,方程及方程组的解法和应用2.数列与指数函数:等差数列、等比数列的概念、性质及求和公式,指数函数的概念、性质及图像3.立体图形的认识:正方体、长方体、正棱柱、正棱锥的概念及性质,体积及表面积的计算公式4.三角函数和解三角形:三角函数的概念、性质及图像,解三角形(利用正弦、余弦、正切函数及海伦公式)5.平面向量的概念及运算:向量的概念和运算、向量的加减、数量积及其应用6.概率与统计:随机事件的概念、基本概率公式,频率、概率密度、方差和标准差的概念及计算7.解析几何:点、直线、平面的坐标表示,直线的斜率及方程,平面上的圆的方程8.数学思维的拓展:数学论证、数学建模、数学思维方法与技巧的培养。

初一到初三数学必记重要知识点汇总

初一到初三数学必记重要知识点汇总

初一到初三数学必记重要知识点汇总
一、初一:
1、数与式:绝对值、有理数、分数和小数、根号、百分数和分数的转换、简单的分
式和带分数的因式、无理数的表示与应用;
2、一元一次方程:一元一次方程的解法:利用公式法和简图法解一元一次方程及应用;
3、比:比的定义、可比性和不可比性、等比数列、比的简化、简化等比数的应用;
4、分数的加减法:分数的意义、分数加减法的等幂性、分数大小的比较;
5、角:角的单位、角的规范弧和极弧、正、任意角、三角形内角和外角和外心角、
三角函数。

二、初二:
1、线性一次函数:定义及特征、函数关系、一元一次函数图象和抛物线图象、函数
的性质;
3、几何:直线的性质及其几何性质、圆的定义及其圆的性质、图形面积与周长;
4、三角函数:正弦、余弦函数、三角函数的综合应用;
5、不等式:一元不等式的性质、一元不等式的解法、一元不等式的解集及应用。

三、初三:
1、三角形:三角形的性质与三角函数、相似三角形的性质与结论、余弦定理的应用、海伦公式的应用;
2、统计:分类数据的描述性统计量,频率分布表、算术平均数、几何平均数、各种
概率和几何平均数的比较等;
3、概率与组合:定义和特征、概率的计算、条件概率、独立事件、互斥事件、组合
中的顺序;
4、函数:函数的性质、函数的值域、函数图象、曲线在函数图象中的位置;
5、几何图形:圆柱体、立体结构、图形中的折线、体积、表面积、体积体积系数等。

数学七年级到九年级知识点

数学七年级到九年级知识点

数学七年级到九年级知识点数学是一门重要的学科,对于学生的学习和思维发展起着至关重要的作用。

在初中阶段,数学的学习内容逐渐增加,涵盖了七年级到九年级的各个知识点。

下面将按照年级的顺序,总结归纳数学七年级到九年级的主要知识点。

七年级数学知识点:1. 数的基本概念:整数、有理数、无理数、实数等;2. 数的运算:整数运算、有理数运算,包括加减乘除等;3. 数的性质与计算:质数和合数、分解质因数、最大公因数和最小公倍数等;4. 代数表达与应用:代数字母运算、一元一次方程、图形的坐标等;5. 分数与小数:分数的四则运算、小数的运算和计算;6. 几何初步:图形的性质与分类、线的相交与平行等;7. 数据与图表:收集数据、统计数据、表示数据等。

八年级数学知识点:1. 实数运算:有理数与无理数运算、根号运算、实数的性质等;2. 代数基础:多项式的加减乘除、整式的因式分解、一元一次方程与一元一次不等式等;3. 空间与图形:平面与空间几何、图形的相似与全等等;4. 三角形与四边形:三角形的性质与分类、四边形的性质与分类等;5. 图形与变换:平移、旋转、翻转等几何变换;6. 统计与概率:统计图形、概率的基本概念和计算等。

九年级数学知识点:1. 数与式:矩阵运算、二次根式与二次方程等;2. 一次函数与二次函数:函数概念与图像、函数关系与性质等;3. 统计与概率:抽样调查、条件概率、频率分布等;4. 三角比与圆:三角函数定义与性质、圆的性质与应用等;5. 平面向量:向量的基本概念、向量运算与应用等;6. 空间向量与立体几何:空间向量基本概念、立体几何的性质和计算等。

以上是数学七年级到九年级的主要知识点总结。

通过对这些知识点的学习和理解,学生能够掌握数学的基本概念和运算方法,提升数学思维和解决问题的能力。

在实际学习中,应注重理论的学习与实践的结合,培养学生的数学兴趣和应用能力,为进一步学习高中数学打下坚实的基础。

数学初一到初三的所有知识点

数学初一到初三的所有知识点

数学初一到初三的所有知识点
数学初一到初三的知识点涵盖了许多基础但重要的概念和方法,以下是其中的一些关键内容:
1.初一数学知识点:
有理数:包括有理数的定义、数轴、相反数、绝对值等概念,以及有理数的加减法、乘法法则。

整式:学习整式的加减、整式的乘法、因式分解等。

一元一次方程:掌握一元一次方程的概念、解法,以及方程的应用。

图形的初步认识:了解线段、角、平行线、相交线等基本几何元素及其性质。

2.初二数学知识点:
函数:学习函数的概念、正比例函数、一次函数等,理解函数的图象和性质。

三角形:掌握三角形的分类、性质,以及全等三角形、相似三角形的判定和性质。

四边形:学习平行四边形、矩形、菱形、正方形的性质和判定。

轴对称与中心对称:理解轴对称和中心对称的概念,掌握其性质和应用。

3.初三数学知识点:
二次函数:学习二次函数的定义、图象、性质,以及最值问题。

圆:掌握圆的基本性质,包括垂径定理、圆周角定理等,以及点和圆、直线和圆的位置关系。

概率初步:学习概率的基本概念、计算,以及利用概率解决实际问题。

反比例函数:理解反比例函数的概念、图象和性质,掌握其应用。

此外,还有数据的收集与整理、图形的变换(如平移、旋转、翻折等)、勾股定理、锐角三角函数、投影与视图等知识点也是初中数学的重要内容。

初一初二初三数学知识点总结

初一初二初三数学知识点总结

初一初二初三数学知识点总结初一初二初三数学知识点总结在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。

哪些才是我们真正需要的知识点呢?以下是店铺为大家收集的初一初二初三数学知识点总结,仅供参考,希望能够帮助到大家。

初一初二初三数学知识点总结1三角形的知识点1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余推论2三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1、两组对边平行的四边形是平行四边形。

2、性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3、判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4、对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1、定义:有一个角是直角的平行四边形叫做矩形2、性质:矩形的四个角都是直角,矩形的对角线相等3、判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4、对称性:矩形是轴对称图形也是中心对称图形。

初一到初三数学知识点总结

初一到初三数学知识点总结

初一到初三数学知识点总结一、初一数学知识点总结1. 整数√初一的数学主要学习正整数、负整数的概念及运算法则,例如同号数相加,异号数相加,绝对值等。

2. 分数√学习分数的概念和分数的加减乘除运算。

3. 一元一次方程√学习一元一次方程的概念及解法,包括用通俗方法解方程、用等式性质解方程等。

4. 比例与比例式√学习比例的概念,及比例式的变形和应用。

5. 数据√学习数据的收集、整理、分析方法,学会绘制统计图表。

6. 几何√学习平行线与角、相交线与角等几何基本概念和基本图形的性质。

二、初二数学知识点总结1. 一元一次方程与一元二次方程√学习一元一次方程与一元二次方程的含义及解的方法,同时要学会应用到实际问题中。

2. 多项式√学习多项式的基本概念、多项式的加减乘除以及多项式的因式分解和提公因式等。

3. 几何√学完平面图形的性质,学习平行四边形、梯形、圆的性质及计算等。

4. 直角三角形与勾股定理√学习直角三角形的性质、三角函数的概念及运用,同时也要学习勾股定理的应用。

5. 图形的相似√学习相似三角形的性质、比的运用,区别检验相似三角形、判定两个平面图形是否相似等。

6. 统计√学习统计样本、频数分布、频数分布表及绘制各种统计图表。

三、初三数学知识点总结1. 二次函数√学习二次函数的概念、图像及性质,函数的最值问题及二次函数与一元二次方程的关系。

2. 数列√学习等差数列、等比数列及它们的前n项和的计算,应用到生活中。

3. 三角函数√学习三角函数的概念、性质及图像,利用三角函数解实际问题。

4. 空间几何√学习空间图形的性质与计算,空间图形的投影与沿截面的截面图等。

5. 概率√学习独立事件、互斥事件、概率的计算、事件的并、交及补等。

6. 统计√学习随机变量的概念、离散型与连续型随机变量及它们的概率分布等。

以上就是初一到初三数学知识点总结,初一到初三数学知识点博大精深,要想学好数学,一定要打好数学的基础。

希望同学们能够认真学习,掌握好这些知识点。

初一到初三数学所有知识点

初一到初三数学所有知识点

初一到初三数学所有知识点初一到初三数学所有知识点一、数与式(一)有理数1、有理数的分类2、数轴的定义与应用3、相反数4、倒数5、绝对值6、有理数的大小比较7、有理数的运算(二)实数8、实数的分类9、实数的运算10、科学记数法11、近似数与有效数字12、平方根与算术根和立方根13、非负数14、零指数次幂、负指数次幂(三)代数式15、代数式、代数式的值16、列代数式(四)整式17、整式的分类18、整式的加减、乘除的运算19、幂的有关运算性质20、乘法公式21、因式分解(五)分式22、分式的定义23、分式的基本性质24、分式的运算(六)二次根式25、二次根式的意义26、根式的基本性质27、根式的运算二、方程和不等式(一)一元一次方程28、方程、方程的解的有关定义29、一元一次的定义30、一元一次方程的解法31、列方程解应用题的一般步骤(二)二元一次方程32、二元一次方程的定义33、二元一次方程组的定义34、二元一次方程组的解法(代入法消元法、加减消元法)35、二元一次方程组的应用(三)一元二次方程36、一元二次方程的定义37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)38、一元二次方程根与系数的关系和根的判别式39、一元二次方程的应用(四)分式方程40、分式方程的定义41、分式方程的解法(转化为整式方程、检验)42、分式方程的增根的定义43、分式方程的应用(五)不等式和不等式组44、不等式(组)的有关定义45、不等式的基本性质46、一元一次不等式的解法47、一元一次不等式组的解法48、一元一次不等式(组)的应用三、函数(一)位置的确定与平面直角坐标系49、位置的确定50、坐标变换51、平面直角坐标系内点的特征52、平面直角坐标系内点坐标的符号与点的象限位置53、对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,- y)关于原点对称54、变量、自变量、因变量、函数的定义55、函数自变量、因变量的取值范围(使式子有意义的条件、图象法)56、函数的图象:变量的变化趋势描述(二)一次函数与正比例函数57、一次函数的定义与正比例函数的定义58、一次函数的图象:直线,画法59、一次函数的性质(增减性)60、一次函数y=kx+b(k≠0)中k、b符号与图象位置61、待定系数法求一次函数的解析式(一设二列三解四回)62、一次函数的平移问题63、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)64、一次函数的实际应用65、一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合(三)反比例函数66、反比例函数的定义67、反比例函数解析式的确定68、反比例函数的图象:双曲线69、反比例函数的性质(增减性质)70、反比例函数的实际应用71、反比例函数的综合应用(四个方面、面积问题)(四)二次函数72、二次函数的定义73、二次函数的三种表达式(一般式、顶点式、交点式)74、二次函数解析式的确定(待定系数法)75、二次函数的图象:抛物线、画法(五点法)76、二次函数的性质(增减性的描述以对称轴为分界)77、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系78、求二次函数的顶点坐标、对称轴、最值79、二次函数的交点问题80、二次函数的对称问题81、二次函数的最值问题(实际应用)82、二次函数的平移问题83、二次函数的实际应用84、二次函数的综合应用(1)二次函数与方程综合(2)二次函数与其它函数综合(3)二次函数与不等式的综合(4)二次函数与几何综合1,过两点有且只有一条直线2,两点之间线段最短3,同角或等角的补角相等4,同角或等角的余角相等5,过一点有且只有一条直线和已知直线垂直6,直线外一点与直线上各点连接的所有线段中,垂线段最短7,经过直线外一点,有且只有一条直线与这条直线平行8,如果两条直线都和第三条直线平行,这两条直线也互相平行9,同位角相等,两直线平行10,内错角相等,两直线平行11,同旁内角互补两直线行12,两直线平行,同位角相等13,两直线平行,内错角相等14,两直线平行,同旁内角互补15,三角形两边的和大于第三边16,三角形两边的差小于第三边17,三角形三个内角的和等180°18,直角三角形的两个锐角互余19,三角形的一个外角等于和它不相邻的两个内角的和20,三角形的一个外角大于任何一个和它不相邻的内角21,全等三角形的对应边,对应角相等22,有两边和它们的夹角对应相等的两个三角形全等(SAS)23 有两角和它们的夹边对应相等的两个三角形全等(ASA)24,有两角和其中一角的对边对应相等的两个三角形全等(AAS)25,有三边对应相等的两个三角形全等(SSS)26,有斜边和一条直角边对应相等的两个直角三角形全等(HL)27,在角的平分线上的点到这个角的两边的距离相等28,到一个角的两边的距离相同的点,在这个角的平分线上29,角的平分线是到角的两边距离相等的所有点的集合30,等腰三角形的性质定理等腰三角形的两个底角相等31,等腰三角形顶角的平分线平分底边并且垂直于底边32,等腰三角形的顶角平分线,底边上的中线和高互相重合33,等边三角形的各角都相等,并且每一个角都等于60°34,等腰三角形的判定定理如果一个三角形有两个角相等, 那么这两个角所对的边也相等(等角对等边)35,三个角都相等的三角形是等边三角形36,有一个角等于60°的等腰三角形是等边三角形37,在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38,直角三角形斜边上的中线等于斜边上的一半39,线段垂直平分线上的点和这条线段两个端点的距离相等40,和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41,线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42,关于某条直线对称的两个图形是全等形43,如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44,两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45,如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46,直角三角形两直角边a,b的平方和,等于斜边c的平方,即a+b=c47,如果三角形的三边长a,b,c有关系a+b=c,那么这个三角形是直角三角形48,四边形的内角和等于360°49,四边形的外角和等于360°50,多边形内角和定理n边形的内角的和等于(n-2)×180°51,任意多边的外角和等于360°52,平行四边形的对角相等53,平行四边形的对边相等54,夹在两条平行线间的平行线段相等55,平行四边形的对角线互相平分56,两组对角分别相等的四边形是平行四边形57,两组对边分别相等的四边形是平行四边形58,对角线互相平分的四边形是平行四边形59,一组对边平行相等的四边形是平行四边形60,矩形的四个角都是直角61,矩形的对角线相等62,有三个角是直角的四边形是矩形63,对角线相等的平行四边形是矩形64,菱形的四条边都相等65,菱形的对角线互相垂直,并且每一条对角线平分一组对角66,菱形面积=对角线乘积的一半,即S=(a×b)÷267,四边都相等的四边形是菱形68,对角线互相垂直的平行四边形是菱形69,正方形的四个角都是直角,四条边都相等70,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71,关于中心对称的两个图形是全等的72,关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73,如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74,等腰梯形在同一底上的两个角相等75,等腰梯形的两条对角线相等76,在同一底上的两个角相等的梯形是等腰梯形77,对角线相等的梯形是等腰梯形78,如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79,经过梯形一腰的中点与底平行的直线,必平分另一腰80,经过三角形一边的中点与另一边平行的直线,必平分第三边81,三角形的中位线平行于第三边,并且等于它的一半82,梯形的中位线平行于两底,并且等于两底和的一半L=(a+b) S=L×h83,如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84,如果a/b=c/d,那么(a±b)/ b=(c±d)/d85,如果a/b=c/d=。

初中数学知识点全总结整理

初中数学知识点全总结整理

初中数学知识点全总结整理初中数学是学生数学学习的基础,包括了初一、初二和初三三个阶段。

以下是初中数学的知识点的总结和整理:一、数的概念和运算:1.自然数,整数,有理数和实数的概念与性质;2.数的分类:质数和合数,奇数和偶数;3.整数加减法、乘法、除法的运算规则和性质;4.分数的概念和性质,分数的加减法、乘法和除法;5.小数的概念和性质,小数的加减法、乘法和除法;6.算术平方根和立方根的概念和计算;7.百分数的概念和转化,百分数的加减法、乘法和除法。

二、代数式与方程式:1.代数式的概念和性质,同类项的合并与提取;2.一元一次方程式和一元一次方程式的解;3.一元一次方程组和一元一次方程组的解;4.平方差公式,完全平方式和因式分解;5.一元二次方程式和一元二次方程式的解;6.整式的加减法和乘法,整式的取值和展开;7.分式的加减法和乘法,分式的化简和展开。

三、数学计算:1.常见图形的周长和面积的计算;2.平行线和垂线的性质和判定;3.几何图形的相似性和全等性;4.三角形的面积和周长的计算;5.直角三角形和直角三角形的性质和计算;6.三角形的正弦定理,余弦定理和边角关系;7.长方体,正方体和圆柱体的体积和表面积的计算。

四、统计与概率:1.频数和频率的概念和计算;2.柱状图,折线图和饼状图的绘制和分析;3.数据的中心趋势和离散程度的计算;4.几何概率和几何概率的计算;5.样本空间,事件和概率的概念和计算;6.简单统计推断和误差分析。

五、函数与图形:1.直线的方程,直线的斜率和截距的计算;2.一次函数,二次函数和绝对值函数的图像与性质;3.函数的概念和性质,函数的图像和定义域;4.坐标系转化和坐标平移的计算;5.平行线和垂线的性质和判定;6.直角坐标系中图形的平移,旋转,对称和拉伸。

六、几何证明:1.几何图形中几何关系的基本性质和判定;2.直角三角形的性质和判定;3.等腰三角形和等边三角形的性质和判定;4.平行四边形,矩形,菱形和正方形的性质和判定;5.线段相等,角相等和两线垂直的性质和判定。

初一到初三数学知识点

初一到初三数学知识点

初一到初三数学知识点一、初一数学知识点1. 数的性质•自然数和整数的概念•有理数和无理数的区别和性质•相反数和绝对值2. 整式与分式•简单整式的加减乘除运算•分式的概念与运算法则3. 平方根与立方根•平方根的概念与性质•立方根的概念与计算4. 计算•两数四则运算•带括号的四则运算•用珠心算解四则运算5. 图形的认识•点、线、面等基本概念•直线、折线、封闭曲线等的特点和性质•常见图形的名称和特征二、初二数学知识点1. 代数•代数表达式的概念•代数式的化简与展开•一元一次方程的解法•四则运算的应用问题2. 几何•线段、角、三角形的性质•直线、平行线和垂直线的关系•三角形的分类与特征•平面镜形和旋转镜形的基本形状•面积和体积的计算3. 数据统计•数据的整理与统计•直方图、折线图、饼图的绘制与分析•平均数、中位数和众数的计算与应用4. 函数•函数的概念与性质•函数的表示与运算•一次函数和二次函数的图像与性质•函数的应用问题三、初三数学知识点1. 平面几何•直线、线段、角的性质•同位角、内错角、补角、余角的关系•直角三角形、等腰三角形、等边三角形的特征•圆的性质与公式•圆的切线与切点的性质2. 空间几何•立体图形的性质与分类•长方体、正方体、棱柱、棱锥、圆柱、圆锥和球体的特征•空间几何图形的表面积和体积计算3. 概率与统计•事件与概率的概念与计算•试验、样本空间、随机事件的概念•概率与分数、百分数的关系•几何概率与排列组合的应用4. 三角函数•弧度制与角度制的转换•正弦、余弦、正切、余切的定义与计算•三角函数的图像与性质•解三角函数方程的方法与应用以上是初一到初三数学的主要知识点,通过系统的学习和练习,可以帮助学生打下坚实的数学基础,为高中数学的学习奠定良好的基础。

学生在学习过程中,应注重理解和应用,通过练习提高自己的解题能力和思维能力。

希望本文档对您的学习有所帮助!。

初一到初三的数学知识归纳

初一到初三的数学知识归纳

初一到初三的数学知识归纳引言初一到初三是数学教育中的关键阶段,学生们在这段时间内需要掌握并巩固基础的数学知识。

本文将对初一到初三的数学知识进行归纳总结,以帮助学生们更好地理解和记忆这些数学概念和技巧。

一、初一数学知识归纳1.1 整数与小数在初一阶段,学生们学习了整数和小数的概念。

•整数是正整数、负整数和0的集合。

学生们需要学会整数的基本运算规则,如加法、减法、乘法和除法。

•小数是有限小数和无限循环小数的集合。

学生们需要了解小数的表示方法以及小数和整数的相互转化。

1.2 分数分数是初一数学中另一个重要的概念。

•分数由分子和分母组成,表示了一个数的部分和整体的关系。

•学生们需要学会分数的基本运算,包括分数的加法、减法、乘法和除法。

1.3 代数表达式与方程初一阶段,学生们开始接触代数表达式和方程。

•代数表达式由字母和数字以及加减乘除等运算符号组成,用于描述数学关系。

•方程是等式,它表示了两个代数表达式相等的关系。

学生们需要学会解一元一次方程。

二、初二数学知识归纳2.1 几何形体初二阶段,学生们开始学习几何形体的性质和计算。

•平面图形包括圆、三角形、四边形、多边形等,学生们需要了解这些形体的性质、计算周长和面积的方法。

•空间图形包括立体图形和轴测图形,学生们需要学会识别和计算这些图形的体积和表面积。

2.2 相似与全等学生们在初二阶段还需要学习相似与全等的概念。

•相似是指两个几何图形形状相似,但尺寸不同。

学生们需要学会判断和证明图形相似的条件,并计算相似图形的比例关系。

•全等是指两个几何图形形状和尺寸完全相同。

学生们需要学会判断和证明图形全等的条件。

2.3 概率与统计初二数学还包括概率与统计的内容。

•概率是描述事件发生可能性的数学工具,学生们需要学会计算概率、理解事件的互斥和独立性。

•统计是收集、整理和分析数据的过程,学生们需要学会制作和解读各种统计图表,如柱状图、折线图等。

三、初三数学知识归纳3.1 三角函数初三数学的一个重要内容是三角函数。

初一到初三数学知识点总结

初一到初三数学知识点总结

初一到初三数学知识点总结初一:1. 整数,初一数学的第一个重点就是整数,包括正整数、负整数、零以及它们的加减乘除运算。

2. 分数,初一数学还包括分数的加减乘除运算,以及分数与整数的混合运算。

3. 小数,初一学习小数的概念,以及小数和分数的相互转化。

4. 代数,初一代数的内容主要包括代数式的认识和简单的代数式的计算。

5. 几何,初一几何主要是图形的认识和简单的计算,如周长、面积等。

初二:1. 一次函数,初二数学的重点是一次函数的概念、性质和图像,以及一次函数的应用题。

2. 直角三角形,初二学习直角三角形的性质,包括勾股定理的应用等。

3. 多边形,初二几何的内容还包括多边形的性质和计算,如多边形内角和、外角和等。

4. 方程,初二代数的内容主要是一元一次方程的解法和应用题。

5. 概率,初二学习了基本的概率概念,包括概率的计算和应用题。

初三:1. 二次函数,初三数学的重点是二次函数的概念、性质和图像,以及二次函数的应用题。

2. 圆的性质,初三学习了圆的性质,包括圆的周长、面积的计算,以及扇形、弧长等相关知识。

3. 立体几何,初三几何的内容主要是立体图形的认识和计算,如立体图形的表面积和体积等。

4. 比例,初三学习了比例的概念,包括比例的计算和应用题。

5. 统计与概率,初三学习了统计与概率的进阶内容,包括频数分布、频数分布直方图、频数分布折线图等。

总结:初一到初三的数学知识点涵盖了整数、分数、小数、代数、几何、函数、方程、概率、比例等内容,是数学学习的基础,也是后续学习的重要基础。

通过系统的学习和不断的练习,可以更好地掌握这些知识点,为高中数学的学习打下坚实的基础。

希望同学们能够认真对待初中数学知识的学习,不断提高数学素养,取得更好的学习成绩。

初一到初三数学重点知识点

初一到初三数学重点知识点

初一到初三数学重点知识点初一到初三的数学学习是中学数学教育的基础阶段,涵盖了许多重要的数学概念和技能。

以下是这一阶段的数学重点知识点概述:1. 数与代数- 有理数的运算:包括加、减、乘、除以及它们的混合运算。

- 代数表达式:学习如何使用字母表示数,以及如何进行代数表达式的简化和求值。

- 一元一次方程:解方程的基本步骤,包括移项、合并同类项等。

- 二元一次方程组:通过代入法或加减消元法求解方程组。

- 因式分解:提取公因式、平方差公式和完全平方公式等。

2. 几何- 线段、射线和直线:理解它们的定义和性质。

- 角度:锐角、直角、钝角和周角的概念及其度量。

- 三角形:三角形的分类、内角和定理以及三角形的边长关系。

- 四边形:平行四边形、矩形、菱形和正方形的性质和判定。

- 圆:圆的基本概念,如半径、直径、圆周率等,以及圆的周长和面积的计算。

3. 统计与概率- 数据的收集和整理:学习如何收集数据并将其整理成图表。

- 平均数、中位数和众数:计算数据集的平均数、中位数和众数。

- 概率:理解概率的基本概念,计算简单事件的概率。

4. 函数- 一次函数:学习一次函数的图像和性质,包括斜率和截距。

- 二次函数:掌握二次函数的图像,包括顶点式和标准式。

5. 解题技巧- 数学思维:培养逻辑思维和抽象思维能力,提高解题效率。

- 画图辅助:利用图形来帮助理解和解决数学问题。

- 转化思想:将复杂问题转化为简单问题,或者将不熟悉的问题转化为熟悉的问题。

这些知识点构成了初一到初三数学学习的核心内容,为学生进一步学习高中数学打下坚实的基础。

掌握这些知识点不仅有助于提高数学成绩,还能培养学生的数学思维和解决问题的能力。

初中数学知识点总结分册

初中数学知识点总结分册

初中数学知识点总结分册一、初一数学知识点1. 数与式- 自然数、整数、分数、小数的认识和运算- 正数与负数的概念及其加、减、乘、除运算- 幂的运算性质,包括乘方、开方- 单项式与多项式的概念及加减运算- 一元一次方程的解法2. 几何图形- 平面几何图形的基本性质,包括点、线、面- 直线、射线、线段、角的定义及其性质- 三角形的分类与性质,包括等边、等腰、直角三角形- 四边形的分类与性质,包括正方形、长方形、菱形、梯形 - 圆的基本性质,包括圆周角、圆心角、弦、弧3. 数据处理- 统计数据的收集和整理- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读二、初二数学知识点1. 数与式- 二元一次方程组的解法,包括代入法、加减法- 不等式的概念及其性质- 一元一次不等式及其解集- 二次根式的运算,包括化简、加减、乘除2. 函数- 函数的概念及表示方法- 线性函数的图像与性质- 函数的应用问题3. 几何图形- 平行线的性质与判定- 三角形全等的条件与证明- 四边形全等与相似的条件与证明- 圆的性质,包括垂径定理、圆周角定理- 相似三角形的性质与判定4. 概率与统计- 概率的基本概念- 随机事件的概率计算- 统计量的计算,包括平均数、中位数、众数三、初三数学知识点1. 数与式- 一元二次方程的解法,包括公式法、因式分解法 - 二次函数的图像与性质- 无理数与复数的基本概念2. 函数与方程- 函数的运算,包括函数的和、差、积、商- 函数的图像变换,包括平移、对称、伸缩- 高次方程与低次方程的解法3. 几何图形- 几何图形的证明方法,包括演绎推理、归纳推理- 圆与直线、圆与圆的位置关系- 空间几何图形的性质,包括棱柱、棱锥、圆柱、圆锥- 三视图与立体图形的表面积、体积计算4. 概率与统计- 统计调查的步骤与方法- 数据的分布特征,包括方差、标准差- 概率分布的概念,包括离散型与连续型分布以上是初中数学的主要知识点总结,每个知识点都需要通过大量的练习来巩固和深化理解。

初一到初三数学知识点

初一到初三数学知识点

初一到初三数学知识点数学是一门重要的学科,对于初中阶段的学生来说,掌握数学知识点是非常关键的。

本文将介绍初一到初三数学的一些重点知识点,帮助学生更好地理解和应用数学知识。

初一数学知识点:1. 整数与有理数:学生要掌握整数的加法、减法、乘法、除法运算规则,以及有理数的性质和运算法则。

2. 分数:学生需要理解分数的概念,包括分数的表示方法、分数的大小比较、分数的四则运算等。

3. 百分数:学生应该掌握百分数的概念和表示方法,以及百分数与分数、小数的转化关系。

4. 数据的整理与显示:学生要学会整理和处理一组数据,并用图表的形式展示,如条形图、折线图等。

初二数学知识点:1. 代数:学生需要学会用字母代表数,进行代数运算,如代数式的化简、代数方程的解等。

2. 几何:学生要学会计算和解决几何问题,包括平面几何和立体几何的知识。

3. 概率与统计:学生需要了解概率的概念和计算方法,并学会统计和分析一组数据的方法。

4. 数字运算与估算:学生要掌握精确计算和估算计算的方法,以及应用数字运算解决实际问题的能力。

初三数学知识点:1. 三角函数:学生要学会计算和应用各种三角函数,如正弦函数、余弦函数等。

2. 相似与全等:学生需要理解相似和全等的概念,并掌握相似和全等图形的性质和判定方法。

3. 平面向量:学生要学会计算和应用平面向量,包括向量的表示、向量的运算等。

4. 解析几何:学生需要学习和应用解析几何的知识,如直线的方程、圆的方程等。

数学在中学阶段扮演着重要的角色,它不仅是掌握其他科学知识的基础,也是培养逻辑思维和问题解决能力的重要途径。

因此,学生要在初一到初三的学习中认真学习和理解数学知识点,并能够灵活运用到实际生活中。

另外,数学学科还有许多其他的知识点需要学生去深入学习和掌握,如方程与不等式、函数与图像、立体几何等。

这些知识点都是在初中阶段的数学学习中逐渐引入的,随着年级的升高,难度也会逐渐增加。

因此,学生需要具备良好的学习习惯和积极的学习态度,才能够更好地掌握和应用数学知识。

初一到初三数学知识点

初一到初三数学知识点

初一到初三数学知识点初一数学知识点有理数:有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。

理解正数、负数的概念,掌握有理数的加、减、乘、除、乘方运算规则。

数轴是理解有理数的重要工具,数轴上的点与有理数一一对应。

整式:整式包括单项式和多项式。

要掌握整式的加减运算,合并同类项是关键。

一元一次方程:会用方程解决实际问题,找出等量关系是列方程的核心。

掌握一元一次方程的解法,包括去分母、去括号、移项、合并同类项、系数化为 1 等步骤。

图形初步认识:认识直线、射线、线段,掌握它们的性质和表示方法。

角的度量和角的比较,余角和补角的概念也要清楚。

相交线与平行线:理解对顶角、邻补角的概念和性质,垂线的性质,平行线的判定和性质。

实数:了解平方根、算术平方根、立方根的概念,掌握实数的运算。

平面直角坐标系:理解平面直角坐标系的概念,能在坐标系中表示点的位置,以及根据点的坐标描出点。

初二数学知识点三角形:三角形的三边关系、内角和定理,全等三角形的判定(SSS、SAS、ASA、AAS、HL),等腰三角形和等边三角形的性质和判定。

勾股定理:掌握勾股定理及其逆定理,并能运用它们解决实际问题。

平行四边形:包括平行四边形、矩形、菱形、正方形的性质和判定。

一次函数:理解一次函数的概念、图象和性质,能用一次函数解决实际问题。

数据的分析:平均数、中位数、众数的计算和意义,方差的计算和意义。

初三数学知识点二次函数:二次函数的图象和性质,抛物线的顶点、对称轴,二次函数的解析式(一般式、顶点式、交点式),用二次函数解决实际问题,如最值问题。

一元二次方程:一元二次方程的解法(配方法、公式法、因式分解法),根的判别式,根与系数的关系(韦达定理)。

旋转:图形的旋转的性质,中心对称的概念和性质。

圆:圆的有关概念,垂径定理,圆心角、弧、弦之间的关系,圆周角定理,圆的切线的性质和判定。

概率初步:随机事件,概率的定义和计算方法。

反比例函数:反比例函数的图象和性质,用反比例函数解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【初中数学】知识点大全(包含初一、初二、初三)初中数学知识点大全(详细、全面)第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如3 π+8 等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。

倒数等于本身的数是 1 和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“”。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

3、立方根如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做的形式,,其中,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设 a、b 是实数,考点六、实数的运算(做题的基础,分值相当大)5、乘法对加法的分配律6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章代数式考点一、整式的有关概念(3 分) 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

考点二、多项式(11 分) 1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的除法:注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解(11 分) 1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2 项式可以尝试运用公式法分解因式;3 项式可以尝试运用公式法、十字相乘法分解因式;4 项式及 4 项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

考点四、分式(8~10 分) 1、分式的概念2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则考点五、二次根式(初中数学基础,分值很大)1、二次根式式子叫做二次根式,二次根式必须满足:含有二次根号“ ”;被开方数 a 必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

第三章方程(组)考点一、一元一次方程的概念(6 分)1、方程:含有未知数的等式叫做方程。

2、方程的解:能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1 的整式方程叫做一元一次方程,其中方程)为未知数,叫做一元一次方程的标准形式,a 是未知数 x 的系数,b是常数项。

考点二、一元二次方程(6 分)1、一元二次方程只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。

2、一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数 x 的二次多项式,等式右边是零,其中 2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点三、一元二次方程的解法(10 分)1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a 看做未知数 x,并用 x 代替,则有。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点四、一元二次方程根的判别式(3 分)考点五、一元二次方程根与系数的关系(3 分)考点六、分式方程(8 分)1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

考点七、二元一次方程组(8~10 分)1、二元一次方程含有两个未知数,并且未知项的最高次数是1 的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4 二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法(1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是 1 的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

第四章不等式(组)考点一、不等式的概念(3 分)1、不等式用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

3、用数轴表示不等式的方法考点二、不等式基本性质(3~5 分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

考点三、一元一次不等式(6~8 分)1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将 x 项的系数化为 1 考点四、一元一次不等式组(8 分)1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

相关文档
最新文档