数据结构-插入排序与选择排序

合集下载

头歌数据结构十大经典排序算法 -回复

头歌数据结构十大经典排序算法 -回复

头歌数据结构十大经典排序算法-回复什么是经典排序算法?经典排序算法是指在计算机科学领域中被广泛应用和研究的排序算法。

排序是计算机科学中的基本操作之一,它的目标是将一组元素按照某种特定的顺序进行排列。

经典排序算法通常被用来解决排序问题,可以应用于数据的排序、搜索、统计等各种计算任务中。

在这篇文章中,我们将讨论头歌数据结构中的十大经典排序算法,探索每个算法的原理和实现方法,以及它们的优缺点和适用场景。

1. 冒泡排序(Bubble sort)冒泡排序是一种简单直观的排序算法,它的基本思想是重复地交换相邻两个元素,将较大的元素逐渐“浮”到数组的尾部。

具体实现可以使用两层嵌套循环,外层循环控制比较的轮数,内层循环进行元素比较和交换。

冒泡排序的时间复杂度为O(n^2)。

2. 选择排序(Selection sort)选择排序是一种简单的选择最小元素的排序算法,它的基本思想是从头开始,逐个选择最小的元素,并将其放置到已排序部分的末尾。

具体实现可以使用两层嵌套循环,外层循环控制已排序部分的末尾位置,内层循环用于选择最小元素。

选择排序的时间复杂度为O(n^2)。

3. 插入排序(Insertion sort)插入排序是一种简单直观的排序算法,它的基本思想是将已排序部分的元素依次与未排序部分的元素进行比较并插入到正确的位置。

具体实现可以使用两层嵌套循环,外层循环控制未排序部分的元素,内层循环用于比较和插入元素。

插入排序的时间复杂度为O(n^2)。

4. 希尔排序(Shell sort)希尔排序是一种改进的插入排序算法,它的基本思想是将数组划分为若干个子序列,并分别对子序列进行插入排序,直到整个数组有序。

具体实现使用增量序列来控制子序列的划分和插入排序的间隔,最终将整个数组排序。

希尔排序的时间复杂度为O(nlogn)。

5. 归并排序(Merge sort)归并排序是一种分治法排序算法,它的基本思想是将数组分成两个子数组,分别对子数组进行递归排序,然后将排序好的子数组合并成一个有序的数组。

数据结构第九章

数据结构第九章
KCN i n(n 1) / 2 n 2 / 2, RMN (i 2) (n 4)(n 1) / 2 n 2 / 2
i 1 i 1 n 1 n 1
140-14


平均情况下排序的时间复杂度为 o(n2)。 直接插入排序是一种稳定的排序方法。
折半插入排序 (Binary Insertsort)

基本思想是 : 设在顺序表中有一 个元素序列 V[0], V[1], …, V[n-1]。其中, V[0], V[1], …, V[i-1] 是已经排好序的元素。在插入V[i] 时, 利 用折半搜索法寻找V[i] 的插入位置。
折半插入排序的算法
#include "dataList.h"
140-15
插入排序 (Insert Sorting)

基本方法是:每步将一个待排序的元素,按其 排序码大小,插入到前面已经排好序的一组元 素的适当位置上, 直到元素全部插入为止。
直接插入排序 (Insert Sort)

基本思想是 : 当插入第i (i≥1) 个元素时,前面 的V[0], V[1], …, V[i-1]已经排好序。这时,用 V[i]的排序码与V[i-1], V[i-2], …的排序码顺序 进行比较,插入位置即将V[i]插入,原来位置 上的元素向后顺移。
140-11
直接插入排序的算法
#include "dataList.h" template <class T> void InsertSort (dataList<T>& L, int left, int right) { //依次将元素L.Vector[i]按其排序码插入到有序表 //L.Vector[left],…,L.Vector[i-1]中,使得 //L.Vector[left]到L.Vector[i]有序。 Element<T> temp; int i, j; for (i = left+1; i <= right; i++) if (L[i] < L[i-1]) { temp = L[i]; j = i-1;

数据结构第八章_排序

数据结构第八章_排序

49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价

38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)

数据结构 排序

数据结构 排序
选择排序种类: 简单选择排序 树形选择排序 堆排序
2019/9/7
30
10.4.1 简单选择排序
待排记录序列的状态为:
有序序列R[1..i-1] 无序序列 R[i..n]
有序序列中所有记录的关键字均小于无序序列中记 录的关键字,第i趟简单选择排序是从无序序列 R[i..n]的n-i+1记录中选出关键字最小的记录加入 有序序列
2019/9/7
5
排序的类型定义
#define MAXSIZE 20 // 待排序记录的个数
typedef int KeyType;
typedef struct
{ KeyType key;
InfoType otherinfo; ∥记录其它数据域
} RecType;
typedef struct {
RecType r[MAXSIZE+1];
分别进行快速排序:[17] 28 [33] 结束 结束
[51 62] 87 [96] 51 [62] 结束
结束
快速排序后的序列: 17 28 33 51 51 62 87 96
2019/9/7
26
自测题 4 快速排序示例
对下列一组关键字 (46,58,15,45,90,18,10,62) 试写出快速排序的每一趟的排序结果

final↑ ↑first
i=8
[51 51 62 87 96 17 28 33]

final↑ ↑first
2019/9/7
14
希尔(shell )排序
基本思想:从“减小n”和“基本有序”两 方面改进。
将待排序的记录划分成几组,从而减少参 与直接插入排序的数据量,当经过几次分 组排序后,记录的排列已经基本有序,这 个时候再对所有的记录实施直接插入排序。

数据结构(C语言版CHAP10

数据结构(C语言版CHAP10
结束
分组方法:选定一增量d,将间隔为d的记录作为一组 例 待排记录 49 38 65 97 76 13 27 49 55 04 d=5 d=3 49 13 13 13 04 38 27 27 04 13 65 49 49 49 27 97 55 55 38 38 76 04 04 27 49 13 27 49 49 38 65 49 38 65 49 55 65 49 55 65 55 97 97 97 76 04 76 76 76 97
10.1
概 述
排序也是数据处理中经常使用的一种操作.例 高考考生信息管理 系统提供了将考生按总分排序,按单科排序的功能; 1 排序定义 设R1 R2 R3 … Rn 是n个记录,k1,k2, k3 … kn为它们的关键字,排序 就是将记录按关键字递增(或递减)的次序排列起来. 2 分类 按记录的存放位置分类有 内排序:待排记录放在内存 外排序:待排记录放在外存 按排序原则分类(内排序) 插入排序 交换排7,76,13,27,49 是待排序列
稳性排序的应用: 例 股票交易系统 考虑一种股票交易(清华紫光)) 1)顾客输入:股东帐号,股票代码,申购价格,数量,股票交易系统 将用户申购请求插入申购队列队尾; 2)股票交易系统按如下原则交易: A)申购价高者先成交 B)申购价相同者按申购时间先后顺序成交 结束 第 5 页
76 38 49 65 97 76 13 27 49
L.r[5]复制为哨兵 0 1 2 3 4 5 6 7 8 9
76 38 49 65 97 97 13 27 49
L.r[0].key < L.r[4].key, L.r[4]记录后移 L.r[0].key≥ L.r[3].key 找到插入位置 插入! 0 1 2 3 4 5 6 7 8 9

数据结构-排序

数据结构-排序

实现“一趟插入排序”可分三步进行: 实现“一趟插入排序”可分三步进行: 三步进行 1.在 有序区 中查找 R[i] 的插入位置, . 的插入位置, 2.记录后移一个位置; .记录后移一个位置; 3.将 R[i] 插入(复制)到 相应 的位置上。 . 插入(复制) 的位置上。
第8页
直接插入排序
R0 初始状态 i =2 i =3 i =4 i =5 76 38
49 } // InsertSort 7趟 i =6 13 13 38 49 65 76 97 27 49 排序 排序过程: 个记录看成是一个有序子序列, 排序过程:先将序列中第 1 个记录看成是一个有序子序列, i =7 27 13 27 38 49 65 76 97 49 个记录开始,逐个进行插入,直至整个序列有序。 然后从第 2 个记录开始,逐个进行插入,直至整个序列有序。 i =8 49 13 27 38 49 49 65 76 97
数据结构(C++语言版)
第1页
目 录
1 2 3 3 4 3 5 3 6 3
第2页
排序的基本概念 插入类排序 交换类排序 选择类排序 归并排序 小结
概念
排序:将数据元素的一个任意序列,重新排列成一个按关键 排序:将数据元素的一个任意序列,重新排列成一个按关键 字有序的序列 的序列。 字有序的序列。 R1, R2, R3, R4, R5, R6, R7, R8 例:将关键字序列:52, 49, 80, 36, 14, 58, 61, 23 将关键字序列: K1, K2, K3, K4, K5, K6, K7, K8 Kp1 ≤Kp2 ≤Kp3 ≤Kp4 ≤Kp5 ≤ Kp6 ≤Kp7 ≤Kp8 调整为:14, 23, 36, 49, 调整为: Rp1, Rp2, Rp3, Rp4, 52, 58, Rp5, Rp6, 61 , 80 Rp7, Rp8

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。

二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。

具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。

2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。

具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。

3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。

具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。

4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。

具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。

5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。

具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。

数据结构chapter_10

数据结构chapter_10

typedef struct { //定义每个记录 数据元素) 定义每个记录( //定义每个记录(数据元素)的结构 KeyType key ; //关键字 //关键字 InfoType otherinfo; //其它数据项 //其它数据项 }RedType; //记录类型 //记录类型 typedef struct { //定义顺序表 定义顺序表L //定义顺序表L的结构 RecordType r [ MAXSIZE +1 ]; //存储顺序表的向量 //存储顺序表的向量 //r[0] r[0]一般作哨兵或缓冲区 //r[0]一般作哨兵或缓冲区 int length ; //顺序表的长度 //顺序表的长度 }SqList; //顺序表类型 //顺序表类型
void BInsertSort (SqList &L) {
// 对顺序表 作折半插入排序 对顺序表L作折半插入排序 for ( i=2; i<=L.length; ++i ) { L.r[0] = L.r[i]; // 将L.r[i]暂存到 暂存到L.r[0] 暂存到 low = 1; high = i-1; while (low<=high) { // 在r[low..high]中折半查找有序插入的位置 中折半查找有序插入的位置 m = (low+high)/2; // 折半 if (L.r[0].key < L.r[m].key) high = m-1; // 插入点在低半区 else low = m+1; // 插入点在高半区 } // while for ( j=i-1; j>=low; --j ) L.r[j+1] = L.r[j]; // 记录后移 // 插入 L.r[high+1] = L.r[0]; } } // BInsertSort

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。

在数组内部前半部为排好序的记录,后半部是未排好序的。

⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。

折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。

冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。

也不会改变相等记录的相对位置。

2-路归并排序:将两个有序表合并成⼀个有序表。

每次划分的两个⼦序列前后相邻。

合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。

因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。

基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。

分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。

(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。

经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。

但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。

这种跳跃式的移动导致该排序⽅法是不稳定的。

快速排序:改进的冒泡排序。

冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。

快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。

数据结构实验报告排序

数据结构实验报告排序

数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。

在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。

一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。

具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。

二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。

每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。

插入排序的实现可以使用一层循环和适当的元素交换。

三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。

通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。

四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。

然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。

五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。

归并排序的实现可以使用递归或迭代的方式。

六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。

我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。

通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。

2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

其次,说⼀下稳定性的好处。

排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。

基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。

另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。

回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。

(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。

⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。

所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。

那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。

⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。

(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。

当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。

自考数据结构02142-第七章

自考数据结构02142-第七章

二、归并排序 1.思想:(2-路归并排序)
① n个记录的表看成n个,长度为1的有序表 ② 两两归并成 n/2 个,长度为2的有序表(n为奇数,则 还有1个长为1的表) ③再两两归并为 n/2 /2 个,长度为4的有序表 . . . 再两两归并直至只剩1个,长度为n的有序表;
共log2n 趟
2. 例:
二、快速排序★
1.基本思想:通过分部排序完成整个表的排 序;
首先取第一个记录,将之与表中其余记录比较并交换,从而将 它放到记录的正确的最终位置,使记录表分成两部分{其一(左边的) 诸记录的关键字均小于它;其二(右边的)诸记录的关键字均大于 它};然后对这两部分重新执行上述过程,依此类推,直至排序完毕。
7.5 归并排序
一、有序序列的合并(两个有序表归并成一个有 序表) 1. 思想:比较各个子序列的第一个记录的 键值,最小的一个就是排序后序列的第一个 记录。取出这个记录,继续比较各子序列现 有的第一个记录的键值,便可找出排序后的 第二个记录。如此继续下去,最终可以得到 排序结果。 2. 两个有序表归并算法 (见P199)
▲排序类型——
内部排序:全部数据存于内存;
排序过程
外部排序:需要对外村进行访问的
内部排序
按方法分
插入排序 交换排序 选择排序 归并排序
▲排序文件的物理表示:数组表示 #define n 100 /*序列中待排序记录的总数*/ typedef struct { int key; /*关键字项*/ anytype otheritem ; /*其他数据项*/ }records; typedef records list[n+1]; list r; r[0] r[1] r[2]….r[n] r[i].key——第i个记录的关键字 ▲排序指标(排序算法分析): 存储空间-空间复杂度 比较次数-时间复杂度

数据结构 排序

数据结构 排序
数据对象全部存放在内存的排序;外排序是 指在排序期间全部对象个数太多,不能同时 存放在内存,必须根据排序过程的要求,不 断在内、外存之间移动的排序。

排序的时间开销: 排序的时间开销是
衡量算法好坏的最重要的标志。排序的 时间开销可用算法执行中的数据比较次 数与数据移动次数来衡量。
内排序分类
• 依不同原则 插入排序、交换排序、选择排序、归 并排序和计数排序等。 依所须工作量 简单排序---时间复杂度o(n2) 先进排序方法---时间复杂度o(n logn) 基数排序---时间复杂度o(d.n)
08
08 08 25*
i=3
21 21
i=4
21 16
25 21
25* 25
49
16
08 08
16
25* 49
16
21 16
25 21
25* 49 25
08
08
i=5
08
25* 49
直接插入排序的算法
typedef int SortData; void InsertSort ( SortData V[ ], int n ) {
希尔排序 (Shell Sort)

基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
//按非递减顺序对表进行排序

数据结构(C语言)第八章 排序

数据结构(C语言)第八章 排序

直接插入排序过程
0 21 1 25 2 49 3 4 25* 16 5 08 temp
i=1
0 21
21
1 25
25 25
2 49
49 49
3 4 25* 16
25* 16 25* 16
5 08
08 08
temp 25
i=2
21
49
21
25
25 25
49
49 25*
25* 16
25* 16 49 16
希尔排序 (Shell Sort)

基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
第八章 排序
概述
插入排序
交换排序 选择排序 归并排序 基数排序 各种内排方法比较
概 述

排序: 将一个数据元素的任意序列,重新
排列成一个按关键字有序的序列。

数据表(datalist): 它是待排序数据对象的
有限集合。

主关键字(key): 数据对象有多个属性域,
即多个数据成员组成, 其中有一个属性域可用 来区分对象, 作为排序依据,称为关键字。也 称为关键字。
直接插入排序 (Insert Sort)

基本思想 当插入第i (i 1) 个对象时, 前面的 R[0], R[1], …, R[i-1]已经排好序。这时, 用 R[i]的关键字与R[i-1], R[i-2], …的关键字顺 序进行比较, 找到插入位臵即将R[i]插入, 原 来位臵上的对象向后顺移。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据结构第十章 排序

数据结构第十章 排序
7
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].

数据结构 ds_8

数据结构 ds_8

大小插入到前面已排序表中的适当位置,直到全部插
入完为止。
8.2.1
8.2.2
直接插入排序
二分法插入排序
8.2.3
8.2.4
表插入排序
Shell排序
8.2.1
直接插入排序 Straight Insert Sort
假设待排序的n个记录{R0,R1,…,Rn-1}存放 在数组中,直接插入法在插入记录Ri(i=1,2…n-1) 时,记录集合被划分为两个区间[R0,Ri-1 ]和 [Ri,Rn-1 ],其中,前一个子区间已经排好序, 后一个子区间是当前未排序的部分,将排序码Ki 与Ki-1,Ki-2,…,K0依次比较,找出应该插入 的位置,将记录Ri插入,原位置的记录向后顺移。 直接插入排序采用顺序存储结构。
若将和此序列对应的一维数组看成是一个完全二 叉树,则堆的含义表明,完全二叉树中所有非终端结 点的值均不大于(或不小于)其左右孩子结点的值。 由此,若序列 {k1,k2,…,kn} 是堆,则堆顶元素必为 序列中n个元素的最小值(或最大值)。如果在输出 堆顶的最小值后,使得剩余n-1个元素的序列重又建 成一个堆,则得到次小值。反复执行便能得到所有记 录的有序序列,这个过程称为堆排序。 现在剩下两个问题: (1)如何由一个无序序列建成一个堆; (2)如何在输出堆顶元素后,调整剩余元素为 一个新的堆。
算法分析:
• 空间效率:只需要一个记录的辅助空间。 • 时间效率: 比较记录的次数: 最小: n-1次;最大: n(n-1)/2次 移动记录的次数: 最小: n-1 最大: (n+4)(n-1)/2
pjcj =(1/i)(j+1) =(i+1)/2
j=0 j=0
i-1
i-1

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。

二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。

实验中使用的操作系统为 Windows 10。

三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。

3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。

为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。

2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

划分为两个表 (i>=0)
~L[i] (第i+1次排序后) 无序表:L[i+1]~L[ len-1 ] (第i+1次排序后) 两个循环 大循环 for(i=0; i<len-1; i++)
确定比较的新元素L[i],min=i 小循环 for(j=i+1; j<len; j++) 确定当前的最小值 排序前无序表最小值下标为 min
直接插入排序
基本思想:将数据元素集合分成两部分,一部
分为有序区,一部分为无序区。每次从无序区 中取出一个数据元素,按其关键字大小将其插 入到有序区的适当位置上,直到全部数据元素 都插入到有序区中为止。
r1 r2
……
ri-1
ri
ri+1
……
rn
有序序列
r'1 r'2
……
无序序列
r'i-1 r'i ri+1
直接选择排序
初始 265 301 第1趟 76 301 第2趟 76 129 第3趟 76 129
第4趟 第5趟 第6趟 第7趟 第8趟 第9趟
76 76 76 76 76 76
129 129 129 129 129 129
751 751 751 265 265 265 265 265 265 265
863 863 863 863 863 937 863 751 742 694
742 742 742 742 742 742 937 863 751 742
694 694 694 694 694 694 694 937 863 751
76 76 76 76 76 76 76 76 937 863
439 439 439 439 439 439 439 439 439 937
插入排序:直接插入排序、折半插入排序、希尔 排序 交换排序:冒泡排序、快速排序 选择排序:简单选择排序、堆排序 归并排序:2-路归并排序 基数排序

排序算法的稳定性:假定在待排序的记录集中,
存在多个具有相同键值的记录,若经过排序, 这些记录的相对次序仍然保持不变,即在原序 列中,ki=kj且ri在rj之前,而在排序后的序列 中,ri仍在rj之前,则称这种排序算法是稳定 的;否则称为不稳定的。
129 129 129 129 76 76
265 265 265 265 129 129
751 751 751 301 301 301 301 301 265 265
129 129 129 751 751 751 742 694 301 301
937 937 937 937 937 863 751 742 694 439
我们后面讲的插入排序、交换排序、选择排序、
归并排序等都是指的内排序。
我们从以下几方面来学习每一种排序方法
思想
实现
时间性能
空间性能
稳定性 适用情况
插入排序
插入排序的基本思想是:将待排序表看做是左、右
两部分,其中左边为有序区,右边为无序区,整个 排序过程就是将右边无序区中的记录依次按关键字 大小逐个插入到左边有序区中,以构成新的有序区, 直到全部记录都排好序。 三种插入排序方法:直接插入排序、二分法插入排 序(也叫折半插入排序)和希尔排序。
初始 265 301 751 129 937 863 742 694 第1趟
76 439
第2趟 第3趟 第4趟 第5趟 第6趟 第7趟 第8趟 第9趟
直接插入排序
初始 265 301 第1趟 265 301 第2趟 265 301 第3趟 129 265
第4趟 第5趟 第6趟 第7趟 第8趟 第9趟
假定被排序的数据是由一组记录组成的表,而记录则由若干
个数据项组成,其中有一项可用来标识一个记录,称为关键 字项,该数据项的值称为关键字。关键字可用作排序算法的 依据。也称为排序码。
排序分类
按待排序记录所在位置
内部排序:待排序记录存放在内存 外部排序:排序过程中需对外存进行访问的排序

按排序依据原则
划分为两个表 (i>=1)
L[i-1] (第i次排序前) 无序表:L[ i ]~L[ len-1 ](第i次排序前) 两个循环 大循环 for(i=1;i<len;i++)
确定插入到有序表的新元素L[i] 小循环 for(j=i-1;j>=0;j--) 有序表排序 新元素L[i]插入在j+1位置上 j的起始位置是i-1,终止位置为-1或第一个符合 tmp.key >= L[j].key的位置

直接插入排序算法是一种稳定的排序算法。
直接插入排序算法简单、容易实现,适用于待
排序记录基本有序或待排序记录较少时。 当待排序的记录个数较多时,大量的比较和移 动操作使直接插入排序算法的效率降低。
其它类型插入排序
二分法插入排序 希尔排序 二分法插入排序和希尔排序的算法实现请参照

有序表:L[0]
直接选择排序性能分析
直接选择排序比较和移动的次数 无论记录序列的初始状态如何,比较次数均相同; 移动次数取决于待排记录序列的状态, 当待排记录处于“正序” 的情况时,所需进行的记 录移动的次数最少; 当待排记录处于“逆序” 的情况时,所需进行的记 录移动的次数最多; 算法评价 时间复杂度:T(n)=O(n² ) 空间复杂度:S(n)=O(1)只使用i、j、k和tmp 4个辅助 变量,与问题规模n无关。
……
rn
直接插入排序
需解决的关键问题:
(1)如何构造初始的有序序列? (2)如何查找待插入记录的插入位置?
要点:
把元素集合划分为有序区和无序区

初始时,第一个元素默认构成有序区
每趟排序过程中,将无序序列的第一个元素
插入到有序序列的适当位置,以达到扩大有 序区长度的目的。
查找的方向:将待插入元素对有序区按照从后向 前的顺序比较查找其插入位置; 查找的标准:对有序区从后向前查找第一个不大 于待插入元素的记录位置,即在查找插入位置过 程中,若待插入元素小于当前有序区元素,则将 当前有序区元素后移。
直接插入排序flash演示
void InsertSort(DataType L[],int len) struct Record { int i,j; { int data1; int data2; DataType tmp; int key; for(i=1;i<len;i++) }; typedef Record DataType; { //i代表排序次数 tmp=L[i]; ;//存放待插入元素 for(j=i-1;j>=0;j--)//有序表数据比较和移动 { if(tmp.key < L[j].key) // 关键字比较 L[j+1]=L[j]; // 记录移动 else break; } L[j+1]=tmp; //插入位置为j+1 } }
排序
排序的基本概念 直接插入排序 直接选择排序
排序基本概念
定义
排序是将无序的记录序列调整为有序记录序
列的一种操作。例如, 将下列记录序列 { 52, 49, 80, 36, 14, 58, 61, 23, 97, 75 } 调整为序列 { 14, 23, 36, 49, 52, 58, 61, 75, 80, 97 } 关键字(key)
课本
直接选择排序
基本思想:将数据元素序列分成有序区和无序区
两部分。每趟排序都从无序区中选取出关键字最 小的数据元素放在有序区的最后,直到全部数据 元素排序完毕。 要点: 把元素集合划分为有序区和无序区

初始时,有序区为空
每趟排序过程中,从无序区中选出关键字最小
的数据元素与无序区的第一个元素交换,以达 到扩大有序区长度的目的。
694 694 694 694 694 694 863 863 751 751
76 265 265 751 751 751 751 751 863 863
439 439 439 439 439 ห้องสมุดไป่ตู้37 937 937 937 937
小结
掌握排序算法的概念、种类
掌握直接插入排序、直接选择排序。
[97
49 49 49
76
[76 65 65
49
97 [97 76
65 ]
65 ] 76 ] [97 ]
直接选择排序flash演示
void SelectSort(DataType L[],int len) { int i, j, min; DataType tmp; //临时变量,用于元素交换 for(i=0;i<len-1;i++) { //i+1为排序次数 min=i; for(j=i+1;j<len;j++) //查找最小元素 if(L[j].key<L[min].key) min=j; if(min !=i) { tmp=L[i]; L[i]=L[min]; L[min]=tmp; } } }
排序算法的性能指标
1.

时间开销:
⑴比较:关键码之间的比较; ⑵移动:记录从一个位置移动到另一个位置。
2.

空间开销:
辅助存储空间
3.
算法的稳定性
内排序
定义
待排记录存放在随机存储器中进行(内存)
排序对象
针对关键字(排序码)的序列 排序算法缺省以顺序表为存储结构 非递减有序
练习:已知排序码{60,50,80,10,30,70},要求由
相关文档
最新文档