高中数学经典解题技巧
2024年高中数学解题技巧归纳与总结
2024年高中数学解题技巧归纳与总结一、代数运算技巧1. 因式分解:对于多项式的因式分解,可以运用相关的公式和技巧来进行简化和化简,例如二次差平方公式、完全平方公式等。
2. 分数运算:对于分数的运算,在分子分母上同时进行化简和约分,可以简化计算过程。
3. 方程求解:对于一元一次方程和一元二次方程等,可以通过移项、合并同类项、配方法等来求解,并且可以借助图象、函数性质等来验证解的正确性。
4. 不等式求解:对于一元一次不等式和一元二次不等式等,可以通过化简和变形来求解,并且可以借助函数图象等来验证解的正确性。
二、几何解题技巧1. 利用几何图形性质:对于平面几何和立体几何的解题,可以通过运用几何图形性质,如平行线的性质、三角形的性质、圆的性质等来推导和解题。
2. 分析几何关系:对于几何题目中的给定条件,可以通过分析几何图形的相关关系,如相似关系、垂直关系、共线关系等来解题,并且可以通过构造辅助线、利用等距变换等来推导和证明。
3. 利用比例关系:对于比例题目,可以通过利用比例的性质,如比例的乘法性质、比例的倒数性质等来推导和解题。
三、函数与图像技巧1. 函数图像的性质:对于函数图像题目,可以通过利用函数图像的性质,如对称性、单调性、周期性等来推导和解题。
2. 图像的平移和伸缩:对于函数图像的平移和伸缩题目,可以利用平移和伸缩的性质来求解,并且可以借助图像和方程等来验证解的正确性。
3. 利用函数性质:对于函数的性质题目,可以通过运用函数的定义和性质,如函数的奇偶性、函数的连续性等来解题,并且可以借助图象和推导等来验证解的正确性。
四、概率与统计技巧1. 概率的计算:对于概率题目,可以通过利用概率的基本定义和性质,如加法定理、乘法定理等来计算,并且可以借助频率和样本空间等来验证结果的可靠性。
2. 统计的分析:对于统计题目,可以通过利用抽样调查和数据分析的方法,如频数分布、频率分布等来进行统计,并且可以借助图表和统计性质等来解题和验证。
高中数学解答题8个答题模板与做大题的方法
高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。
本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。
一、直接套公式有些题目只需要把已知条件代入公式求解即可。
例如:已知正方形的一条对角线长度为10,求正方形面积。
解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。
二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。
例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。
解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。
解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。
四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。
解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。
五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。
解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学解题的典型方法与技巧
高中数学解题的典型方法与技巧1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、解某些复杂的特型方程要用到换元法。
换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:①设②列③解④写6、复杂代数等式条件的使用技巧:右边化为零,左边变形。
10、代数式求值的方法有:①直接代入法②化简代入法③适当变形法(和积代入法)。
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。
11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。
解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解②根据需要讨论③分类写出结论。
17、一元二次不等式的解法:一元二次不等式可以用因式分解法求解。
简便的实用解法是根据“三个二次”间的关系,利用二次函数图像去解。
具体步骤如下:二次系数化为正→判别且求根→画出示意图→解集横轴中18、一元二次方程根的讨论:一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数图像去解。
一般思路:题意→二次函数图像→不等式组(a的符号、△的情况、对称轴的位置、区间端点函数值的符号)。
高中数学解题方法与技巧
高中数学解题方法与技巧高中数学是一门重要而复杂的学科,它不仅在高中数学考试中占有重要的比例,同时也是许多高考和各类外部考试的必要组成部分。
为了帮助学生在数学课堂中取得更好的成绩,下面将介绍一些高中数学解题方法与技巧。
一、问题分解法在解决复杂问题时,问题分解法是非常有用的一种方法。
这种方法的基本思路是,将问题按照各个部分进行分解,分别考虑每个部分,然后将所有的结果合并起来得到终极结果。
例如,在解决题目“一支船航行了一段距离之后返回原点,它来回所用的时间是8小时,来回的速度比为3:2,求船航行了多少距离?”时,可以将问题分解成为若干个小问题,如求往返的时间、速度比、来回的距离等等。
通过逐一解决这些小问题,最终得到整个问题的答案。
二、画图法画图法是解决高中数学问题的另一种重要方法。
它的基本思路是,在纸上画出与问题相应的几何图形,然后通过观察或推导得到问题的解答。
例如,在解决问题“一个长方形的周长为20,它的面积为16,求它的长和宽”时,我们可以通过画出长方形的图形来帮助我们理解和解决这个问题。
图中可以用x和y代替长和宽,然后根据周长和面积的定义式列出方程,最后求解x和y的值。
三、化繁为简法化繁为简法是另一种非常实用的高中数学解题方法。
它的基本思路是,将复杂问题简化成为容易解决的问题,然后逐步加以推导和扩展,最终得到原始问题的解决方案。
例如,在解决问题“证明勾股定理”时,可以先使用勾股定理来证明一个简单的三角形,然后逐步加以推导和扩展,最终得到原始问题的解决方案。
这样的解题方法可以帮助我们理解数学原理,提高我们的数学思维能力。
四、运用辅助工具的方法现代技术的发展使得数学解题不再仅限于传统的纸笔计算。
可以使用图形计算机软件、计算器、手机APP应用程序等现代化工具来辅助解题。
例如,在求解三角函数时,我们可以使用特定的计算器或手机APP来得到计算结果。
这些辅助工具可以缩短解题时间,减少计算错误,提高解题效率。
高中数学52个秒杀技巧
高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。
以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。
2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。
3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。
4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。
5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。
6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。
7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。
8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。
9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。
10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。
以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。
这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学21种解题方法及例题
高中数学21种解题方法及例题高中数学是一门很重要的学科,也是很多学生觉得困难的学科之一。
在解题的过程中,学生通常需要掌握一些解题方法和技巧。
下面我将介绍高中数学中常用的21种解题方法,并给出相应的例题。
1.立体几何解题方法:首先根据题目要求,画出几何图形;然后根据图形的特点,运用相应的几何定理和计算公式,推导出求解所需的等式或关系式;最后代入数据进行计算。
例题:已知正方体的体积是64立方厘米,求正方体的边长。
2.二次函数解题方法:首先确定二次函数的类型,如抛物线开口方向等;然后根据题目要求,列出方程或不等式;最后解方程或不等式,求解出未知数。
例题:已知二次函数y=ax²+bx+c的图像经过点(-1, 2)和(2, 5),且在x=1处取得最小值2,求a、b、c的值。
3.反证法解题方法:假设所要证明的结论不成立,推导出与已知条件矛盾的结论,从而证明假设不成立,即所要证明的结论成立。
例题:证明根号2是无理数。
4.分析法解题方法:根据题目所给的条件,逐步分析问题,提取并利用条件之间的关系,推导出所要求的结论。
例题:在等腰梯形ABCD中,AB∥CD,AC和BD交于点O,设∠ACD=m,求∠BOD的度数。
5.数字特征解题法:根据题目要求,进行分析,找出问题中的数字特征,并利用特征进行计算或推导。
例题:设a,b,c均为正数,且满足等式a+b+c=1,求最大值3a²+6b+9c²。
6.整体与部分解题方法:把题目所给的整体看成若干个部分,通过对部分的分析和计算,得到整体的结论。
例题:某数的20%是30,求这个数。
7.函数与方程解题方法:根据题目要求,根据函数或方程的性质和变化规律,列出方程或不等式,最后求解未知数。
例题:已知函数f(x)=ax²+bx+c与y轴交于点A,与曲线y=x²交于点B和C,且B(1, 1),求方程f(x)=0的两个根的和的倒数。
8.逐次逼近法解题方法:通过逐步逼近,不断缩小求解范围,最终得到所要求解的值。
高中数学50个解题小技巧
高中数学 50 个解题小技巧解题要讲究方式方法,考试才能轻松得高分,下面就是小编给大家带来的高中数学 50 个解题小技巧,希望大家喜欢!1 . 适用条件[直线过焦点],必有 ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。
x 为分离比,必须大于 1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若 f(x)=-f(x+k),则 T=2k ; (2)若 f(x)=m/(x+k) (m 不为 0),则 T=2k ; (3) 若 f(x)=f(x+k)+f(x-k),则 T=6k。
注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派 x 相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在 R 上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为 x= (a+b)/2(2) 函数 y=f(a+x)与 y=f(b-x)的图像关于 x= (b-a)/2 对称; (3)若 f(a+x)+f(a- x)=2b,则 f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于 R 上的奇函数有 f(0)=0; (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S 奇=na 中,例如 S13=13a7(13 和 7 为下角标); (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述 2 中各项在公比不为负一时成等比,在 q=-1 时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求 q6 . 数列的终极利器,特征根方程首先介绍公式:对于 an+1=pan+q(n+1 为下角标,n 为下角标),a1 已知,那么特征根 x=q/(1-p),则数列通项公式为 an= (a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
高中数学解题方法大全
高中数学解题方法大全一、代数解题方法在高中数学中,代数是一个重要的部分,下面介绍几种常用的代数解题方法。
1. 一元一次方程解题方法一元一次方程是指只含有一个未知数的一次方程。
解一元一次方程的常用方法包括等式两边相等原则、加减消去法和代入法等。
例如,解方程2x + 3 = 7:首先将方程转化为等式两边相等的形式:2x + 3 - 3 = 7 - 3,得到2x = 4;然后将方程化简为x = 2的形式,即解出未知数x的值。
2. 一元二次方程解题方法一元二次方程是指含有一个未知数的二次方程。
解一元二次方程的常用方法包括配方法、求根公式和完成平方等。
例如,解方程x^2 + 2x + 1 = 0:首先使用配方法将方程化简为(x + 1)^2 = 0;然后求出方程的平方根,得到x + 1 = 0,进而解得x = -1。
3. 不等式解题方法不等式是数学中常见的表示大小关系的符号。
解不等式的常用方法包括图像法、代数法和区间法等。
例如,解不等式3x + 4 > 10:首先将不等式转化为相等的形式:3x + 4 - 4 > 10 - 4,得到3x > 6;然后将不等式化简为x > 2的形式,即求出未知数x的取值范围。
二、几何解题方法几何是高中数学的重要内容,下面介绍几种常用的几何解题方法。
1. 直角三角形解题方法直角三角形是一种特殊的三角形,解直角三角形的常用方法包括勾股定理、正弦定理和余弦定理等。
例如,已知直角三角形的两条直角边长分别为3和4,求斜边长:使用勾股定理,即斜边的平方等于两直角边平方和,得到斜边长为5。
2. 平行线与三角形解题方法平行线与三角形的关系在高中几何中经常出现,解平行线与三角形的常用方法包括等角定理和比例定理等。
例如,已知两条平行线l和m,AB是l上的一点,CD是m上的一点,AC和BD相交于E,证明三角形AEC与三角形BED相似:使用等角定理,证明∠DAE = ∠CBE,从而得出三角形AEC与三角形BED相似。
高中数学解题方法与技巧 必背公式总结
高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.在学习带参数的初等函数时,要抓住无论参数如何变化,有些性质不变的特点。
如函数的不动点,二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4.在常数建立问题中,利用二次函数的图像性质,灵活运用函数闭区间上的最大值和分类讨论的思想(分类讨论中要注意不要重复或遗漏),可以转化为极大值问题或二次函数的常数建立问题。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7.求参数的值域,要建立关于参数的不等式或方程,利用函数的值域或定义或求解不等式。
在转换公式的过程中,应优先考虑分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12.圆锥曲线的题目应优先考虑它们的定义。
如果直线与圆锥曲线相交的问题与弦的中点有关,则选择设定而不是求点差的方法,维耶塔定理公式的方法与弦的中点无关。
(使用维耶塔定理时,首先要考虑二次函数方程是否有根,即二次函数的判别式。
).13.解曲线方程的问题,如果知道曲线的形状,可以选择待定系数法。
如果不知道曲线的形状,采用的步骤是建立系统,设置点,列表化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
高中数学的解题技巧(三篇)
高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
高中数学21种解题方法及例题
高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。
掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。
本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。
【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。
2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。
3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。
【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。
5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。
6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。
【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。
8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。
9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。
【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。
11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。
12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。
【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。
14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。
高中数学解题技巧方法
高中数学解题技巧方法高中数学解题技巧方法数学是一切学科的基础,也是所有学科中分值较高的,如果能学好数学,就能帮助我们中高考分值提高很多。
下面是小编为大家整理的高中数学解题技巧方法,欢迎参考~1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的'。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
高中数学答题技巧有哪些_解题方法
高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。
高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。
选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
数学高中解题技巧
数学高中解题技巧
在高中数学中,掌握解题技巧是非常重要的。
以下是一些常用的解题技巧:
1. 审题技巧
审题是解题的基础。
仔细阅读题目,弄清楚题目中的条件和要求,以及涉及的概念和知识点。
对于复杂的题目,可以画出图表或用符号标记,以帮助更好地理解。
2. 代数解题技巧
代数是数学中常用的方法,包括方程、函数、不等式等。
解题时要注意变量的符号和取值范围,以及函数图像和性质的应用。
对于方程,可以运用公式或计算方法求解,注意计算精度和速度。
3. 几何解题技巧
几何是数学中形象思维的方法。
解题时要注意图形的形状、大小、位置关系等特征,以及与代数方程的联系。
对于复杂的图形,可以分解成简单的图形或利用对称性进行分析。
4. 概率解题技巧
概率是数学中研究随机现象的方法。
解题时要注意事件的独立性和互斥性,以及概率的计算方法和分布规律。
对于复杂的事件,可以运用表格或树状图进行分析和计算。
5. 归纳推理解题技巧
归纳推理是一种常用的推理方法,适用于探索和发现新的规律和性质。
解题时要注意观察和分析数据的变化规律,以及与已知条件的
联系。
对于具有相似性的问题,可以运用类比法进行归纳推理。
总之,在高中数学中,掌握解题技巧是非常重要的。
通过不断练习和实践,可以提高自己的解题能力和思维水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三角变换与解三角形”的技巧性应用湖南津市一中 周毅三角变换与解三角形是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。
因此,我们特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能起到抛砖引玉的作用。
一、三角变换及求值考情聚焦:1.利用两角和差的三角函数公式进行三角变换、求值是高考必考内容。
2.该类问题出题背景选择面广,解答题中易出现与新知识的交汇题。
3.该类题目在选择、填空、解答题中都有可能出现,属中、低档题。
解题技巧: 1.在涉及两角和与差的三角函数公式的应用时,常用到如下变形(1)21sin (sin cos )22ααα±=±; (2)角的变换()βααβ=--;(3)sin cos )a b θθθϕ+=+。
2.利用两角和与差的三角函数公式可解决求值求角问题,常见有以下三种类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角。
例1:已知向量)2,1(),cos ,(sin -==n A A m ,且0=⋅n m(Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域解析:(Ⅰ)由题意得m ·n=sinA-2cosA=0,因为cosA ≠0,所以tanA=2.(Ⅱ)由(Ⅰ)知tanA=2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-.当1sin 2x =时,f(x)有最大值32,当sinx=-1时,f(x)有最小值-3所以所求函数f(x)的值域是33,.2⎡⎤-⎢⎥⎣⎦ 二、正、余弦定理的应用解题技巧:1.在三角形中考查三角函数式变换,是近几年高考的热点,它是在新的载体上进行的三角变换,因此要时刻注意它重要性:一是作为三角形问题,它必然要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化,有利于发现解决问题的思路;其二,它毕竟是三角形变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”,即“统一角、统一函数、统一结构”,是使问题获得解决的突破口。
2.在解三角形时,三角形内角的正弦值一定为正,但该角不一定是锐角,也可能为钝角(或直角),这往往造成有两解,应注意分类讨论,但三角形内角的余弦为正,该角一定为锐角,且有惟一解,因此,在解三角形中,若有求角问题,应尽量避免求正弦值。
例2:(2010·辽宁高考理科·T17)在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.【命题立意】考查了正弦定理,余弦定理,考查了三角函数的恒等变换,三角函数的最值。
【思路点拨】(I )根据正统定理将已知条件中角的正弦化成边,得到边的关系,再由余弦定理求角(II )由(I )知角C =60°-B 代入sinB+sinC 中,看作关于角B 的函数,进而求出最值【规范解答】(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c =++ 由余弦定理得 2222o s a b c b c A =+- 故1cos 2A =-,A=120° (Ⅱ)由(Ⅰ)得: sin sin sin sin(60)BC B B +=+︒-1sin 2sin(60)B B B =+=︒+ 故当B =30°时,sinB+sinC 取得最大值1。
【方法技巧】(1)利用正弦定理,实现角的正弦化为边时只能是用a 替换sinA ,用b 替换sinB,用c 替换sinC 。
sinA,sinB,sinC 的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分。
(2)以三角形为背景的题目,要注意三角形的内角和定理的使用。
象本例中B+C =60°三、三角函数的实际应用三角函数的实际问题往往可以通过建立三角函数的数学模型,通过对三角函数问题的研究,达到对实际问题解决的目的。
我们可以在实际问题中通过对三角形的边角关系的研究得到数学模型。
例3:(2010·江苏高考·T17)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。
(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。
若电视塔的实际高度为125m ,试问d 为多少时,α-β最大? 【命题立意】本题主要考查解三角形的知识、两角差的正切及不等式的应用。
【思路点拨】(1)分别利用,,H αβ表示AB 、AD 、BD ,然后利用AD —AB=DB 求解;(2)利用基本不等式求解.【规范解答】(1)tan tan H H AD AD ββ=⇒=,同理:tan H AB α=,tan h BD β=。
AD —AB=DB ,故得tan tan tan H H h βαβ-=,解得:tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--。
因此,算出的电视塔的高度H 是124m 。
(2)由题设知d AB =,得tan ,tan H H h H h d AD DB dαβ-====, 2tan tan tan()()1tan tan ()1H H h hd h d d H H h H H h d H H h d d d dαβαβαβ----====--+⋅+-+⋅+()H H h d d -+≥,(当且仅当d 取等号)故当d =tan()αβ-最大。
因为02πβα<<<,则02παβ<-<,由t a n y x =的单调性可知:当d =α-β最大。
故所求的d 是m 。
例4.(2010·福建高考文科·T2)计算2012sin 22.5-的结果等于( )A.12B.2C.3D.2【命题立意】本题考查利用余弦的倍角公式的逆用,即降幂公式,并进行三角的化简求值。
【思路点拨】 直接套用倍角公式的逆用公式,即降幂公式即可。
【规范解答】选B ,()()20012sin 22.5cos 452-==。
【方法技巧】对于三角公式的学习,要注意灵活掌握其变形公式,才能进行灵活的恒等变换。
如倍角公式:sin 2x 2sin x cos x =⋅,2222cos 2x 12sin x 2cos x 1cos x sin x=-=-=-的逆用公式为“降幂公式”,即为1sin x cos x sin 2x 2⋅=,221cos 2x 1cos 2x sin x ,cos x 22-+==,在三角函数的恒等变形中,降幂公式的起着重要的作用。
例5.(2010 ∙海南宁夏高考∙理科T16)在ABC ∆中,D 为边BC 上一点,BD=12DC,ADB ∠=120°,AD=2,若ADC ∆的面积为3BAC ∠= . 【命题立意】本题主要考查了余弦定理及其推论的综合应用.【思路点拨】利用三角形中的余弦定理极其推论。
列出边与角满足的关系式求解.【规范解答】设BD x =,则2CD x =,由ADC ∆的面积为31sin 6032CD AD = 1x =,由余弦定理可知2222cos AB AD BD AD BD ADB =+-∠ 6=,所以AB =2222cos AC AD DC AD DC ADC =+-∠ 24=-1)AC =由222cos 2AB AC BC BAC AB AC+-∠= ,及1),1)AB AC BC == 可求得60BAC ∠=【答案】60°【方法技巧】熟练三角形中隐含的角的关系,利用余弦定理或正弦定理找边与角的关系,列出等式求解.例6.(2010·天津高考理科·T7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A= ( )(A )030 (B )060 (C )0120 (D )0150【命题立意】考查三角形的有关性质、正弦定理、余弦定理以及分析问题、解决问题的能力。
【思路点拨】根据正、余弦定理将边角互化。
【规范解答】选A ,根据正弦定理及sin C B =得:c =2222222()cos 2222b c a c a c c A bc bc bc +---==== , 0000180,30A A <∴= 。
【方法技巧】根据所给边角关系,选择使用正弦定理或余弦定理,将三角形的边转化为角。
例7.(2010·天津高考理科·T17)已知函数2()cos 2cos 1()f x x x x x R =+-∈ (Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (Ⅱ)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值。
【命题立意】本小题主要考查二倍角的正弦与余弦、两角和的正弦公式、函数sin()y A x ωϕ=+的性质、同角三角函数的基本关系、两角差的余弦等基础知识,考查基本运算能力。
【思路点拨】化成一个角的三角函数的形式;变角002266x x ππ⎛⎫=+- ⎪⎝⎭,【规范解答】(1)由2()cos 2cos 1f x x x x =+-,得2()cos )(2cos 1)2cos 22sin(2)6f x x x x x x x π=+-=+=+ 所以函数()f x 的最小正周期为22T ππ== 因为()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数,又 (0)1,2,162f f f ππ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-1 (Ⅱ)由(1)可知00()2sin 26f x x π⎛⎫=+ ⎪⎝⎭ 又因为06()5f x =,所以03sin 265x π⎛⎫+= ⎪⎝⎭ 由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦从而04cos 265x π⎛⎫+==- ⎪⎝⎭ 所以003co 6x x π⎡⎛=+ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦。