中考数学勾股定理练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:
①BD =CE ,
②BD ⊥CE ,
③∠ACE +∠DBC=30°,
④()2222BE AD AB =+.
其中,正确的个数是( ) A .1 B .2 C .3
D .4 2.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿
射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )
A .5
B .8
C .254
D .258
3.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )
A .47
B .62
C .79
D .98
4.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( )
A .32
B .213
C .5
D .6
5.已知,等边三角形ΔABC 中,边长为2,则面积为( )
A .1
B .2
C .2
D .3
6.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A .3
B .5
C .4.2
D .4
7.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )
A .9
B .10
C .326+
D .12
8.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形
B .如果∠A :∠B :∠
C =1:2:3,那么△ABC 是直角三角形
C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形
D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°
9.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,
10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )
A .3尺
B .4.2尺
C .5尺
D .4尺
10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )
A .332cm
B .4cm
C .32cm
D .6cm
二、填空题
11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .
12.如图,在△
中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.
13.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____.
14.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .
15.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知
BC=8,OB=102,则另一直角边AB 的长为__________.
16.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.
18.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.
19.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52ABCD 的面积是_______.
20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.