完整的计量经济学 计量经济学第六章 异方差PPT课件

合集下载

第六章异方差性

第六章异方差性

n
xi2
2 i
Var(ˆ1)
i 1 n
( xi2 )2
i 1
(6-3)
3.基于OLS估计的各种统计检验非有效
1)t统计量 不再服从t分布; 3)F 统计量也不再服从F分布;
4)LM(拉格朗日乘数检验)统计量也不再有渐近 2 分布。
总而言之,在异方差情况下,我们建立在高斯马尔科夫定理 基础上的用来检验各种假设的统计量都不再是有效的, OLS估计量不再是最佳线性无偏估计量。
图形表示



Y

X
异方差性是指模型违反古典假定中的同方差性, 即各残差项的方差并非相等。
一般地,由于数据观测质量、数据异常值、某些 经济变化的特性、模型设定形式的偏误等原因, 导致了异方差的出现。
主要原因往往是重要变量的遗漏,所以很多情况 下,异方差表现为残差方差随着某个(未纳入模 型的)解释变量的变化而变化。
一、图示检验法 二、帕克(Park)检验与戈里瑟(Gleiser)检验 三、G-Q(Goldfeld-Quandt)检验 四、F检验 五、拉格朗日乘子检验 六、怀特检验
一、图示检验法
(一)相关图形分析
方差描述的是随机变量取值的(与其均值的)离散程度。
u 因为被解释变量 Y与随机误差项 有相同的方差,所以利用
Var(i
|
X
i
)


2 i
这一异方差取决于 X i 的值。
该模型参数的OLS估计量可以写为
ˆ1
xi yi xi 2
在上述给定的异方差情况下,
容易证明 ˆ1的方差为
n
xi2
2 i
Var(ˆ1)
i 1 n

计量经济学课件-异方差

计量经济学课件-异方差
计量经济学课件-异方差
PPT文档演模板
2020/12/8
计量经济学课件-异方差
PPT文档演模课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
3rew
演讲完毕,谢谢听讲!
再见,see you again
PPT文档演模板
2020/12/8
计量经济学课件-异方差

计量经济学第六章-PPT课件

计量经济学第六章-PPT课件


若模型有三个未知数,将数据三等分,分别求出 每部分的和,代入方程,得到三个方程,解方程 组可获得三个参数的估计值 10
模型的参数估计(续1)

参数的非线性最小二乘估计(第五章)

非线性模型可利用NLS进行参数的精确估计
首先,用param命令对参数赋初值 其次,输入方程,对模型进行估计

11


考虑选择指数曲线模型
2000000
1500000
1000000
500000
0 72 74 76 78 80 Y 82 84 YF 86 88 90 92
9
模型的参数估计

参数的最小二乘估计
常用的各类趋势模型参数估计仍常用OLS 其中,自变量为时间t


参数的三和值法(第五章)
若选用有增长上限的曲线趋势模型,当增长 上限事先不能确定时,可采用三和值法 基本思想
1961-1981年我国搪瓷面盆销售量数据如下 根据其变化,试以Gompertz曲线作为预测模型

由于增长上限L事先无法得知,参数估计可用NLS 在精确估计前,选择三和值法获得参数的初值 模型取对数转换成修正指数曲线 t ˆ y log L b log a log t

计算各段和值 根据参数计算公式计算参数值

产品市场生命周期
进入期 成长期 成熟期 衰退期

20
产品生命周期分析(续1)
f(t)
饱和点
进 成长期 入 期
成熟期 后 期 前 期
衰退期
t
21
产品生命周期分析(续2)

产品市场生命周期的各个阶段与某些趋势 模型存在大致的对应关系

计量经济学--异方差性讲解

计量经济学--异方差性讲解

图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。

异方差、自相关、多重共线性比较(计量经济学)

异方差、自相关、多重共线性比较(计量经济学)
Glejser检验
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。

计量经济学:异方差性

计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。

虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。

本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。

第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。

这里的方差2σ度量的是随机误差项围绕其均值的分散程度。

由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。

设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。

由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。

所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。

通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。

计量经济学:异方差

计量经济学:异方差
设;否则接受原假设。
(1)布罗施-帕甘(Breusch-Pagan)检验
例4.2 使用BP检验对例4.1的回归模型进行异方差检验。 解:EViews中进行BP检验的结果如下:
从中可以看出,无论是使用F检验还是LM检验,在5%的显著性水 平下,均可拒绝随机误差项不存在异方差的原假设
2)怀特(White)检验
20000 X
30000
40000
(2)用 X e%i2 的散点图进行判断
第三节 异方差的检验
方法2:作X-ei2散点图
从图中可以看出,随着居 民可支配收入X的提高,随 机误差项平方ei2呈递增趋 势。表明随机误差项存在 递增型异方差。
ESQU
320000 280000 240000 200000 160000 120000
概 率 密 度
X1 X2 X3
同方差


Y

Y

E(Y|X) = β0 + β 1X
X
X1 X2 X3 异方差
E(Y|X) = β 0 + β 1X
X
异方差的矩阵表示


2 1
Var(u)


0 M
0

2 2
M
L L M
0
0

0
0
0
L

2 n

2、异方差的类型
•同方差性假定的意义是:每个ui围绕其零均值的离差,并不随解释 变量X的变化而变化,不论解释变量X的观测值是大还是小,每个ui
E(ˆ )(ˆ ) E ( X X )1 X Y ( X X )1 X Y
E ( X X )1 X X U ( X X )1 X X U

计量经济学第六章异方差性

计量经济学第六章异方差性

构建统一的异方差 性处理框架
未来可以构建一个统一的异方 差性处理框架,整合现有的处 理方法和技巧,为实际应用提 供更为全面和系统的指导。同 时,该框架还可以为计量经济 学的教学和研究提供便利。
THANK YOU
感谢聆听
03
异方差性对假设检验 的影响
异方差性可能导致假设检验中的t统计 量和F统计量失效,从而影响假设检 验的结论。
异方差性下的模型选择和评价
异方差性检验
在进行模型选择和评价之前,需要对异方差性进行检验。常用 的异方差性检验方法有怀特检验、布雷施-帕甘检验等。
模型选择
在存在异方差性的情况下,应选择能够处理异方差性的模型, 如加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
性质
异方差性违反了经典线性回归模型的同方差假设,可能导致参数 估计量的无偏性、有效性和一致性受到影响。
产生原因及影响
模型设定误差
模型遗漏了重要变量或函数形式设定错误。
数据采集问题
观测数据的误差或异常值。
产生原因及影响
• 经济现象本身:某些经济变量之间的关系可能随时间和空间的变化而变化,导致异方差性。
等级相关系数法
计算残差绝对值与解释变量之间的等 级相关系数,若显著则表明存在异方 差性。
Goldfeld-Quandt检验法
假设条件
该检验假设异方差性以解释变量的某个值为界,将样本分为两组,且两组的方差不同。
检验步骤
首先根据假设条件将样本分组,然后分别计算两组的残差平方和,最后构造F统计量进行假设检验。
05
异方差性在计量经济学模型中的应用
异方差性对模型设定的影响
01
异方差性可能导致参 数估计量的偏误
当存在异方差性时,普通最小二乘法 (OLS)的参数估计量可能不再具有无 偏性和一致性,从而导致估计结果的偏 误。

经典单方程计量经济学模型(异方差性)

经典单方程计量经济学模型(异方差性)

80%
适用范围
对数变换法适用于存在异方差性 的模型,尤其适用于解释变量和 被解释变量之间存在非线性关系 的情况。
04
异方差性与模型选择
异方差性与模型适用性
异方差性是指模型中误差项的 方差不为常数,而是随解释变 量的变化而变化。
在异方差性存在的情况下,经 典的单方程计量经济学模型可 能不再适用,因为模型假设误 差项的方差是恒定的。
为了使模型具有适用性,需要 选择能够处理异方差性的模型 ,例如广义最小二乘法、加权 最小二乘法等。
异方差性与模型预测能力
异方差性的存在会影响模型的预测能力,因为异方差性会导致模 型的残差不再独立同分布,从而影响模型的预测精度。
为了提高模型的预测能力,需要采取措施处理异方差性,例如使 用稳健的标准误、对误差项进行变换等。
在实践中,应该充分考虑异方差性的影响,采取适当 的措施进行修正,以提高模型的预测和推断能力。
02
异方差性的检验
图示检验法
残差图检验
通过绘制残差与拟合值的图形,观察残差的分布情况,判断是否 存在异方差性。如果残差随着拟合值的增加或减少而呈现有规律 的变化,则可能存在异方差性。
杠杆值图检验
将数据按照杠杆值(leverage)进行排序,并绘制杠杆值与残差的 图形。如果图形显示高杠杆值对应的点有异常的残差分布,则可能 存在异方差性。
经典单方程计量经济学模型(异 方差性)

CONTENCT

• 异方差性简介 • 异方差性的检验 • 异方差性的处理方法 • 异方差性与模型选择 • 经典单方程计量经济学模型中的异
方差性
01
异方差性简介
定义与特性
异方差性是指模型残差的方差不为常数,随着解释 变量的变化而变化。

计量经济学全册课件(完整)pptx

计量经济学全册课件(完整)pptx

预测与置信区间
阐述如何利用一元线性回归模型进行 预测,并给出预测值的置信区间,以 评估预测的不确定性。
2024/1/28
8
多元线性回归模型
模型设定与参数估计
介绍多元线性回归模型的基本形 式,解释多个自变量对因变量的 影响,以及最小二乘法在多元线 性回归中的应用。
模型的统计性质
探讨多元线性回归模型的统计性 质,包括回归系数的解释、拟合 优度的度量、多重共线性的诊断 与处理等。
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义 ,阐述最小二乘法(OLS)进行参数 估计的原理。
模型的统计性质
探讨一元线性回归模型的统计性质, 包括回归系数的解释、拟合优度的度 量(如R方)、回归系数的显著性检 验等。
贝叶斯计量经济学的定义
贝叶斯计量经济学是应用贝叶斯统计推断方法,对经济模 型进行参数估计、假设检验和预测的一门学科。
贝叶斯计量经济学的研究对象
贝叶斯计量经济学主要关注经济模型的参数估计和不确定 性问题,如线性回归模型、时间序列模型、面板数据模型 等。
贝叶斯计量经济学的研究方法
贝叶斯计量经济学的研究方法主要包括先验分布的设定、 后验分布的推导、马尔科夫链蒙特卡罗模拟(MCMC)等 。
介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
计量经济学模型估计
介绍如何在EViews中建立计量经济学 模型,进行参数估计、模型检验和预 测等操作。
24
Stata软件介绍及操作指南
Stata软件概述
Stata是一款流行的计量经济学软件,具有强大 的数据处理和统计分析功能。

异方差性检验 计量经济学 EVIEWS建模课件

异方差性检验 计量经济学 EVIEWS建模课件

G-Q检验的步骤:
①将n对样本观察值(Xi,Yi)按观察值Xi的大 小排队;
②将序列中间的c=n/4个观察值除去,并 将剩下的观察值划分为较小与较大的相 同的两个子样本,每个子样的样本容量 均为(n-c)/2;
③对每个子样分别进行OLS回归,并计算各自 的残差平方和∑esi12 与∑esi22 ;
计量经济学模型一旦出现异方差性,如果仍采用 OLS估计模型参数,会产生下列不良后果:
1.参数估计量非有效
OLS估计量仍然具有无偏性,但不具有有效 性。因为在有效性证明中利用了 E(εε’)=2I 。
而且,在大样本情况下,尽管参数估计量具 有一致性,但仍然不具有渐近有效性。
2. 变量的显著性检验失去意义
例如以绝对收入假设为理论假设、以截面数据
为样本建立居民消费函数: Ci=0+1Yi+εi
将居民按照收入等距离分成n组,取组平均数 为样本观测值。 • 一般情况下,居民收入服从正态分布:中等收 入组人数多,两端收入组人数少。而人数多的组 平均数的误差小,人数少的组平均数的误差大。 • 所以样本观测值的观测误差随着解释变量观测 值的不同而不同,往往引起异方差性。
异方差性的检验与修正分析
一、异方差性问题 二、异方差性检验 三、异方差的修正及案例 四、条件异方差模型的建立
⒉ 在同方差情况下: 异 方 差 的 图 示 在异方差情况下: 说 明 :
异方差时
同方差:i2 = 常数 f(Xi) 异方差:i2 = f(Xi)
⒊异方差的类型
异方差一般可归结为三种类型: (1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
变量的显著性检验中,构造了t统计量

《计量经济学》ppt课件

《计量经济学》ppt课件

04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型

计量经济学异方差精品PPT资料

计量经济学异方差精品PPT资料
随机误差项的方差并不随某一个解释变量观测值 的变化而呈规律性变化,呈现复杂型。
• 一般经验,对于采用截面数据作样本的 计量经济学问题,由于不同样本点上解
释变量以外的其他因素的差异较大,所 以往往存在异方差。
二、异方差性的后果 Consequences of Using OLS in the
Presence of Heteroskedasticity
V ar(i)E(i2)e ~ i2 最 好 在 大 样 本 条 件 下 (使 2用 .4 .7)
即 用 e ~ i2来 表 示 随 机 误 差 项 的 方 差 。
从而可进一步考察其与X的相关性及其具体的形式。
( 2 1 ) X - e ~ i 2 的 散 点 图 进 行 判 断
看是否形成一斜率为零的直线
问题在于如何获得随机误差项 (从总体带来的)的方差
• 问题在于如何获得随机误差项 (从总体带 WLS估计的Eviews软件的实现
以案例1为例:由于不知ei与Xi之间具体的函数关系。
i
来的)的方差 从而可进一步考察其与X的相关性及其具体的形式。
White1980年提出。 假设6:随机项满足正态分布
一般的处理方法:
2 任 意 选 择 c 个 中 间 观 测 值 略 去 . 经 验 表 明 , 略 去 数 目 c 的 大 小 , 大 约 相 当 于
样 本 观 测 值 个 数 的 1 .剩 下 的 n c 个 观 测 值 平 均 分 成 两 组 , 每 组 观 测 值 的 个 数 为 n c.
4
2
(3)对每个子样本分别进行OLS,并分别计算各自的残差平方和。
E
X
X
1
X
X
X
X

计量经济学解析ppt课件

计量经济学解析ppt课件
571图示检验法1相关图分析看是否存在明显的散点扩大缩小或复杂型趋势即不在一个固定的带型域中同方差递增异方差递减异方差先减后增同方差递增异方差递减异方差复杂型异方差594重复操作生成新变量e2令e2resid2残差的平方并与x以组群辅助族群的形式打开结果如左图所示
计量经济学解析
经济学院 邓嘉纬
编辑版pppt
编辑版pppt
37
6、共有样本38个,查T统计量分布表,自由度n=35,α=0.025, 得t=2.0301。可知x3,x4的t-statistic值不具有显著性,舍去。由 此得出下图结果。
编辑版pppt
38
(二)、残差分析(Residual )
1、以第三大点的国内消费函数为例,重复基础操作创建工作文件,命名 为“残差分析”,显示如左图所示。 2、如下创建方程,工具栏view→actual fitted residual(实际拟合残差分析) →actual fitted residual table(实际拟合残差分析表),显示如右图所示。
编辑版pppt
7
选择相应数据文件。在此,我们选择中国国家统计局2016年统计年鉴的313“支出法或内生产总值”作为本例数据,数据如右图所示。
编辑版pppt
8
数据导入后,按照相关变量关系设置变量x与y,在本例中,根据凯 恩斯消费函数y=α+βx,我们将消费设置为y,国内生产总值设置为x。
编辑版pppt
2
2.6093>2.093,所以数据显著存在。
编辑版pppt
53
由此可得辅助回归结果,如上图所示。所以一定存在正相关, 且递增的异方差。
编辑版pppt
54
(二)、异方差综合练习: (地区)可支配收入与交通通讯支出

计量经济学第六章 异方差-PPT精品文档

计量经济学第六章 异方差-PPT精品文档

关 于 变 量 的 显 著 性 检 验 中 , 构 造 了 统 计 量 t

( 2 . 4 . 6 )
在该统计量中包含有随机误差项共同的方差,并且有 t统计量服从自由度为(n-k-1)的t分布。如果出现了 异方差性,t检验就失去意义。 其它检验也类似。
3、模型的预测失效
一方面,由于上述后果,使得模型不具有良好 的统计性质; 另一方面,在预测值的置信区间中也包含有随 机误差项共同的方差2。 所以,当模型出现异方差性时,参数OLS估计 值的变异程度增大,从而造成对 Y的预测误差变 大,降低预测精度,预测功能失效。
•例如,以某一行业的企业为样本建立企业生产函 数模型
Yi=Ai1 Ki2 Li3eI
产出量为被解释变量,选择资本、劳动、技术等 投入要素为解释变量,那么每个企业所处的外部 环境对产出量的影响被包含在随机误差项中。 由于每个企业所处的外部环境对产出量的影响程 度不同,造成了随机误差项的异方差性。
i = 1 , 2 , … , n i = 1 , 2 , … , n
同 方 差 性 假 设 为
如 果 出r ( ) i i
i = 1 , 2 , … , n
即对于不同的样本点,随机误差项的方差不再是 常数,则认为出现了异方差性。
2、异方差的类型 • 同方差性假定的意义是指每个i围绕其零平均

xi ˆ E ( ( E ( 1) E 1) i ) 1 2 x i
(2 .4 .2 )
(2)不具备最小方差性
由于
xi ˆ ) E( ˆ ) 2 E( var( x 2 i ) 2 1 1 1 i E( xi i ) ( xi2 ) 2
2
2 i
(2.4.3)

《异方差及其处理》课件

《异方差及其处理》课件
效地处理异方差问题。
数据清洗与处理
数据预处理
在处理异方差问题之前,需要对数据进行预处理,包括缺失值填充 、异常值处理、数据标准化等,以保证数据的完整性和一致性。
数据转换
对于某些特定的数据分布,可以使用数据转换的方法来处理异方差 问题,如对数转换、平方根转换等。
数据分层
对于具有分层结构的数据,可以使用分层抽样或分层模型的方法来处 理异方差问题,以更好地拟合数据并提高预测精度。
在社会领域的应用
社会调查数据分析
在社会调查数据分析中,异方差性问题常见,如态度、观 点、行为等变量的分布往往存在异方差现象。
人口统计学研究
在人口统计学研究中,年龄、性别、教育程度等变量的分 布可能存在异方差性,需要进行异方差性检验和处理。
社会学研究
在社会学研究中,异方差性可能影响对群体特征、社会现 象等的理解和解释,需要进行异方差性检验和处理以确保 研究的准确性和可靠性。
预测误差
异方差的存在可能导致预 测误差增大,降低模型的 预测精度。
统计推断失效
异方差的存在可能导致模 型的统计推断失效,如置 信区间和假设检验的结果 不准确。
02
异方差的检验
图示检验法
残差图
通过绘制实际观测值与预测值的残差 ,观察其随解释变量变化的趋势,判 断是否存在异方差。
箱线图
利用箱线图展示不同解释变量取值下 的残差分布情况,通过比较箱子的宽 度和位置,判断异方差的存在。
倒数变换法
总结词
倒数变换法是一种处理异方差的方法, 通过将响应变量取倒数,可以减小异方 差的影响。
VS
详细描述
倒数变换法适用于因变量为连续型且呈偏 态分布的情况。通过对原始数据取倒数, 可以使数据更接近正态分布,从而减小异 方差的影响。在回归分析中,可以使用倒 数变换后的数据作为因变量进行回归分析 。

计量经济学第六章异方差性1

计量经济学第六章异方差性1


ki i ) =

k i2Var ( i ) =
∑ & (∑ x
& x i2σ i2
2 2 i )
σ
2

& x i2
即在同方差假设下的计算值,是 实际方差的有偏估计
回归系数的OLS估计仍是线性无偏估计量,但不再有效。回归系数的OLS估计 的置信区间以及通常的t和F检验无效。
二、异方差性的侦察
非正式方法:
i = 578 . 57 + 0 . 0119 sale
t = (0.8525) (2.0931)
i
R2 = 0.2150

i = 507.02 + 7.9270 salei
t = (-0.5032) (2. 3704) R2 = 0.2599

i = 2273.7 + 19925000(1 sale)i
注意: 注意 新方程的截矩项和 斜率系数与原方程 对调了
四、 未知时的异方差修正
(b)
Yi X 其中
i
2 σi
若E ( i2 )
= β( 1 1 X
i
= CX i
)+ β
2
注意:新方程是 注意 一个过原点回归
X
i
+
u
i i
(3)
X
改写成 Y i*
* Y i * = β 1 X 1*i + β 2 X 2 i + v i Yi 1 * = , X 1*i = , X 2i = X i X i

r 2 = 0 . 4783
同方差假设检验
1、Park检验
ln ei2 = 5.6877 + 0.7014 ln Salei se : (6.6877) (0.6033) t : (0.8577) (1.1626) r 2 = 0.0779
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一方面,由于上述后果,使得模型不具有良好的 统计性质;
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y的预 测误差变大,降低预测精度,预测功能失效。
14
三、异方差的发现和判断
检验思路: 由于异方差性就是相对于不同的解释变
量观测值,随机误差项具有不同的方差。 那么:
检验异方差性,也就是检验随机误差项 的方差与解释变量观测值之间的相关性及 其相关的“形式”。
ei21
i1
nc K1
2
i2
ei22
nc K1
2
ei21
i1
如果 F F ,误差项存在明显的递增异方差
性;
如果1FF,误差项没有明显的异方差性。
21
(二)戈德菲尔德-夸特检验
对于递减异方差性模型,检验的方法相似, 只要把前面构造的F统计量的分子分母互 换,就可以用同样的程序检验模型是否存 在递减型的异方差问题。
9
例:以某一行业的企业为样本建立企业生产函数模型
Yi=Ai1 Ki2 Li3ei
被解释变量:产出量Y 解释变量:资本K、劳动L、技术A,
那么:每个企业所处的外部环境对产出量的影响 被包含在随机误差项中。
每个企业所处的外部环境对产出量的影响程度不 同,造成了随机误差项的异方差性。
这时,随机误差项的方差并不随某一个解释变量 观测值的变化而呈规律性变化,呈现复杂型。
e22f Xj e
24
(四)怀特检验
怀特检验是通过建立辅助回归模型的方式来判断异方差的。 不妨设回归模型为三变量线性回归模型:
Y i01 X 1 i2 X 2 ii
怀特检验的具体步骤为:
(1)估计回归模型,得到每一个残差的平方
e
2 i
(2)估计辅助回归模型:
e i 2 0 1 X 1 i 2 X 2 i 3 X 1 2 i 4 X 2 2 i 5 X 1 i X 2 i i
11
异方差的危害
1、参数估计量非有效 OLS估计量仍然具有无偏性,但不具有 有效性
因为在有效性证明中利用了 E(’)=2I
而且,在大样本情况下,尽管参数估 计量具有一致性,但仍然不具有渐近有效 性。
12
2、变量的显著性检验失去意义
变量的显著性检验中,构造了t统计量
其他检验也是如此。
13
3、模型的预测失效
10
二、假性异方差
有些定式误差也会表现出异方差的特征
例:真实关系为 Y01X2 ,其中
满足线性回归模型所有假设,包括 Ei0
和 Vari2 。
如果误以为模型为 Y0 1 X,那么
V i E a i 2 r E i 0 0 1 X i 2 1 X i2
若记 A X i 0 0 1 X i 2 1 X i 则 V i a E i r A X i 2 2 A 2 X i
2可能减小。例如,有
i
精巧数据处理设备的银行,在他们对账户的每月或
每季收支说明书中,比之于没有这种设备的银行,
会出现更少的差错。
4.异方差还会异常值的出现而产生。
5.异方差还会因为模型的设定错误而产生。
7
案例分析
例:截面资料下研究居民家庭的储蓄行为
Yi=0+1Xi+i
Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支 配收入 高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较 小
2.随着收入的增长,人们有更多的备用收入,从而如何支 配他们的收入有更大的选择范围。因此,在作出储蓄对 收入的回归时,很可能发现,由于人们对其储蓄行为有 更司多比的之选于择已, 发展 i2定与型收的入公俱司增在。红因利此支,付以方增面长也为可导能向表的现公 更多的变异。
6
异方差产生的原因
3.随着数据采集技术的改进,
ΩVa随机误差项的方差不再是常
数,而互不相同,则认为出现了异方差性。
4
5
异方差产生的原因
普遍性:两类数据都有,横截面数据更多。 原因:
1.按照边错边改学习模型,人们在学习过程中,其行为误 差随时间而减少。在这种情形下,方差 i2会逐渐变小。 例如,随着打字练习小时数的增加,不仅平时打错的个 数而且打错的方差都有所下降。
但该方法的有效性还依赖于C的选择,还 有,当模型出现多于一个X变量时,就可 以按任意一个X变量的大小顺序将观测值 排列。
22
(三)戈里瑟检验
e
e
Xj
0
a
0
b
Xj
e
0
Xj
c
23
(三)戈里瑟检验
通常拟合 e 和 X j 之间的回归模型:
eXlj
根据图形中的分布选择
l 1,2,1或1 2
还可以拟合 e 2 和 X j 之间的回归模型
对于存在递增异方差模型,步骤:首先将样本按 X值的大小顺序将观测值排列,然后略去居中的C 个观测值,并将其余的(n-C)个观测值分成两组, 每组(n-C)/2个,分别对两个子样本进行回归, 并分别获得残差平方和,自由度都为(n-C)/2K-1。
20
(二)戈德菲尔德-夸特检验
计算统计量:
ei22
F i2
i的方差呈现单调递增型变化
8
例:以绝对收入假设为理论假设、以截面数据为样 本建立居民消费函数:
Ci 01Yii
将居民按照收入等距离分成n组,取组平均数为 样本观测值。 一般情况下,居民收入服从正态分布:中等收 入组人数多,两端收入组人数少。而人数多的组 平均数的误差小,人数少的组平均数的误差大。 所以样本观测值的观测误差随着解释变量观测 值的不同而不同,往往引起异方差性。
15
(一)残差序列分析 (二)戈德菲尔德-夸特检验 (三)戈里瑟检验 (四)怀特检验
16
(一)残差序列分析
(a)
e
i
X k
(b)
e
i
X k
17
(c)
e
i
X k
(d)
e
i
X k
18
(e)
e
i
X k
(f)
e
i
X k
19
(二)戈德菲尔德-夸特检验
戈德菲尔德-夸特检验是最常用的异方差专门检 验方法之一。这种方法适合于检验样本容量较大 的线性回归模型的递增或递减型异方差性。
第六章 异方差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
异方差
一、异方差及其影响 二、假性异方差 三、异方差的发现和判断 四、异方差的克服和处理
3
一、异方差及其影响
异方差可以表示为
Vairi2

12
22
相关文档
最新文档