山东交通学院线性代数期末

合集下载

线性代数 B 复习题

线性代数 B 复习题
山东交通学院继续教育学院
《线性代数》复习题(B)卷
一、单选题
1.按定义,四阶行列式有( )项
A.4B.8C.16D.24
答案:D
知识点:第一章
难度: 1
解析:行列式的定义
2.二阶行列式 ( )
A.2B.4C.3D.1
答案:A
知识点:第一章
难度: 1
解析:二阶行列式的对角线法则
3.行列式 等于( )
A.14B.21C.12D.8
6.设三阶方阵 的秩 =2,则其伴随矩阵 的秩为 =( )
A.0B.1C.2D.3
答案:B
知识点:第三章
难度:5
解析:矩阵A的伴随ቤተ መጻሕፍቲ ባይዱ阵 的秩
7.设 为 阶方阵, 均为 维列向量, ,则非齐次线性方程组 有解的充要条件是( )
A. B. C. D.不确定
答案:A
知识点:第三章
难度:2
解析:根据非齐次线性方程组解的结论来选择
答案:
知识点:第二章
难度:3
解析:
3.设 ,求 为何值时可使 等于:
(1) 1 ;(2) 2 ;(3) 3
答案:当k=1时,R(A)=1
当k=-2时,R(A)=2
当 且 时,R(A)=3
知识点:第三章
难度:3
解析:
(1)当k=1时,R(A)=1
(2)当k=-2时,R(A)=2
(3)当 且 时,R(A)=3
答案:B
知识点:第一章
难度: 2
解析:
4.设 为n阶方阵,且 ,则 =( )
A.-2B.-4C.4D.2
答案:A
知识点:第二章
难度: 2
解析:方阵的行列式性质

(完整word版)线性代数期末考试试卷+答案合集

(完整word版)线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

大一线性代数期末试卷试题附有答案.docx

大一线性代数期末试卷试题附有答案.docx

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _⋯⋯⋯⋯⋯⋯诚信应考 , 考试作弊将带来严重后果!⋯线性代数期末考试试卷及答案⋯⋯⋯号⋯注意事: 1.考前将密封内填写清楚;位⋯ 2.所有答案直接答在卷上( 或答上 ) ;座⋯3.考形式:开()卷;⋯4.本卷共五大,分100 分,考 120分。

题号一二三四五总分⋯⋯得分⋯评卷人⋯⋯⋯⋯一、(每小 2 分,共 40 分)。

⋯业⋯专⋯1.矩A为2 2矩阵, B为23矩阵 ,C为32矩阵,下列矩运算无意的是⋯⋯【】⋯⋯)⋯封A B.ABCC. BCAD.CAB⋯. BAC2答⋯+ E =0 ,其中 E是 n 位矩,必有【】2. n 方 A 足 A院不⋯A.矩 A 不是矩B. A=-EC. A=ED. det(A)=1⋯学内⋯⋯封⋯3. A n 方,且行列式det(A)= 1 ,det(-2A)=【】密⋯(⋯A. -2-2 n-2n⋯ B. C. D. 1⋯⋯4. A 3 方,且行列式det(A)=0,在 A的行向量中【】⋯⋯ A. 必存在一个行向量零向量⋯⋯ B. 必存在两个行向量,其分量成比例⋯C. 存在一个行向量,它是其它两个行向量的性合号⋯密D. 任意一个行向量都是其它两个行向量的性合学⋯⋯5.向量a1, a2,a3性无关,下列向量中性无关的是【】⋯⋯A.a1a2 , a2a3 , a3a1 B.a1, a2 ,2a13a2⋯C. a2,2a3,2a2a3a1- a3, a2 , a1⋯ D.⋯⋯名⋯6. 向量 (I):a1 ,, a m (m3)性无关的充分必要条件是【】姓⋯⋯⋯⋯⋯⋯A.(I)中任意一个向量都不能由其余m-1 个向量线性表出B.(I)中存在一个向量, 它不能由其余m-1 个向量线性表出C.(I)中任意两个向量线性无关D. 存在不全为零的常数k1,, k m ,使 k1 a1k m a m 07.设a为m n矩阵,则n元齐次线性方程组Ax 0存在非零解的充分必要条件是【】A.A的行向量组线性相关B. A 的列向量组线性相关C. A的行向量组线性无关D. A 的列向量组线性无关a1 x1a2 x2a3 x30 8. 设a i、b i均为非零常数(i =1, 2, 3),且齐次线性方程组b2 x2b3 x30b1 x1的基础解系含 2 个解向量,则必有【】a1a20 B.a1a20a1a2a3 D.a1 a3A.b3b1b2C.b2b3b1 b2b2b19. 方程组2 x1x2x31有解的充分必要的条件是【】x12x2x313 x13x22x3a1A. a=-3B. a=-2C. a=3D. a=110.设η1,η2,η3 是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是【】A. 可由η1,η2,η3线性表示的向量组B.与η 1,η2,η3 等秩的向量组C. η1-η2,η2-η3,η3-η1D.η1,η1-η3,η1-η2-η311.已知非齐次线性方程组的系数行列式为0,则【】A.方程组有无穷多解B.方程组可能无解,也可能有无穷多解C.方程组有唯一解或无穷多解D.方程组无解12.n阶方阵 A 相似于对角矩阵的充分必要条件是 A 有n 个【】A. 互不相同的特征值B.互不相同的特征向量C. 线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间n的子空间的是【】RA. {( a1, a2,, a n ) | a1a20}B.12n n i,) |a0}{( a ,a, aC. {( a1, a2,, a n ) | a i z, i 1,2,,n}D.i n1{( a1 ,a2 ,, a n ) |a i1}i 114. 若 2 阶方阵 A 相似于矩阵 B12 ,E 为 2 阶单位矩阵 , 则方阵 E – A 必相似于矩阵- 3【 】1 0 -10 0 - 1A.4B. - 4C.4D.11 - 2- 2 - 41 015. 若矩阵 A02a 正定 , 则实数 a 的取值范围是 【】0 a8A . a < 8B. a > 4C . a < -4D. -4 < a < 4二、填空题 (每小题 2 分,共 20 分)。

山东交通学院线性代数期末

山东交通学院线性代数期末
5.若矩阵 A = ( a1 , a2 ,L an ) 为正交矩阵,则内积 ai , a j = 得分 阅卷人 .
+ 3 A 有一个特征值等于
1 . 4
( )
1 , 2
(B)
2 ,
(C) 7 , (D)
三、计算(8 分)
二、单项选择题(每小题 3 分,共 15 分)

1.设 A 、 B 均为 n 阶矩阵,满足 AB = 0 ,则必有 ,
−1
理工科 07 级、专升本 08 级 、路专 07 级等
封 … … … … … … … … 线 … … … … … … … …
x1 + x2 = − a1 x +x =a 2 3 2 4.若线性方程组 有解,则常数 a1 、 a2 、 a3 、 a4 应满足条件 x3 + x4 = − a3 x4 + x1 = a4
山东交通学院期末考试008——2009 学年第 一 学期 08——20
得分 阅卷人
第 2 页
共 3 页
五、证明(10 分)
学号
设 α1 , α 2 , L , α n 是一组 n 维向量, 已知 n 维单位坐标向量 e1 , e2 , L , en 能由它们线性表示,
( ) (D) − m + n ; ( )
得分 阅卷人
一、填空题(每小题 3 分,共 15 分)
(A) m + n , (B) −( m + n) , (C) m − n ,
1.三阶行列式 D 中含有因子 a12 a21 的项是
1 2.设 A 为 3 阶矩阵,且 A = ,则 (2 A) −1 − 5 A* = , 2
T

山东交通学院线代作业纸及答案

山东交通学院线代作业纸及答案

第一章 行列式一、填空1. 按自然数从小到大为标准次序,则排列3421的逆序数为 5 ,32514的逆序数 为 5 .2.四阶行列式中含有因子a a 2311的项44322311a a a a -,42342311a a a a .3.按定义,四阶行列式有!4项,其中有12项带正号,有12项带负号.4.在函数xx x xxx f 21112)(---=中,3x 的系数是2-. 5. =cbac ba222111))()((b c a c a b ---.6.设210132113---=D ,A ij 为元素a ij 的代数余子式)3,2,1,(=j i ,则=-+33231342A A A 37.二、选择1. 四阶行列式a b a b b a b a 4433221100000000的值等于( D ) (A ) b b b b a a a a 43214321- (B ) b b b b a a a a 43214321+(C ) ))((43432121b b a a b b a a -- (D ) ))((41413232b b a a b b a a --2.设1211123111211)(xxxx x f -=,则x 3的系数为 ( C )(A )2 (B )1 (C )1- (D )2- 3.在五阶行列式)det(a ij 中,下列各项中不是)det(a ij 的项为 ( A ) (A )a a a a a 5552214331 (B )a a a a a 5412452331- (C )a a a a a 5145342312 (D )a a a a a 33522514414.行列式1111111111111111--+---+---x x x x 的值为 ( D )(A )0 (B )22)1()1(-+x x (C )2x (D )4x三、计算 1.2605232112131412- 21r r +=====26052321260514120=(因有两行相同)2.ef cfbfde cd bdaeacab--- 123r ar d r f÷=====÷÷ec b e c b e c b adf ---123c bc c c e ÷=====÷÷111111111---abcdef 2131r r r r +=====+abcdef abcdef 4020200111=- 3.dcb a10110011001--- 12r ar +=====d c b a ab 1011011010---+1c =====dc a ab 10111--+32 c dc +=====010111-+-+cd c ad a ab 3r =====cdad ab +-+111ad cd ab +++=)1)(1( 四、证明1.322)(11122b a b b a ab ab a -=+证 1112222b b a a b aba +1323c c c c -=====-1002)(22222b b a b a b b ab b a ----122c c -=====120)(222b b a b b ab b a --- 3)(b a -=2.0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a证=++++++++++++2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(d d d d c c c c b b b b a a a a 433221c c c c c c -=====--5232125232125232125232122222++++++++++++d d d d c c c c b b b b a a a a4332c c c c -=====-022122212221222122222=++++d d c cb b a a (因有两列相同)3.01111210100000100001a x a x a x a a a a a a xx x n n n n nn ++++=------证: 递推法,按第一列展开,建立递推公式1011)1(021-*---+=++x xa xD D n n n =0022)1(a xD a xD n n n +=-++又 n a D =1,于是=+1n D 0a xD n +011)(a a xD x n ++=+0112a x a D x n ++=-= =01111a x a x a D x n n n++++-- .0111a x a xa x a n n n n ++++=--五、计算1.x a a a x a aa x D n=解x a a a x aa a x D n =121[(1)] n r r r r x n a +++=====÷+-])1([a n x ++xa a ax a11112,,i c ac i n -======])1([a n x ++a x ax --111].)1([)(1a n x a x n -+-=-2.1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+,提示:利用范德蒙德行列式的结果 解 :将行列式上下翻转,即为范德蒙德行列式,若再将行列式左右翻转,由于上下翻转与左右翻转交换次数相等,故行列式于上下翻转再左右翻转其值不变.于是,利用范德蒙德行列式的结果,可得nnnn a n a n a a n a n a D)1()(11111+--+--=+∏+≤<≤-=11).(n i j j i3.nnnnn d c d c b a b a D11112=,其中未写出的元素都是0解: n D 22222n nr r c c ↔=====↔)1(20-n n nn nD d c b a )1(2)(--=n n n n n D c b d a即有递推公式n D 2)1(2)(--=n n n n n D c b d a又111111112c b d a d c b a D -==,利用这些结果递推得n D 2 )(n n n n c b d a -=.)()(11111∏=-=-nk k k k k c b d a c b d a4.nn a a a D +++=11111111121,其中021≠n a a a解 12212332311000010001000100011n n n n na a a c c a a D c c a a a a -----=====---+111213121111121100010000010*******0011()(1)nn ni i nn i ia a a a a a a a a a a a ------===+=+∑∑5.问λ,μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02003213.21321x x x x x x x x x μμλ有非零解?解: 方程组的系数行列式必须为01211111μμλ=D 32r r -=====)1(01111--=λμμμλ故只有当0=μ或1=λ时,方程组才可能有非零解.当0=μ,原方程组成为⎪⎩⎪⎨⎧=+=++0031321x x x x x λ 显然1,1,1321-=-==x x x λ是它的一个非零解. 当1=λ,原方程组成为⎪⎩⎪⎨⎧=++=++=++02003213.21321x x x x x x x x x μμ 显然1,0,1321==-=x x x 是它的一个非零解. 因此,当0=μ或1=λ时,方程组有非零解.第一章 练习题1.381141102---解: 利用对角线法则3108)1(2)1()4(1811)1()1(03)4(2⨯⨯-⨯-⨯--⨯-⨯-⨯⨯+-⨯-⨯+⨯-⨯=D4-=2.yxyx x y x y y x y x+++解: 利用对角线法则)(2)()()()(33333y x y x y x yx y x y x yx y y x x D +-=--+-+++++=3.7110251020214214解: 12r r D ↔=====-711002510421420212131410r r r r -=====--711020215042702021---- 42r r ↔=====42702021507110221----3242157r r r r +=====+0459008517007110221= 4.4321532154215431543254321 解: 从最后一行开始,后行减去前行1114111411141114111154321----=D 12,,5i c c i -======0510050105015000143211----=D 51215i i c c =+=====∑050005000505000043213----1875)5(34=-⨯=5. 利用范德蒙德行列式计算四阶行列式cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222解: D 414()r r r a b c d +=====÷+++1111)(33332222dcba d cb a dc b ad c b a +++把行列式的最后一行依次与前面的行交换,共交换三次得333322221111)(d c b a d c b a d c b a d c b a D +++-=))()()()()()((c d b d b c a d a c a b d c b a ------+++-=6.证明na a a 10011121)1(2132∑=-=ni in a a a a a ,其中 021≠n a a a 证: 化行列式为下三角形行列式D112,i inr r a i n -======n a a b * 0002n a a ba 32= 其中,∑=-=ni ia ab 211,于是).1(2132∑=-=n i i n a a a a a D7.=n D )det(a ij ,其中j i a ij -=解: 032131221011210------=n n n n n n D n 11221n n n n r rr r r r ----=====--1111111111111210--------n n12n n c c c c +=====+.2)1()1(112001220132121----=---------n n n n n n n8.求满足下列方程的实数z y x ,,:11000100011=zy x z y x解: 将D 按第一行展开得,,0222=++z y x 解得.0===z y x9. 问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(3213.21321x x x x x x x x x λλλ有非零解?解: 方程组的系数行列式必须为0λλλ----=111132421D 13r r ↔=====421132111-----λλλ 21312(1)r r r r λ-=====--2)1(4301210111λλλλλ--+-----2)1(43121λλλλ--+----=21c c +=====2331λλλλλ----)3)(2(---=λλλ 故32,0或=λ,并且当0=λ时,21-=x ,12=x ,13=x ;当2=λ时,21-=x ,32=x ,13=x ;当3=λ时,11-=x ,52=x ,23=x ;均是原方程组的非零解. 因此,当32,0或=λ时,方程组有非零解.第二章 矩阵及其运算 (一)一.填空1.设⎪⎪⎪⎭⎫ ⎝⎛=321a a a A ,()123B b b b = ,则AB =11121212223313233a b a b a b a b a b a b a b a b a b ⎛⎫⎪ ⎪ ⎪⎝⎭;BA = 112233()a b a b a b ++;()T AB =112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;T T A B =()T BA ;T T B A = ()T AB . 2. 设⎥⎦⎤⎢⎣⎡-=121x A ,⎥⎦⎤⎢⎣⎡=012y B ,若BA AB =,则=x 1 ;=y 2 . 3. 设A 为3阶方阵,且2-=A ,则2A = 4 ;=-T A 2 16 ;*A = 4 .4. 设101A λ⎡⎤=⎢⎥⎣⎦,则kA =101k λ⎡⎤⎢⎥⎣⎦.5. 设101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,而2n ≥为正整数,则12n n A A --= 0 (零矩阵) . 6. 已知3A E =,则1A -=2A .二.选择1. 设n 阶方阵,,A B C 满足关系式ABC E =,其中E 为n 阶单位矩阵,则必有( D ). (A ) ACB E = (B )CBA E = (C) BAC E = (D )BCA E =2. 设A 、B 均为n 阶方阵,满足0AB =,则必有 ( C ) (A ) 0A =或0B = (B )0BA = (C) 0A =或0B = (D )0A B +=3. 设A 、B 都是n 阶方阵,则下列命题中正确的是 ( D ) (A )若0≠A 且0≠B ,则0≠AB . (B )若A 、B 都是对称阵,则AB 是对称阵. (C)若AB 不可逆,则A 、B 都不可逆. (D )若AB 可逆,则A 、B 都可逆.三.计算与证明1. 设111111111A ⎛⎫ ⎪=- ⎪⎪-⎝⎭, 123124051B ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求32AB A -及T A B . 解:32AB A -1111233111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭1112111111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭21322217204292-⎛⎫⎪=-- ⎪ ⎪-⎝⎭111123111124111051T A B ⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭058056290⎛⎫⎪=- ⎪ ⎪⎝⎭2. 13121400121134131402⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪--⎝⎭ ⎪-⎝⎭6782056-⎛⎫= ⎪--⎝⎭3. ()111213112312222321323333a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫⎪=++++++ ⎪⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++4. 设,A B 为n 阶方阵,且A 为对称阵,证明TB AB 也是对称阵. 证明:已知:TA A =则 ()()TTTTTTTTB AB B B A B A B B AB === 从而 T B AB 也是对称阵.第二章 矩阵及其运算 (二)一.填空1. 设⎥⎦⎤⎢⎣⎡=1211A ,⎥⎦⎤⎢⎣⎡-=1011B ,⎥⎦⎤⎢⎣⎡=B O O A C ,则 =C -1 .2. 设1200n a a A a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,(120n a a a ≠). 则1A -=1210101n a a a ⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭3. 设A 为三阶可逆矩阵,且1123012001A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则A *=123012001---⎛⎫⎪- ⎪ ⎪⎝⎭4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,则=-*1)(A 10A ;=*-)(1A 10A .5.设A 为m 阶方阵,B 为n 阶方阵,且a A =,b B =,⎥⎦⎤⎢⎣⎡=O B A O C ,则=C (1)mnab -. 6.设A 为3阶矩阵,且A =12,则1*(2)5A A --=16- . 二.选择题1. 设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,则必有( A ) (A ) 1-*=n AA (B ) A A =* (C ) nA A =*(D ) 1-*=A A2. 设A 、B 都是n 阶方阵,则下列等式中正确的是 ( D ) (A )BA AB = (B )TTTB A AB =)( (C )111)(---=B A AB (D )BA AB =3. 已知A 为n 阶方阵,且满足关系式0432=++E A A ,则()=+-1E A ( C )(A )1A E -+ (B )12E A +(C ) 12E A -- (D )4A E +三.计算与证明1. 求下列方阵的逆阵(1) 5200210000120011⎛⎫ ⎪⎪⎪- ⎪⎝⎭解:115221A ⎛⎫=⎪⎝⎭,1111225A --⎛⎫= ⎪-⎝⎭,221211A -⎛⎫= ⎪⎝⎭,122121113A -⎛⎫= ⎪-⎝⎭, 112002500120033110033A --⎛⎫⎪- ⎪ ⎪= ⎪⎪⎪-⎪⎝⎭. (2) 121342541-⎛⎫⎪- ⎪ ⎪-⎝⎭解:2A =, 故1A -存在 . 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭. 2. 解下列矩阵方程 (1) 25461321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭解:125461321X --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭.(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭解:1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫ ⎪= ⎪-- ⎪⎝⎭.(3) 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 解:11010143100100201001001120010X ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭210134102-⎛⎫⎪=- ⎪⎪-⎝⎭(4) 设,AX B X +=其中01011111,20,10153A B -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦求.X 解:由,AX B X +=得 ()E A X B -=故 1().X E A B -=- 而 21331213311330()10E A -⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭所以 2133213311330113112020.05311X --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 3. 设1P AP -=Λ, 其中1411P --⎛⎫=⎪⎝⎭, 1002-⎛⎫Λ= ⎪⎝⎭, 求11A . 解:1P AP -=Λ故1A P P -=Λ所以11111A P P-=Λ3P = 1411P *⎛⎫= ⎪-⎝⎭ 1141113P -⎛⎫= ⎪-⎝⎭而 11111110100202--⎛⎫⎛⎫Λ== ⎪ ⎪⎝⎭⎝⎭故11111414103311021133A ⎛⎫ ⎪--⎛⎫⎛⎫= ⎪ ⎪⎪- ⎪⎝⎭⎝⎭-- ⎪⎝⎭27312732683684⎛⎫= ⎪--⎝⎭. 4. 设A 为n 阶方阵,并且满足Θ=--E A A 22,证明:A 及E A 2+都可逆,并求1-A 及1)2(-+E A . 解:由已知得:E E A A =-⋅)(21,故A 可逆,且)(211E A A -=- 又E E A E A 4)3)(2(-=-+, 故E A 2+可逆,且)3(41)2(1E A E A --=+-.5. 设0kA =(k 为正整数),证明121()k E A E A A A ---=++++证明: 由 0kA =有 21()()k E A A A E A -++++-2121k k k E A A A A A A A --=++++----E =因此 121()k E A E A A A ---=++++第二章 练习题1.设A 为4阶方阵,1,3A =求134A A *--. 解:111,3A A A A *--==11111343433A A A A A *----∴-=⋅-=-41311(3)81A =-=⋅243.= 2. 已知⎪⎪⎪⎭⎫ ⎝⎛--=130210005A ,求1-A .解: ⎪⎪⎭⎫⎝⎛=2211A O O A A51111-=-A=⎪⎪⎭⎫ ⎝⎛----==*-132********122A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛-71737271 ∴⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛=---717307271000511221111A OO A A 3. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=121011322A ,解矩阵方程E AXA =*(其中*A 是矩阵A 的伴随矩阵). 解:计算得1-=A ,并且A 可逆 因为E E A AA -==*,故由已知E AXA =*得A EA A AXA ==*所以A AX =-解得E X -=解:A BA BA A 61=-- A BA E A6)(1=--⎪⎪⎪⎭⎫⎝⎛=-=--123)(611E AB 4. 设三阶矩阵A ,B 满足关系式BA A BA A +=-61,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=714131A ,求B .5. 设A 为n 阶方阵,并且满足Θ=-+E A A 2, 证明:A 及E A -都可逆,并求1-A 及1)(--E A .解:由已知得:E E A A =+⋅)(,故A 可逆,且E A A +=-1 又E E A E A -=+-)2)((, 故E A -可逆,且)2()(1E A E A +-=-- .6.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A 及4A . 解: 34432022O A O ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A OA ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭. 7.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1O A B O -⎛⎫⎪⎝⎭.解 : 将1O A B O -⎛⎫⎪⎝⎭分块为1234C C CC ⎛⎫⎪⎝⎭其中 1C 为s n ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵,4C 为n s ⨯矩阵则n n s s O A B O ⨯⨯⎛⎫⎪⎝⎭1234C C C C ⎛⎫ ⎪⎝⎭E ==ns E O O E ⎛⎫⎪⎝⎭由此得到1334411122n s AC E C A AC O C OBC O C O BC E C B --⎧=⇒=⎪=⇒=⎪⎨=⇒=⎪⎪=⇒=⎩(A 、B 均可逆)故 111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.第三章 矩阵的初等变换与线性方程组(一)一、填空1. 设A 为n 阶方阵,若有n 阶初等方阵s P P P ,,21,使 ),(),(21B E E A P P P s = ,则=-1As P P P 21 .2. 设A 是34⨯矩阵,且A 的秩)(A R =2,而⎪⎪⎪⎭⎫⎝⎛-=301020201B ,则=)(AB R 2 .8. 设x 为n 维列向量,1=x x T ,令Txx E H 2-=,证明H 是对称阵,且THH E =. 证明:因为 H xx E xx E xx E H T T T T T T=-=-=-=2)(2)2(,所以H 是对称阵.又 ==2H HHT4)2)(2()2(2+=--=-E xx E xx E xx E T T T T T T xx xx xx 4))((-+=-+=E xx x x x x E T T T 4)(4E xx xx T T =-443. 设四阶方阵A 的秩)(A R =2,则其伴随矩阵*A 的秩为)(*A R = 0 .二.选择1.从矩阵A 中划去一行得到矩阵B ,则A 、B 的秩的关系为( A )(A) 1)()()(-≥≥A R B R A R (B) 1)()()(->≥A R B R A R (C) 1)()()(->>A R B R A R (D) 1)()()(-≥>A R B R A R 2.在秩是r 的矩阵中( C ) (A) 没有等于0的1-r 阶子式 (B) 没有等于0的r 阶子式(C) 等于0的1-r 阶子式和等于0的r 阶子式都可能有 (D) 所有1-r 阶子式等于0三.计算与证明1.把矩阵化为行最简形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---8701111121324321 解:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-000031100313010317001 2.用初等变换求解矩阵方程B AX =,其中⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=520321,102123111B A 解:⎪⎪⎪⎭⎫ ⎝⎛--==-13122018971B A X 3.试利用矩阵的初等变换,求方阵⎪⎪⎪⎭⎫⎝⎛=323513123A 的逆阵1-A .解:⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-210212112332671A4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=443112112013A 的秩.解:秩为25.设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,求k 为何值时可使)(A R 等于:(1) 1 ;(2) 2 ;(3) 3 .解:⎪⎪⎪⎭⎫ ⎝⎛+----)2)(1(300)1(3)1(20321~k k k k k A (1) 当1=k 时,R(A)=1 (2) 当2-=k 时,R(A)=2(3) 当1≠k 且2-≠k 时,R(A)=3第三章 矩阵的初等变换与线性方程组(二)1.求齐次线性方程组⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x 的解.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-134334C2.求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x 的解.解:⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-021112C3.设有⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x ,问λ为何值时,此方程组有唯一解、无解或无穷解?并在有无穷解时求其解. 解:)10()1(2λλ--=A(1)1≠λ且10≠λ时,有唯一解;(2)10=λ时,无解;(3)1=λ时,无穷解:⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-00110201221C C第三章 练习题1.求作一个秩是4的方阵,使它的两个行向量是(1,0,1,0,0)和(1,-1,0,0,0)解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000010000010000011001012.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013解:秩为2,01113≠-(2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123解:秩为3,087312123≠----3.非齐次线性方程组⎪⎩⎪⎨⎧-=++-=-+=+-22223212321321x x x x x x x x x λλ,当λ取何值时有解?并求出它的通解.解:⎪⎪⎪⎭⎫⎝⎛-+---)1)(2(000)1(2330121~λλλλB (1)当2-=λ时, ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛022111C(2)当1=λ时, ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛001111C4.设A 为n m ⨯矩阵,证明:(1)方程m E AX =有解的充分必要条件是m A R =)(; (2)方程n E YA = 有解的充分必要条件是n A R =)(. 解:(1)m E AX =有解),()(E A R A R =⇔(必要性)显然,m A R ≤)(;另一方面,m E A R ≥),(,故m A R =)( (充分性)m E A R A R m ≤≤=),()((2)方程n E YA =有解⇔方程n TT E Y A =有解⇔n A R T =)((由1)⇔n A R =)(5. 设A 为n m ⨯矩阵,证明:若AY AX =,且n A R =)(,则Y X = 证明:Θ=-)(Y X A因为n A R =)(,所以方程Θ=-)(Y X A 只有零解,即Θ=-Y X ,即Y X =6.证明1)(=A R 的充分必要条件是存在非零列向量α及非零行向量T β,使TA βα⋅=. 证明:(充分)1)()(=≤αR A R ,另一方面TA βα⋅=,α和Tβ又都是非零向量,故1)(≥A R ,因此1)(=A R(必要)由于1)(=A R 故⎪⎪⎭⎫ ⎝⎛ΘΘΘ1~A ,所以()TQ P Q P A αβ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛ΘΘΘ=0010011 7.已知三阶矩阵0≠B ,且B 的每一个列向量都是以下方程组的解:)(0302022321321321*⎪⎩⎪⎨⎧=-+=+-=-+x x x x x x x x x λ(1) 求λ的值; (2) 证明0=B .解:(1)设⎪⎪⎪⎭⎫⎝⎛---=11312221λA ,由题设0,0=≠AB B ,知0)1(5=--=λA故1=λ(2)由1=λ,知2)(=A R ,由0=AB ,知3)()(≤+B R A R ,故1)(≤B R又已知1)(≥B R ,因此1)(=B R 从而0=B第四章 向量组的线性相关性(一)一、选择1.若向量组γβα,,线性无关,δβα,,线性相关,则 ( C ) (A )α必可由δγβ,,线性表示;(B )β必可由δγα,,线性表示; (C) δ必可由γβα,,线性表示; (D) β必不可由δγα,,线性表示。

山东交通学院高等数学2A期末复习题

山东交通学院高等数学2A期末复习题

高等数学2 A 卷复习题一、单选题(本题共5个小题,每小题4分,共20分)1. 下列各组角可以作为某向量的方向角的是 A 。

A .90,150,60αβγ=== B .45,135,60αβγ=== C .60αβγ=== D .60,120,150αβγ===2. 已知()()0,3,4,2,1,2a b ==-,则Pr a b =j C 。

A .3 B.13- C.-1 D.1 3. 02sin lim x y xy x →→= B 。

A .1 B .2 C .∞ D .e二、填空题(本题共5个小题,每小题4分,共20分)1. 设函数(,)z f x y =在点(,)x y 可微分,则d z = d d x y f x f y + 。

2. 设{}22(,)1D x y x y =+≤,则d Dσ=⎰⎰ π 。

3. 设由x 轴,=y 围成的积分区域D 用极坐标型的不等式表示为 π0,02cos 2θρθ≤≤≤≤ 。

4.微分方程0xy y '+=满足初始条件12x y ==的特解为 2y x =。

5. 级数112n n ∞=∑发散 (填收敛或发散)。

三、计算题(本题共5个小题,每小题12分,共60分)1.设z =z x ∂∂,z y∂∂.12z x x ∂==∂12z y y ∂==∂2. ,,arctan v y z u u v x===,求d z 12222121()(ln )21v v z z u z v x y vu u u x u x v x x y x y x -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂+⎝⎭⎛⎫+ ⎪⎝⎭22ln v u xv y u x y u ⎛⎫=- ⎪+⎝⎭12221211()(ln )21v v z z u z v y vu u u y u y v y x yx y x -∂∂∂∂∂=⋅+⋅=⋅+⋅⋅∂∂∂∂∂+⎛⎫+ ⎪⎝⎭ 22ln v u yv x u x y u ⎛⎫=+ ⎪+⎝⎭ 22d ln d ln d v u xv yv z y u x x u y x y u u ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦3. 计算22d d D x x y y⎰⎰,其中D 是由直线2,x y x ==与曲线1xy =所围成的闭区域. 1:12,D x y x x ≤≤≤≤ 原式22d d Dx x y y =⎰⎰22121d d x x x x y y =⎰⎰ 2242223111119d ()d .244x x x x x x x x x y ⎡⎤⎡⎤=-=-+=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰4.122223(4)d d ,:4,0D I x y x y D x y x =--+≤≥⎰⎰221122332002d (4)d (4)d I ππθρρρπρρρ-=-=-=⎰⎰⎰5.求微分方程d 0xy x y =满足初始条件1e x y ==的特解.1d x y y =1ln ln C y =,由此得11)y C C C C =±==±,满足初始条件1e x y ==,代入得e C =,所以特解为1y =.高等数学2 B 卷 复习题一、单选题(每小题4分,共20分)1. 已知向量,a b 的模分别为4,2a b ==,且42a b ⋅=,则a b ⨯=C .AB .C .D .2 2. 101lim(1)x x y xy →→+= D . A .1 B .0 C .∞ D .e3. 设区域{}222(,),0,0D x y x y a a y =+≤>≥,则()22d d =D x y x y +⎰⎰ A . A .π300d d a θρρ⎰⎰ B .π200d d a θρρ⎰⎰ C . π32π02d d aθρρ-⎰⎰ D . π22π02d d a θρρ-⎰⎰ 二、填空题(每小题4分,共20分)1. 向量()()3,1,2,1,2,1a b =--=-,则()23a b -⋅= 18- .2. 设22ln(1)z x y x y =++,则(1,0)z x ∂=∂ 0 . 3. 设{}22(,)4D x y x y =+≤,则d D σ=⎰⎰ 4π . 4. 微分方程ex y y -'=的通解是 e =e y x C + . 5. 级数123n n ∞=⎛⎫- ⎪⎝⎭∑ 收敛 (填收敛或发散). 三、计算题(每小题12分,共60分)1. arctan 22()e yx z x y -=+,求 z x∂∂arctan arctan 222212e ()e 1y y x x z y x x y x x y x --⎛⎫∂=-+⋅⋅- ⎪∂⎛⎫⎝⎭+ ⎪⎝⎭arctan (2)e y x xy -=+2. ,,arctan v y z u u v x ===,求d z 12222121()(ln )21v v z z u z v x y vu u u x u x v x x y x y x -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂+⎝⎭⎛⎫+ ⎪⎝⎭22ln v u xv y u x y u ⎛⎫=- ⎪+⎝⎭ 12221211()(ln )21v v z z u z v y vu u u y u y v y x y x y x -∂∂∂∂∂=⋅+⋅=⋅+⋅⋅∂∂∂∂∂+⎛⎫+ ⎪⎝⎭ 22ln v u yv x u x y u ⎛⎫=+ ⎪+⎝⎭ 22d ln d ln d v u xv yv z y u x x u y x y u u ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦3.计算22d d D x x y y ⎰⎰,其中D 是由直线2,x y x ==与曲线1xy =所围成的闭区域..1:12,D x y x x ≤≤≤≤,原式22d d Dx x y y =⎰⎰22121d d x x x x y y =⎰⎰ 2242223111119d ()d .244x x x x x x x x x y ⎡⎤⎡⎤=-=-+=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰4.2222()d d ,:1DI x y x y D x y =++≤⎰⎰.21133000d d 2d 2I ππθρρπρρ===⎰⎰⎰.5.求微分方程cos d (1e )sin d 0x y x y y -++=的通解.分离变量得 1d tan d 1ex x y y -=-+,两端积分得 1ln(e 1)ln ln cos x C y ++=, 由此得微分方程的通解为 1cos (e 1)(e 1)x x y C C =±+=+.。

线性代数期末考试试卷+答案合集-大一期末线性代数试卷

线性代数期末考试试卷+答案合集-大一期末线性代数试卷

线性代数期末考试试卷+答案合集-大一期末线性代数试卷×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足。

3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是阶矩阵。

4.矩阵=323122211211a a a a a a A 的行向量组线性。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0?D 。

()2. 零向量一定可以表示成任意一组向量的线性组合。

()3. 向量组m a a a ,,,21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

()4. ?=010*********0010A ,则A A =-1。

() 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ()。

① n2② 12-n③ 12+n ④ 42. n 维向量组s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是()。

① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关② 任意n 个1+n 维向量线性无关③ 任意1+n 个n 维向量线性相关④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线性代数期末测试题及其答案

线性代数期末测试题及其答案

线性代数期末测试题及其答案一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵ns ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵BA xB A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B.1≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y xD.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式E X B C T =-)(, 求X 。

山东大学网络教育2020年线性代数(本)期末考试完整解答

山东大学网络教育2020年线性代数(本)期末考试完整解答

山东大学网络教育2020年线性代数(本)期末考试完整解答
课程名称:线性代数课程代码:0006610014
答案在最后几页课程层次:专升本
一、单选题
1.下列(A )是4级偶排列.
A.4321;
B.4123;
C.1324;
D.2341.
2.如果(
3.0分)
那么(B).
A.8;
B.-12;
C.24;
D.-24.
3.设A与B均为矩阵,满足,则必有(C).
A.;
B.;
C.;
D..
4.向量组线性相关的充要条件是(C)(
A.中有一零向量
B.中任意两个向量的分量成比例
C.中有一个向量是其余向量的线性组合
D.中任意一个向量都是其余向量的线性组合
5.已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为(B )
A.
B.
C.
D.
6.λ=2是A的特征值,则的一个特征值是(B)
A.4/3
B.3/4
C.1/2
D.1/4
二、计算题或证明题
1.设矩阵
(1)当k为何值时,存在可逆矩阵P,使得为对角矩阵?
(2)求出P及相应的对角矩阵。

解:
2.设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值。

解:
3.当a取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.
解:
见下一页
4.求矩阵的逆矩阵
解:。

线性代数期末考试试卷习题包括答案合集大一期末线性代数试卷习题

线性代数期末考试试卷习题包括答案合集大一期末线性代数试卷习题

大学生校园网—线性代数综合测试题×××大学线性代数期末考试题一、填空题〔将正确答案填在题中横线上。

每题 2 分,共 10 分〕1311. 假设05x 0 ,那么__________ 。

122x1x2x302.假设齐次线性方程组x1x2x30 只有零解,那么应满足。

x1x 2x303.矩阵A,B,C( c ij ) s n,满足AC CB ,那么 A 与 B 分别是阶矩阵。

a a11124.矩阵A a a的行向量组线性。

2122a a31325.n阶方阵A满足A 23A E0,那么A1。

二、判断正误〔正确的在括号内填“√〞,错误的在括号内填“×〞。

每题 2 分,共10 分〕1.假设行列式 D 中每个元素都大于零,那么D 0 。

〔〕2.零向量一定可以表示成任意一组向量的线性组合。

〔〕3.向量组 a1, a2,, a m中,如果a1与 a m对应的分量成比例,那么向量组a1, a2,,a s线性相关。

〔〕01001000A 。

〔〕4.A,那么 A1000100105. 假设为可逆矩阵 A 的特征值,那么 A 1的特征值为 。

( )三、单项选择题 ( 每题仅有一个正确答案,将正确答案题号填入括号内。

每题2 分,共 10 分 )1. 设 A 为 n 阶矩阵,且 A2,那么AAT〔〕。

① 2n② 2n 1③ 2n 1④ 42. n 维向量组 1 , 2,,s 〔 3 s n 〕线性无关的充要条件是〔 〕。

①1, 2, , s 中任意两个向量都线性无关②1, 2, , s 中存在一个向量不能用其余向量线性表示③1, 2, , s 中任一个向量都不能用其余向量线性表示共 3 页第 1 页大学生校园网—线性代数综合测试题④中不含零向量1, 2 ,, s3. 以下命题中正确的选项是 () 。

① 任意 n 个 n 1 维向量线性相关 ② 任意 n 个 n 1 维向量线性无关③ 任意 n 1 个 n 维向量线性相关 ④任意 n 1 个 n 维向量线性无关4. 设 A , B 均为 n 阶方阵,下面结论正确的选项是( )。

大学线性代数期末试卷及答案

大学线性代数期末试卷及答案

大学线性代数期末试题一、填空题(每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3、n 阶方阵A 满足032=--E A A ,则=-1A。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( ) 三、单项选择题 (每小题仅有一个正确答案。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

山东交通学院线代作业纸及答案

山东交通学院线代作业纸及答案

a2 b2

c2 d2
(a + 1)2 (b + 1)2 (c + 1)2 (d + 1)2
(a + 2)2 (b + 2)2 (c + 2)2 (d + 2)2
(a + 3)2
a2
(b + 3)2
c4 − c3 = =====
b2
(c + 3)2 c3 − c2 c 2
(d + 3)2 c2 − c1 d 2
1 0
===== 0 0
234 0 0 −5 0 − 5 0 = 3× (−5)4 = 1875
0 0 −5 0 0
0 −5 0 0 0
a a2
5. 利用范德蒙德行列式计算四阶行列式
a3 b+c+d
b b2 b3 a+c+d
c c2 c3 a+b+d
d d2 d3 a+b+c
第8页
线性代数标准作业纸答案
(C) x 2
(D) x 4
三、计算
2 1 41
2141
3 −1 2 1 r2 + r1 5 0 6 2
1.
=====
= 0 (因有两行相同)
1 2 32
1232
5 0 62
5062
− ab ac ae r1 ÷ a
− b c e c1 ÷ b
−1 1 1
2. bd − cd de ===== adf b − c e ===== abcdef 1 −1 1
3.
=====
===== −1 c 1
0 −1 c 1

山东交通学院08-09第二学期高等数学理工试题A标准卷

山东交通学院08-09第二学期高等数学理工试题A标准卷

题号
一 二 三 四 五 六 七 总分 审核 得分
一、单项选择题(每小题2分,共20分) 得分 阅卷人 二、填空题(将正确答案填在题中横线上,每小题 3 分, 共 18 分)
得分 阅卷人 ………………………密……………………封……………………线……………………
试卷适用班级 08 级理工类本专科各专业各班级 班级 姓名 学号
三、计算题(每小题8 分,共32 分)
得分 阅卷人 试卷适用班级 班级 姓名 学号
………………………密……………………封……………………线……………………
试卷适用班级 08 级理工类本专科各专业各班级
班级 姓名 学号
四、应用题(每小题8 分,共32 分)
得分
阅卷人 ………………………密……………………封……………………线…………………… 试卷适用班级 08 级理工类本专科各专业各班级 班级 姓名 学号。

线性代数期末试题及答案

线性代数期末试题及答案

8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。

线性代数期末考试精彩试题(卷)+问题详解解析汇报合集

线性代数期末考试精彩试题(卷)+问题详解解析汇报合集

×××大学线性代数期末考试题一、填空题〔将正确答案填在题中横线上.每一小题2分,共10分〕1. 假如022150131=---x ,如此=χ__________. 2.假如齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,如此λ应满足.3.矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,如此A 与B 分别是阶矩阵.4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性. 5.n 阶方阵A 满足032=--E A A ,如此=-1A .二、判断正误〔正确的在括号内填"√〞,错误的在括号内填"×〞.每一小题2分,共10分〕1. 假如行列式D 中每个元素都大于零,如此0〉D .〔 〕2. 零向量一定可以表示成任意一组向量的线性组合.〔 〕3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,如此向量组s a a a ,,, 21线性相关.〔 〕4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,如此A A =-1.〔 〕 5. 假如λ为可逆矩阵A 的特征值,如此1-A 的特征值为λ. < >三、单项选择题 <每一小题仅有一个正确答案,将正确答案题号填入括号内.每一小题2分,共10分>1. 设A 为n 阶矩阵,且2=A ,如此=T A A 〔 〕.①n2②12-n ③12+n ④42. n 维向量组s ααα,,, 21〔3 ≤ s ≤ n 〕线性无关的充要条件是〔 〕. ①s ααα,,, 21中任意两个向量都线性无关 ②s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④s ααα,,, 21中不含零向量3. 如下命题中正确的答案是< >.① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的答案是< >.① 假如A ,B 均可逆,如此B A +可逆 ② 假如A ,B 均可逆,如此 A B 可逆 ③ 假如B A +可逆,如此 B A -可逆 ④ 假如B A +可逆,如此 A ,B 均可逆5. 假如4321νννν,,,是线性方程组0=X A 的根底解系,如此4321νννν+++是0=X A 的〔〕①解向量② 根底解系③ 通解 ④ A 的行向量四、计算题 < 每一小题9分,共63分>1. 计算行列式x ab c d a x b c d a b x c d abcx d++++.解·2. 设B A AB 2+=,且A ,410011103⎪⎪⎪⎭⎫⎝⎛= 求B .解.A B E A =-)2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--111122112)2(1E A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-=-322234225)2(1A E A B3. 设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎭⎫ ⎝⎛=2000120031204312C 且矩阵X 满足关系式'(),X C B E -=求X . 4. 问a 取何值时,如下向量组线性相关?123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭.5. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解?当方程组有无穷多解时求其通解.①当1≠λ且2-≠λ时,方程组有唯一解; ②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 6. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示.7. 设100010021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求A 的特征值与对应的特征向量.五、证明题 <7分>假如A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A .其中I 为单位矩阵. ×××大学线性代数期末考试题答案一、填空题1. 52. 1≠λ3. n n s s ⨯⨯,4. 相关5. E A 3- 二、判断正误1. ×2. √3. √4. √5. × 三、单项选择题1. ③2. ③3. ③4. ②5. ① 四、计算题 1. 2.A B E A =-)2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--111122112)2(1E A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-=-322234225)2(1A E A B3. 4.)22()12(812121212121212321-+=------=a a aa aa a a ,,当21-=a 或1=a 时,向量组321a a a ,,线性相关. 5.① 当1≠λ且2-≠λ时,方程组有唯一解; ②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 6.如此 ()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,321422a a a a ++-= 7.特征值1321===λλλ,对于λ1=1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-020*******A E λ,特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001l k 五、证明题∴()02=+A I , ∵()0=+A I一、选择题〔此题共4小题,每一小题4分,总分为16分.每一小题给出的四个选项中,只有一项符合题目要求〕1、设A ,B 为n 阶方阵,满足等式0=AB ,如此必有〔 〕<A>0=A 或0=B ; <B>0=+B A ; 〔C 〕0=A 或0=B ; <D>0=+B A . 2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,如此必有〔 〕 <A> A E =;<B>B E =; 〔C 〕A B =.<D> AB BA =.3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是〔 〕 <A>A 的列向量线性无关; <B>A 的列向量线性相关; 〔C 〕 A 的行向量线性无关; <D>A 的行向量线性相关.4、 n 阶矩阵A 为奇异矩阵的充要条件是〔 〕 <A>A 的秩小于n ;<B>0A ≠;<C> A 的特征值都等于零;<D>A 的特征值都不等于零; 二、填空题〔此题共4小题,每题4分,总分为16分〕5、假如4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,如此*A =.6、A 为n n ⨯阶矩阵,且220A A E --=,如此1(2)A E -+=.7、方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,如此a =.8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,如此t 的取值X 围是. 三、计算题〔此题共2小题,每题8分,总分为16分〕9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式四、证明题〔此题共2小题,每一小题8分,总分为16分.写出证明过程〕 11、假如向量组123,,ααα线性相关,向量组234,,ααα线性无关.证明: <1> 1α能有23,αα线性表出; <2>4α不能由123,,ααα线性表出.12、设A 是n 阶矩方阵,E 是n 阶单位矩阵,E A +可逆,且1()()()f A E A E A -=-+. 证明〔1〕 (())()2E f A E A E ++=; 〔2〕 (())f f A A =.五、解答题〔此题共3小题,每一小题12分,总分为32分.解答应写出文字说明或演算步骤〕13、设200032023A ⎛⎫⎪= ⎪ ⎪⎝⎭,求一个正交矩阵P 使得1P AP -为对角矩阵.14、方程组⎪⎩⎪⎨⎧=++=++=++040203221321321xa x x ax x x x x x 与方程组12321-=++a x x x 有公共解. 求a 的值.15、设四元非齐次线性方程组的系数矩阵的秩为3,1η,2η,3η是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη求该方程组的通解.解答和评分标准一、选择题1、C ;2、D ;3、A ;4、A.二、填空题5、-125;6、2π;7、-1;8、53>t . 三、计算题9、解:第一行减第二行,第三行减第四行得:第二列减第一列,第四列减第三列得:00011000011x x D y y-=- 〔4分〕按第一行展开得 按第三列展开得2201x D xyx y y-=-=. 〔4分〕10、解:把各列加到第一列,然后提取第一列的公因子⎪⎭⎫⎝⎛+∑=n i i x 13,再通过行列式的变换化为上三角形行列式2212113313nn n n i i n x x x x D x x x =+⎛⎫=+ ⎪⎝⎭+∑〔4分〕1133n n i i x -=⎛⎫=+ ⎪⎝⎭∑〔4分〕 四、证明题 11、证明:<1>、 因为332,ααα,线性无关,所以32αα,线性无关., 又321ααα,,线性相关,故1α能由32αα,线性表出. <4分> 123()3r ααα=,,,〔2〕、〔反正法〕假如不,如此4α能由321,ααα,线性表出, 不妨设3322114ααααk k k ++=.由〔1〕知,1α能由32αα,线性表出, 不妨设32211αααt t +=.所以3322322114)(αααααk k t t k +++=,这明确432,ααα,线性相关,矛盾. 12、证明〔1〕1(())()[()()]()E f A E A E E A E A E A -++=+-++1()()()()()()2E A E A E A E A E A E A E -=++-++=++-= 〔4分〕〔2〕1(())[()][()]f f A E f A E f A -=-+由〔1〕得:11[()]()2E f A E A -+=+,代入上式得11()()22E A E A A =+--= 〔4分〕 五、解答题 13、解:〔1〕由0E A λ-=得A 的特征值为11λ=,22λ=,35λ=. 〔4分〕〔2〕11λ=的特征向量为1011ξ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,22λ=的特征向量为2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 35λ=的特征向量为3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 〔3分〕〔3〕因为特征值不相等,如此123,,ξξξ正交. 〔2分〕〔4〕将123,,ξξξ单位化得1011p ⎛⎫⎪=-⎪⎪⎭,2100p ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3011p ⎛⎫⎪=⎪⎪⎭〔2分〕〔5〕取()123010,,00P p p p ⎛⎫ ⎪ ⎪ == ⎝ 〔6〕1100020005P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭〔1分〕14、解:该非齐次线性方程组b Ax =对应的齐次方程组为因3)(=A R ,如此齐次线性方程组的根底解系有1个非零解构成,即任何一个非零解都是它的根底解系. 〔5分〕另一方面,记向量)(2321ηηηξ+-=,如此直接计算得0)6,5,4,3(≠=T ξ,ξ就是它的一个根底解系.根据非齐次线性方程组解的结构知,原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=543265431k k x ηξ,R k ∈. 〔7分〕15、解:将①与②联立得非齐次线性方程组:假如此非齐次线性方程组有解, 如此①与②有公共解, 且③的解即为所求全部公共解.对③的增广矩阵A 作初等行变换得:→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=112104102101112a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000)1)(2(0001100111a a a a a . 〔4分〕1°当1a =时,有()()23r A r A ==<,方程组③有解, 即①与②有公共解, 其全部公共解即为③的通解,此时⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000000000100101A ,如此方程组③为齐次线性方程组,其根底解系为: ⎪⎪⎪⎭⎫ ⎝⎛-101,所以①与②的全部公共解为⎪⎪⎪⎭⎫ ⎝⎛-101k ,k 为任意常数. 〔4分〕2° 当2a =时,有()()3r A r A ==,方程组③有唯一解, 此时⎪⎪⎪⎪⎪⎭⎫⎝⎛-→0000110010100001A ,故方程组③的解为:011⎛⎫ ⎪ ⎪ ⎪-⎝⎭,即①与②有唯一公共解011x ⎛⎫⎪= ⎪ ⎪-⎝⎭. 〔4分〕线性代数习题和答案第一局部选择题 <共28分>一、单项选择题〔本大题共14小题,每一小题2分,共28分〕在每一小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内.错选或未选均无分. 1.设行列式a a a a 11122122=m,aa a a 13112321=n,如此行列式aa a a a a 111213212223++等于〔 〕A.m+nB. -<m+n>C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,如此A -1等于〔 〕A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝ ⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,如此A *中位于〔1,2〕的元素是〔〕A.–6B. 6C. 2D.–24.设A是方阵,如有矩阵关系式AB=AC,如此必有〔〕A.A =0B. B≠C时A=0C.A≠0时B=CD. |A|≠0时B=C5.3×4矩阵A的行向量组线性无关,如此秩〔A T〕等于〔〕A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,如此〔〕A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1〔α1+β1〕+λ2〔α2+β2〕+…+λs〔αs+βs〕=0C.有不全为0的数λ1,λ2,…,λs使λ1〔α1-β1〕+λ2〔α2-β2〕+…+λs〔αs-βs〕=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,如此A中〔〕A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,如此如下结论错误的答案是〔〕A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,如此必有〔〕A.秩<A><nB.秩<A>=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n<≥3>阶方阵,如下陈述中正确的答案是〔〕A.如存在数λ和向量α使Aα=λα,如此α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使<λE-A>α=0,如此λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不一样的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,如此α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,如此必有〔〕A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,如此如下结论错误的答案是〔〕A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行〔列〕向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.如此〔〕A.A与B相似B. A与B不等价C. A与B有一样的特征值D. A与B合同14.如下矩阵中是正定矩阵的为〔 〕A.2334⎛⎝ ⎫⎭⎪B.3426⎛⎝ ⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二局部 非选择题〔共72分〕二、填空题〔本大题共10小题,每一小题2分,共20分〕不写解答过程,将正确的答案写在每一小题的空格内.错填或不填均无分. 15.11135692536=.16.设A =111111--⎛⎝ ⎫⎭⎪,B =112234--⎛⎝ ⎫⎭⎪.如此A +2B =. 17.设A =<a ij >3×3,|A |=2,A ij 表示|A |中元素a ij 的代数余子式〔i,j=1,2,3〕,如此<a 11A 21+a 12A 22+a 13A 23>2+<a 21A 21+a 22A 22+a 23A 23>2+<a 31A 21+a 32A 22+a 33A 23>2=.18.设向量〔2,-3,5〕与向量〔-4,6,a 〕线性相关,如此a=.19.设A 是3×4矩阵,其秩为3,假如η1,η2为非齐次线性方程组Ax=b 的2个不同的解,如此它的通解为.20.设A 是m ×n 矩阵,A 的秩为r<<n>,如此齐次线性方程组Ax=0的一个根底解系中含有解的个数为.21.设向量α、β的长度依次为2和3,如此向量α+β与α-β的内积〔α+β,α-β〕=.22.设3阶矩阵A 的行列式|A |=8,A 有2个特征值-1和4,如此另一特征值为.A =010********---⎛⎝ ⎫⎭⎪⎪⎪,α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,如此α所对应的特征值为. 24.设实二次型f<x 1,x 2,x 3,x 4,x 5>的秩为4,正惯性指数为3,如此其规X 形为.三、计算题〔本大题共7小题,每一小题6分,共42分〕25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求〔1〕AB T ;〔2〕|4A |. 26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B . 28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;假如是,如此求出组合系数.29.设矩阵A =12102242662102333334-----⎛⎝ ⎫⎭⎪⎪⎪⎪. 求:〔1〕秩〔A 〕;〔2〕A 的列向量组的一个最大线性无关组.30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D . 31.试用配方法化如下二次型为标准形f<x 1,x 2,x 3>=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换.四、证明题〔本大题共2小题,每一小题5分,共10分〕32.设方阵A 满足A 3=0,试证明E -A 可逆,且〔E -A 〕-1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个根底解系.试证明 〔1〕η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解;〔2〕η0,η1,η2线性无关. 答案:一、单项选择题〔本大题共14小题,每一小题2分,共28分〕1二、填空题〔本大题共10空,每空2分,共20分〕15. 616. 337137--⎛⎝ ⎫⎭⎪17. 418. –1019. η1+c<η2-η1>〔或η2+c<η2-η1>〕,c 为任意常数 20. n -r21. –522. –223. 124. z z z z 12223242++-三、计算题〔本大题共7小题,每一小题6分,共42分〕25.解〔1〕AB T=120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 〔2〕|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·〔-2〕=-128 26.解 311251342011153351111113100105530------=-----=5111111550----=5116205506255301040---=---=+=. 27.解 AB =A +2B 即〔A -2E 〕B =A ,而 〔A -2E 〕-1=2231101211431531641--⎛⎝ ⎫⎭⎪⎪⎪=-----⎛⎝ ⎫⎭⎪⎪⎪-.所以B=<A-2E>-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=3862962129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为〔2,1,1〕.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解〔2,1,1〕T,组合系数为〔2,1,1〕.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102000620328209632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.〔1〕秩〔B〕=3,所以秩〔A〕=秩〔B〕=3.〔2〕由于A与B的列向量组有一样的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组.〔A的第1、2、5列或1、3、4列,或1、3、5列也是〕30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=〔2,-1,0〕T, ξ2=〔2,0,1〕T. 经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪. 对角矩阵D=100010008-⎛⎝⎫⎭⎪⎪⎪.〔也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.〕31.解 f<x1,x2,x3>=〔x1+2x2-2x3〕2-2x22+4x2x3-7x32=〔x1+2x2-2x3〕2-2〔x2-x3〕2-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪,即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩.经此变换即得f<x1,x2,x3>的标准形 y12-2y22-5y32.四、证明题〔本大题共2小题,每一小题5分,共10分〕32.证由于〔E-A〕〔E+A+A2〕=E-A3=E,所以E-A可逆,且〔E-A〕-1= E+A+A2.33.证由假设Aη0=b,Aξ1=0,Aξ2=0.〔1〕Aη1=A〔η0+ξ1〕=Aη0+Aξ1=b,同理Aη2= b, 所以η1,η2是Ax=b的2个解.〔2〕考虑l0η0+l1η1+l2η2=0, 即〔l0+l1+l2〕η0+l1ξ1+l2ξ2=0.如此l0+l1+l2=0,否如此η0将是Ax=0的解,矛盾.所以l1ξ1+l2ξ2=0. 又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关.。

线性代数-期末测试题及其答案

线性代数-期末测试题及其答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得分 阅卷人
五、 (10 分)已知向量组 A :
a1 (1,1,1,1)T , a2 (1, 1,1, 1)T , a3 (1,3,1,3)T , a4 (1, 1, 1,1)T .
(1)求向量组 A : a1 , a2 , a3 , a4 的秩及其一个最大无关组 ; (2)将不属于最大无关组的向量用最大无关组线性表示.
Ax b 一定无解 Ax 0 必有非零解

4.设 A 为 n 阶方阵,且 R( A) r n ,则在 A 的列向量中 (
… … … … … … … … … 密 … … … … … … … … 封 … … … … … … … … 线 … … … … … … … …
得分 阅卷人
一、填空题(每小题 3 分,共 15 分)
2
( D ) ( A E) A 2 A E ( )
2.若 n 阶矩阵 A 存在一个 s 阶非零子式,而且 A 的所有的 t 阶子式都等于零,则 (A) t R( A) s (B) s R( A) t (C) t R( A) s
(D) s R( A) t
试卷适用班级
山东交通学院期末考试 线性代数
得分 学号 阅卷人
课程试卷(B)卷
2009——2010 学年第一学期
得分 阅卷人
第3 页
八、 (15 分)设
共3 页
2 0 0 A 0 3 2 , 0 2 3
x1 x2 x3 1 七、 (15 分)问 取何值时,非齐次线性方程组 x1 x2 x3 x x x 2 2 3 1
试卷适用班级
理工科 08 级、专升本 09 级 、路专 08 级等
… … … … … … … … … 密 … … … … … … … … 封 … … … … … … … … 线 … … … … … … … …
(1)有惟一解; (2)无解; (3)有无穷解?并在有无穷多解时求其通解.
求一个正交矩阵 P , 使 P1 AP 为对角阵.
( A )必有 r 个列向量线性无关 ( B ) 任意一个列向量都可由其中 r 个列向量线性表示 ( C )任意 r 个列向量都构成最大无关组 ( D )任意 r 个列向量线性无关 5. 3 阶方阵 A 与 B 相似, A 的特征值分别为 2, 2,1 ,则 2( B E ) ( )
姓名
班级
姓名
三、 (10 分)计算行列式 D
1 1 2
理工科 08 级、专升本 09 级 、路专 08 级等
1 1 1 4.设 A 1 k 1 ,若 R A 1 ,则 k 1 1 k
5.二次型 f x 4 y 2 xz z 的矩阵是
2 2 2
… … … … … … … … … 密 … … … … … … … … 封 … … … … … … … … 线 … … … … … … … …
姓名
得分 阅卷人
六、 分) X 为 n 维列向量,X T X 1 , H E 2 XX T , (10 设 令
证明 H 是对称的正交阵.
班级
理工科 08 级、专升本 09 级 、路专 08 级等
山东交通学院期末考试
得分 阅卷人 学号
线性代数
课程试卷( B )卷
2009——2010 学年第 一 学期
第 2 页
共 3 页
2 3 2 1 1 0 ,解矩阵方程 四、 (10 分)设 A AXA E 1 2 1
(其中 A 是矩阵 A 的伴随矩阵).
4 1 3
得分 阅卷人
二、单项选择题(每小题 3 分,共 15 分)
1. A, B 均为 n 阶方阵,则下列等式中一定正确的是( ( A ) ( A B) A 2 AB B
2 2 2 2 2

( B )
( AB) k Ak B k
2 2
试卷适用班级
( C ) ( A B) A 2 AB B
山东交通学院期末考试 线性代数 课程试卷( B )卷
题号
学号
2009——2010 学年第一学期
3.若齐次线性方程组 Amn x 0 中 m n ,那么 ( ( A ) ( C )
第 1 页
)
共 3 页








总分Байду номын сангаас
审核
得分
Ax b 必有无穷多解 Ax 0 仅有零解
( B ) ( D )
1.四阶行列式 D 中含有因子 a12 a21a33 的项是 2.设 A 为 4 阶方阵,且 A 2 ,则 2 A
T T
( A ) 2
( B ) 4
( C ) 8
( D ) 16
T

T
1
得分 阅卷人
1 1 3
1 0 1
1 5 3
班级
3.向量组 a1 (1, 0, 0) , a2 (0,1, 0) , a3 (1,1, 0) 的一个最大无关组是
相关文档
最新文档