平面直角坐标系(基础)知识讲解教学内容
《平面直角坐标系》优秀教案(精选12篇)
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
平面直角坐标教案5篇
平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。
平面直角坐标系--教学设计
“平面直角坐标系”教学设计人教版义务教育教科书数学七年级下册第七章第一节第2课时一、教学内容和内容解析《平面直角坐标系》是人教版《义务教育教科书·数学》七年级下册第七章第一节的第2课时的内容.“平面直角坐标系”是在“数轴”的基础上发展起来的.平面直角坐标系使点与数的关系从一维空间过渡到二维空间,建立了有序实数对与平面内的点的一一对应关系,架起了“数”与“形”之间的桥梁,构成了更广范围内的数形结合、数形互相转化的理论基础.“平面直角坐标系”是今后学习函数、函数与方程、函数与不等式和解析几何的必要知识,也是今后学习的重要数学工具.二、教学目标和目标解析◆教学目标1.理解平面直角坐标系的有关概念及平面内点的坐标的意义.2.掌握平面直角坐标系中点与坐标(有序实数对)的一一对应关系.3.通过建立平面直角坐标系,体验数形结合的思想.4.通过用平面直角坐标系解决数学问题,初步建立学生的几何直观.5.了解平面直角坐标系的建立过程与意义,体会平面直角坐标系的价值,感受笛卡尔的探索精神,增强对数学的求知欲.◆教学目标解析为什么要建立平面直角坐标系、平面直角坐标系有哪些构成要素是本节课的重要内容,教学中根据七年级学生虽然以抽象思维为主,但很大程度上依赖形象思维的认知特点,采用从实际情境中抽象出数学问题,由对实际问题的解决提升学生认识,再回到解决实际问题,即:实践—理论—实践的教学过程.理解平面直角坐标系中点与坐标的对应关系是本节课的另一个重要内容.在教学中通过“数形结合”,了解平面直角坐标系的象限,并通过由点写坐标和由坐标找点等数学活动,让学生理解点与有序实数对的“一一对应”关系.三、教学问题诊断分析由于学生第一次从一维空间的数轴过渡到二维空间的平面直角坐标系,在认知上理解如何建立平面直角坐标系比较困难,理解平面直角坐标系中点与坐标的一一对应关系要求学生有较强的抽象思维能力.因此,本节课的教学重点和难点分别为:◆教学重点:1.平面直角坐标系的相关概念;2.由点求出坐标及根据坐标确定点的位置;◆教学难点:理解平面直角坐标系建立的必要性以及在平面直角坐标系中点与有序实数对的一一对应关系.根据教学目标、重难点及学生认知水平,这节课主要采用情景激趣、自主学习尝试、合作探究交流等教学方法.四、教学条件支持分析学校辅有电子白板、几何画板、实物展台等现代教学技术,本节课充分利用PPT课件和现代教学技术,展示平面直角坐标系的画法及探究点的坐标,并利用实物展示台展示学生掌握情况,点拨释疑.五、教学过程(一)建立模型,导入新课情境展示:多媒体课件展示阆中古城的文化宣传片.【设计意图】通过欣赏学生参观的阆中古城宣传片,让数学课堂充满人文、文化魅力,培养和提升学生的数学文化素养.出示学生参观的南充阆中古城的照片和阆中古城的景点路线图:问题1:如果引入网格线,如何描述小刚、小伙伴A和小伙伴B的位置?【设计意图】以学生参观了的“阆中古城”作为问题情境,贴近生活实际,有利于调动学生学习的热情;复习、巩固数轴的“三要素”;也为学习“平面直角坐标系”起着“先行组织者”的作用.问题2:在小刚的正南方向3格处有一个小伙伴C ,以小刚为原点,能否类比点A 、点B 的方法表示点C 的位置?.【设计意图】通过建构“竖”数轴,与前面的“横”数轴相呼应,为一维空间过渡到二维空间搭好“脚手架”.思考:这两条数轴有什么共同特征?问题3:如何表示不在同一条直线上的小刚和小伙伴A ,B ,C 的位置?思考:平面直角坐标系与数轴相比有什么优势?【设计意图】连续三个问题的提出,以具体点的表示,帮助学生理解建构平面直角坐标系的必要性,让学生体会由实际问题抽象成数学模型的过程.史料介绍:介绍法国数学家笛卡尔及他发现平面直角坐标系的相关材料.【设计意图】通过介绍笛卡尔建立平面直角坐标系的故事,一方面激发学生学习兴趣,另一方面,鼓励学生像笛卡尔一样:关注生活,善于观察、勤于思考.(二)活动引领,探究新知活动1 自学明晰概念(阅读课本第66-67页).思考:①说一说组成平面直角坐标系的两条数轴具备什么特征? ②什么是横轴?什么是纵轴?什么是坐标原点? ③坐标平面点的坐标具体怎么表示?【设计意图】通过问题引领学生自主学习,进一步明确平面直角坐标系的相关概念;同时培养学生表达能力.O 12345-1-21234-1-2-3-3-4-4A BC追问:你会画一个平面直角坐标系吗?试一试.(教师先在黑板上画出平面直角坐标系,然后巡视指导,把学生有问题的坐标图形进行投影,让其他学生找出错误,并进行纠正)【设计意图】让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯.活动2 由点写出坐标问题4:你能写出图中平面内点P的坐标吗?怎么找到的?由点A分别向x轴和y轴作垂线,垂足在x轴上的坐标是3,垂足在y轴上的坐标是4,有序实数对(3,4)就是点P的坐标.【设计意图】由点写出坐标,让学生理解平面内点的坐标意义,渗透由“形”到“数”.问题解决:怎么用坐标表示小刚和他的四个小伙伴A,B,C,D在阆中古城的位置?【设计意图】让学生体会用已建立的平面直角坐标系解决实际问题.游戏互动:由其中一位同学作为小老师,对几何画板课件中的点提问其坐标,由其他同学回答。
《平面直角坐标系》说课稿
《平面直角坐标系》说课稿《平面直角坐标系》说课稿1一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。
如果没有透彻理解这部分知识,就很难学好整个一章内容。
二、教学目标1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。
4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。
1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。
恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。
因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。
三、重点难点1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。
2、教学难点:⑴平面直角坐标系产生的过程及其必要性;⑵教材中概念多,较为琐碎。
如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
四、教法学法本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
专题03 平面直角坐标系(专题详解)(解析版)
专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
3.2《平面直角坐标系》(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。
(完整版)平面直角坐标系知识点总结
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
浙教版数学八年级上册《4.2 平面直角坐标系》教案1
浙教版数学八年级上册《4.2 平面直角坐标系》教案1一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握平面直角坐标系的定义、各象限内点的坐标的符号特征,以及坐标轴上点的坐标特点。
通过本节课的学习,为学生后续学习函数、几何等知识打下基础。
二. 学情分析学生在七年级已经学习了平面图形的坐标表示,对坐标的概念有一定的了解。
但他们对平面直角坐标系的理解还不够深入,对于坐标系中各象限内点的坐标符号特征以及坐标轴上点的坐标特点还需要进一步巩固。
三. 教学目标1.知识与技能:使学生掌握平面直角坐标系的定义,理解各象限内点的坐标符号特征,以及坐标轴上点的坐标特点。
2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标符号特征。
2.难点:坐标轴上点的坐标特点,以及坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与,提高他们的学习兴趣和动手能力。
六. 教学准备1.教具:黑板、粉笔、多媒体课件。
2.学具:练习本、尺子、圆规。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的坐标系图片,如地图、股市走势图等,引导学生关注坐标系在实际生活中的应用。
提问:这些图片中的点是如何用坐标表示的?引发学生对坐标系的思考。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及各象限内点的坐标符号特征。
通过示例,让学生直观地理解坐标轴上点的坐标特点。
3.操练(10分钟)让学生分组讨论,用坐标表示给定的点,并判断这些点位于哪个象限。
每组选出一个代表进行汇报,师生共同评价、纠正。
4.巩固(10分钟)出示一些坐标系题目,让学生独立完成,检查他们对平面直角坐标系的理解。
平面直角坐标系(基础)知识讲解
平面直角坐标系(基础)知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a, b).要点诠释:有序,即两个数的位置不能随意交换,(a, b)与(b, a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7, 6)则表示7排6 号.要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).-3-2-10=1-2要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的2.点的坐标对是——对应的.要点三、坐标平面1.象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的I 、n 、ffi 、w 四 个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.■y113 ■笫二象陨2- 「3 -2 -1? III _9 第三象限_3 要点诠释:平面内任意一点 P ,过点P 分别向x 轴、y 轴作垂线,垂足在 x 轴、 y 轴上对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a,b )叫做点P 的坐标,记作:P(a,b),如图2.—3—2- 一 10要点诠释:--* — * b)I(1 )表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“, 隔开.(2)点P(a , b)中,|a|表示点到y 轴的距离;|b|表示点到x 轴的距离. (3)对于坐标平面内任意一点都有唯一的一对有序数对(X , y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数第一象限I 2 3 XIV 第四彖限(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限.这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0 ; y轴上的点的横坐标为0.(3 )根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为3.关于坐标轴对称的点的坐标特征P(a , b)关于x轴对称的点的坐标为(a,-b); (a, a);(a,-a).P(a , b)关于y 轴对称的点的坐标为 (-a,b);P(a , b)关于原点对称的点的坐标为 (-a,-b)•4.平行于坐标轴的直线上的点 平行于x 轴的直线上的点的纵坐标相同; 平行于y 轴的直线上的点的横坐标相同 【典型例题】 类型一、有序数对 是 排 号. 【思路点拨】 在平面上,一个数据不能确定平面上点的位置. 须用有序数对来表示平面内点 的位置. 【答案】10,13. 【解析】由条件可知:前面的数表示排数,后面的数表示号数 【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换, (a ,b)与(b ,a)顺序不同,含义就不同. 举一反三:【变式】某地10:00时气温是6C,表示为(10 , 6),那么(3 , -7)表示 2.如图,写出点 A 、B 、C 、D 各点的坐标. I I ( I 4匕’L ' 匚闪:匸4 { P IU - I -----< i - » 3 ■ ■ ■1 1 I P 7r. . T. .I..・■亠E …;一耳止!■ IIP I I I E J■ ■ ■ …;丄遁I 1 P L...勺jI I -L -L -【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A 向x 轴作垂线,得A 点的横坐标是2,再由点A 向y 轴作垂线,得A 点的纵坐 标是3,则点A 的坐标是(2, 3),同理可得点B 、C 、D 的坐标.所以,各点的坐标: A(2 , 3), B(3 , 2), C(-2 , 1), D(-1 , -2).【总结升华】平面直角坐标系内任意一点到 x 轴的距离是这点纵坐标的绝对值,离是这点横坐标的绝对值. 举一反三:【变式】在平面直角坐标系中,如果点A 既在x 轴的上方,又在y 轴的左边,【答案】D.【答案与解析】点A ,同理可描出点 B 、C 、D •所以,点A 、B 、C 、D 在直角坐标系的位置如图所示.* 1 :n : 4----- h ----- T- ------y::2■ ■ -P* — ■ ■ ■ 0. : ,FT -4-3之-片 1 1 ■rr E 」千 1 1 £ 1 1 O 1 1 —J 1 1 … J 1 1 邛 i 2 3 护 J■ 1 1 f ■ 一 ■一 占 1-1 — ■ L ■ ■ .忆i 1 1【总结升华】对于坐标平面内任意一点 ,都有唯一的一对有序数对和它对应;对于任意一对y 轴分别为5个单位长度和 4个单位长度,那么点 A 的坐标为().A . (5 , -4)B • (4 , -5)C • (-5 , 4)D . (-4 , 5)到y 轴的住巨且距离x 轴,描出下列各点A(4 , 3), B(-2 , 3), C(-4 , 1), D(2 , -2) •解:因为点A 的坐标是(4 , 3),所以先在x 轴上找到坐标是4的点M ,再在 y 轴上找到坐标是3的点N .然后由点M 作x 轴的垂线,由点 N 作y 轴的垂线,过两条垂线的交点就是有序数对,在坐标平面内都有唯一的一点与它对应, 也就是说,坐标平面内的点与有序实数 对是—对应的. 举一反三:【变式】在平面直角坐标系中,0为坐标原点,已知:A (3, 2) , B ( 5, 0),则△AOB 的面积为【答案】5.类型三、坐标平面及点的特征设M (a , b )为平面直角坐标系中的点.(1 )当a > 0, b < 0时,点M 位于第几象限?(2 )当ab > 0时,点M 位于第几象限?(3 )当a 为任意实数,且b < 0时,点M 位于何处?【思路点拨】(1 )禾9用第四象限点的坐标性质得出答案;(2 )禾9用第二、四象限点的坐标性质得出答案;(3 )禾9用第三、四象限和纵轴点的坐标性质得出答案.【答案与解析】ab > 0时,即a , b 同号,故点 M 位于第一、三象限;a 为任意实数,且b <0时,点M 位于第三、四象限和纵轴的负半轴.本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.举一反三:【变式1】(2015?威海)若点A (a+1 , b2)在第二象限,则点 B (之,b+1 )在( )解: VM (a ,b )为平面直角坐标系中的点.(1)a > 0,b < 0时,点M 位于第四象限;【总结升华】【答案】解:由 A ( a+1 , b 2)在第二象限,得解得 a<T , b > 2 .由不等式的性质,得2 > 1, b+1 > 3,点B(2, b+1)在第一象限,故选:A .【变式2】若点P (a ,b)在第二象限,则:5.已知点A(-3 , 2)与点B(x , y)在同一条平行于于3,求点B 的坐标.3-2-10-1 -2 -3【思路点拨】由“点A(-3 , 2)与点B(x , y)在同一条平行于y 轴的直线上”可得点B 的横坐标; 由“点B 到x 轴的距离等于3”可得B 的纵坐标为3或3即可确定B 的坐标. 【答案与解析】A.第一象限B.第二象限C.第三象限D.第四象限【高清课堂:第一讲平面直角坐标系1 369934练习3】(1) P1 (a ,-b)在第 象限;(2)P2 (-a ,b)在第 象限;【答案】 P3 P4 (-a ,-b)在第 (b ,a )在第象限;象限.(1 )三;(2) 一; (3)四;(4)四.y 轴的直线上,且点B 到x 轴的距离等解:如图,3 -2 TO-2M -3•••点B与点A在同一条平行于y轴的直线上,•••点B与点A的横坐标相同,•••点B到x轴的距离为3,•••点B的坐标是(-3 , 3)或(-3 , -3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为(A. (3, 0) B . (3 , 0)或(-3 , 0)C. (0, 3)D. (0 , 3 )或(0, -3)【答案】B.【高清课堂:第一讲平面直角坐标系1 369934 练习4 (5)1【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2, 5,则P 的坐标是;若去掉点P 在第二象限这个条件,那么P 的坐标是答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).Welcome To Download !!!欢迎您的下载,资料仅供参考!。
《平面直角坐标系》基础知识专题
第七章《平面直角坐标系》基础知识专题一.知识点1、有序数对:有顺序的两个数a与b组成的数队,叫做。
2、平面直角坐标系:在平面内画两条、的数轴,组成平面直角坐标系。
水平的数轴称为x轴或,取为正方向。
竖直的数轴称为y轴或 ,取为正方向。
两坐标轴的交点为平面直角坐标系的。
3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是该点的,垂足在y轴上的坐标是该点的。
4、点的坐标特征:(坐标轴上的点不属于任何象限)第一象限:( +,+)第二象限:( )第三象限:( )第四象限:( )横轴上的点:(x,0) 纵轴上的点:(0,y)5、距离问题:点(x,y)距x轴的距离为距y轴的距离为6、角平分线问题若点(x,y)在第一、三象限角平分线上,则若点(x,y)在第二、四象限角平分线上,则7、对称问题:两点关于x轴对称,则相同相反关于y轴对称,则相同相反8、中点坐标:点A(x1,y1)点B(x2,y2),则AB中点坐标为9、平行于x轴的直线上的点的相等平行于y轴的直线上的点的相等10、平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点( )向左平移a个单位长度,可以得到对应点( )向上平移b个单位长度,可以得到对应点()向下平移b个单位长度,可以得到对应点( )二、练习1. 下列各点中,在第二象限的点是( )A.(2,3)B. (2,-3) C.(-2,-3)D. (-2,3)2. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是( )A.(-1,2) B. (-1,5) C. (-4,-1) D.(-4,5) 3.如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1 B. a=-1 C. a>0 D.a的值不能确定4. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5) D. (-3,-5)5. 若点P(a,b)在第四象限,则点M(b-a,a-b)在( )A.第一象限B.第二象限C. 第三象限D.第四象限6.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(–9,– 4)7.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2) 9. 点M(a,a-1)不可能在()A.第一象限B. 第二象限 C. 第三象限D.第四象限-)所在象限为( )10.点A(4,3A. 第一象限B. 第二象限C.第三象限 D. 第四象限-)在( )11.点B(0,3A.在x轴的正半轴上 B.在x轴的负半轴上C.在y轴的正半轴上 D.在y轴的负半轴上12.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(3,2) B . (3,2--) C. (2,3-) D.(2,3-)13.某同学的座位号为(4,2),那么该同学的所座位置是( )A. 第2排第4列B. 第4排第2列 C . 第2列第4排 D. 不好确定14. 一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,–1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)15.在平面直角坐标系中,点(1,2m +1 )一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 16.过点A (-2,5)作x 轴的垂线L,则直线L 上的点的坐标特点是_________.17. 若P(x,y)是第四象限内的点,且2,3x y ==,则点P 的坐标是18.已知点P (0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.19.已知点M(2m +1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m =20、已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,则a 的取值范围是。
《平面直角坐标系》教学设计方案
《平面直角坐标系》教学设计方案教学内容:人教版数学七年级下册第六章平面直角坐标系6.12平面直角坐标系(1课时)教学目标:1、知识与技能:认识并能画出平面直角坐标系;在给定的的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。
2、过程与方法:渗透对应关系,提高学生的数感。
3、情感、态度与价值观:体验数、符号是描述现实世界的重要手段。
教学重点:平面直角坐标系和点的坐标。
教学难点:根据点的位置写出它的坐标,根据点的坐标描出点的位置。
教学思路:复习有序数对,引入点的坐标,提示利用数轴表示直线上点的位置,引起思考表示平面内点的位置需要借助两条数轴,建立平面直角坐标系。
学习用有序数对(点的坐标)来表示坐标平面的点,已知点的坐标在坐标平面描出点。
归纳总结出象限内的点、坐标轴上的点、平行于x轴(y轴)直线上的点、两坐标轴夹角平分线上的点的坐标特征和点到坐标轴的距离。
教学方法:讲授法、谈论法、演示法、练习法相结合教学手段:多媒体和几何画板教学组织形式:班级授课制教学步骤:一、创设情境1、教师出示投影出示下题,由学生口答,复习有序数对的表示方法。
2、观察课件上的数轴及其上的各点,师生共同分析引出点的坐标的概念,体会数与点的一一对应的关系。
3、怎样确定平面内一个点的位置?设计理念:用一道实际生活但又富有挑战的例题来引入新课。
激发学生的学习兴趣,经历并体验解决问题的过程。
进一步提出问题,引发学生思考,带着问题进入下一环节。
二、探究新知1、平面直角坐标系学生讨论,师生借助几何画板演示,共同分析必须要两条数轴才能表示平面内一个点的位置,已知数轴都有原点,要在同一平面内两条数轴的原点必须重合。
明确概念:①平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,习惯上取向上为正方向。
两坐标轴的交点为平面直角坐标系的原点。
《平面直角坐标系》教案
《平面直角坐标系》教案精选平面直角坐标系教案。
教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。
教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。
2、把握坐标法解决几何问题的步骤;体会坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要消失正确的背景图案,需要缺点不同的画布所在的位置。
在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P 都可以由惟一的实数对(x,y)确定。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。
教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。
他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。
因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。
三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。
2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。
2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。
2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。
3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。
4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。
5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。
七. 说板书设计板书设计要简洁明了,突出重点。
《平面直角坐标系 》教案 (公开课)2022年人教版数学
7.1.2 平面直角坐标系[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义,在给定的直角坐标系中,会根据坐标描出点的位置;3、会用坐标表示点,能建立适当的直角坐标系,描述物体的位置.[教学重点与难点]1、重点:平面直角坐标系和点的坐标;描出点的位置和建立坐标系.2、难点:根据点的位置写出点的坐标;适当地建立坐标系.[教学过程]一、复习导入1、数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标.[投影1]如图,点A的坐标是2,点B的坐标是-3.C坐标为-4的点在数轴上的什么位置?在点C处.这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了.类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内的点的位置呢?2、写出图中点A、B、C、D、E的坐标..由点的位置可以写出它的坐标,反之,点的坐标怎样确定点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示.如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.探究:如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?y轴是AD所在直线.(2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.二、点的坐标如图,由点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A 的坐标,记作A(3,4).类似地,请你根据课本41面图6.1-4,写出点B 、C 、D 的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后.三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个局部,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限.[投影2]做一做:课本43面练习1题.思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点?原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0.2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离.2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,那么a=______,b=______.3、点M(-2,3)在第 象限,那么点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2, 3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点.六、布置作业〔4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
(学生~基础)坐标方法的简单应用 知识讲解
坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.类型二、用坐标表示平移3.在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【变式2】将点A(2,1)向上平移3个单位长度得到点B的坐标是.4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.。
知识讲解_平面直角坐标系中的基本公式
平面直角坐标系中的基本公式【知识梳理】要点一:直线坐标系(1)定义:一条给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系. 要点诠释:一般地,我们约定数轴水平放置,正方向为从左到右.(2)数轴上的点与实数的对应法则:P ←−−−−→一一对应实数x . (3)记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P (x ).当x >0时,点P 位于原点右侧,且点P 与原点O 的距离|OP |=x ;当x <0时,点P 位于原点左侧,且点P 与原点的距离|OP |=-x要点二:向量及数轴上两点间的距离公式(1)定义:位移是一个既有大小又有方向的量,通常叫做位移向量,本书简称为向量.从点A 到点B 的向量,记作AB .点A 、B 分别叫做向量AB 的起点、终点.向量的长度:线段AB 的长叫做向量AB 的长度,记作|AB |.相等的向量:数轴上同向且等长的向量叫做相等的向量.数量:我们可用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量.要点诠释:要正确区分向量、向量的长度、向量的坐标(数量)这几个概念,它们分别用AB 、||AB 、AB 来表示;两个向量相等,必须长度和方向都相同;零向量是起点和终点重合的向量,它的长度为0,方向不确定.(2)位移向量的和:在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC 叫做位移AB 与位移BC 的和,记作AC AB BC =+.要点诠释:作和向量的规律特点:前一个向量的终点是下一个向量的起点(尾首相接),而和向量是第一个向量的起点指向最后一个向量的终点(首尾相连).(3)数量和:数轴上任意三点A 、B ,C ,都具有关系AC =AB+BC .要点诠释:①这个公式反映了数轴上向量加法的坐标运算法则,是解析几何的基本公式.②数轴上任意三点.A 、B 、C 都有关系AC =AB+BC ,但不一定有|AC |=|AB |+|BC |,它与A 、B 、C 三个点的相对位置有关.(4)数轴上两点间的距离公式:向量的坐标计算公式:设AB 是数轴上的任意一个向量,点A 的坐标为1x ,点B 的坐标为2x ,则21AB x x =-.一般地,数轴上的任意一个向量的坐标等于它的终点坐标减去起点坐标.用d (A ,B )表示A ,B 两点的距离,可得数轴上两点A ,B 的距离公式是21()||||d A B AB x x ==-,.要点三:平面直角坐标系中两点间的距离公式平面上有两点A (1x ,1y ),B (2x ,2y ) ,则两点间的距离为d (A ,B )=|AB |=222121()()x x y y -+-.要点诠释:两点间的距离公式是一个很重要的公式,要熟练地掌握,记住公式的形式,对于两点的横坐标或纵坐标相等的情况,可以直接利用距离公式的特殊情况求解.要点四:中点坐标公式若A (1x ,1y )、B (2x ,2y ),则线段AB 的中点M (x ,y )的坐标计算公式为122x x x +=,122y y y +=. 要点诠释:此公式的推导过程中注意把问题向数轴上转化,体现了数学上的转化思想.要点五:坐标法1.通过建立平面直角坐标系,用代数方法来解决几何问题的方法叫做坐标法,其体现的基本思想是数形结合思想.2.用解析法解决几何问题的基本步骤如下:(1)选择坐标系.坐标系的选择是否恰当,直接关系到以后的论证是否简洁.原则:选择坐标系要使得问题所涉及的坐标中尽可能多地出现零.为此,常常有以下约定:①将图形一边所在的直线或定直线作为x 轴.②对称图形,则取对称轴为x 轴或y 轴.③若有直角,则取直角边所在的直线为坐标轴.④可将图形的一个定点或两个定点连线的中点作为原点.(2)标出图形上有关点的坐标,按已知条件用坐标表示等量关系.(3)通过以上两个程序,把几何问题等价转化为代数式来计算.【典型例题】类型一:向量及数轴上点的距离公式例1.已知A 、B 、C 是数轴上任意三点.(1)若AB =5,CB =3,求AC ;(2)证明:AC+CB =AB ;(3)若|AB |=5,|CB |=3,求|AC |.【答案】(1)2(2)略(3)2或8【解析】 (1)AC =AB+BC =AB -CB =5-3=2.(2)证明:设数轴上A 、B 、C 三点的坐标分别为A x 、B x 、C x ,则AC+CB =(C A x x -)+(B C x x -)=B A x x AB -=,故AC+CB =AB .(3)当点C 在A 、B 两点之间时,由下图①可知|AC |=|AB |-|BC |=5-3=2;当点C 在A 、B 两点之外时,由上图②可知|AC |=|AB |+|BC |=5+3=8.综上所述,|AC |=2或8.【总结升华】 向量及向量长度的计算应熟练地运用公式AB =B A x x -,及|AB |=||||B A A B x x x x -=-进行求解.对于(3)要注意点B (或点C )的位置,若不确定应分类讨论.举一反三:【变式1】已知数轴上A 、B 两点的坐标分别为1x a b =+,2x a b =-.求AB 、BA 、d (A ,B )、d (B ,A ).【答案】2b - 2b 2||b 2||b【解析】 21AB x x =-=()()2a b a b b --+=-,12()()2BA x x a b a b b =-=+--=,d (A ,B )=21||2||x x b -=,d (B ,A )=12||2||x x b -=.【变式2】 关于位移向量,下列说法正确的是 ( )A .数轴上任意一个点的坐标有正负和大小,它是一个位移向量B .两个相等的向量的起点可以不同C .每一个实数都对应数轴上的唯一的一个位移向量D .AB 的大小是数轴上A 、B 两点到原点距离之差的绝对值【答案】 B【解析】 一个点的坐标没有大小,每个实数对应着无数个位移向量。
《平面直角坐标系》教案
《平面直角坐标系》教案教学目标1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2、认识并能画出平面直角坐标系.3、能在给定的直角坐标系中,由点的位置写出它的坐标.教学重点1、理解平面直角坐标系的有关知识.2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标.3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点.4、根据实际问题建立适当的坐标系,并能写出各点的坐标.教学难点1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究.2、坐标轴上点的坐标有什么特点的总结.3、在已知的直角坐标系下找点、连线、观察,确定图形的大致形状4、根据已知条件,建立适当的坐标系教学步骤内容一:感受生活中的情境,导入新课同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:1、你是怎样确定各个景点位置的?2、“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?3、如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?二、分类讨论,探索新知1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.2、平面上有公共原点且互相垂直的2条数轴构成平面直角坐标系,简称为直角坐标系.水平方向的数轴称为x 轴或横轴,竖直方向的数轴称为y 轴或纵轴,它们统称为坐标轴.公共原点O 称为坐标原点.3、2条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记为:第一象限、第二象限、第三象限、第四象限.注意:坐标轴上的点不属于任何象限. 2、例题讲解写出图中的多边形ABCDEF 各顶点的坐标.(1)点B 与点C 的纵坐标相同,线段BC 的位置有什么特点? (2)线段CE 位置有什么特点? (3)坐标轴上点的坐标有什么特点?由B (0,-3),C (3,-3)可以看出它们的纵坐标相同,即B ,C 两点到x 轴的距离相等,所以线段BC 平行于横轴(x 轴),垂直于纵轴(y 轴).内容二:导入新知师:在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点.练习:指出下列各点所在象限或坐标轴:ABC DEF O 11xyAB CDEF1y xA (-1,-2.5),B (3,-4),C (41 ,5),D (3,6),E (-2.3,0),F (0,32),G (0,0)师:由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x 轴、y 轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容.二、新知学习例1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来.(1)D (-3,5),E (-7,3),C (1,3),D (-3,5); (2)F (-6,3),G (-6,0),A (0,0),B (0,3); 观察所描处的图形,它像什么?根据图形回答下列问题: (1)图形中哪些点在坐标轴上,他们的坐标有什么特点?(2)线段EC 与x 轴有什么位置关系?点E 和点C 的坐标有什么特点?线段EC 上其他点的坐标呢?(3)点F 和点G 的横做表有什么共同特点?线段FG 与y 轴有怎样的位置关系? 例2、矩形ABCD 的长宽分别为6,4,建立适当的坐标系,并写出顶点的坐标.例3、如图,正△ABC 的边长为2出示:12、你认为怎样建立适当的直角坐标系?没有一成不变的模式,但选择适当的坐标系可使计算降低难度课程小结1、认识并能画出平面直角坐标系.2、在给定的直角坐标系中,由点的位置写出它的坐标.3、能适当建立直角坐标系,写出直角坐标系中有关点的坐标.4、横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.5、坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0.6、各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-).7、通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容.8、在方格纸上建立适当的直角坐标系,描述物体的位置.课后作业习题5.3和习题5.4。
平面直角坐标系(第一课时)教案
《平面直角坐标系》教案(第一课时)执教人:彭宣武一、教学目标1、知识与技能⑴认识并能画出平面直角坐标系。
⑵能在方格纸上建立适当的直角坐标系,描述物体的位置。
⑶在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
⑷根据平面直角坐标系中点的坐标与点的位置关系,进一步感受点的坐标的特点。
2、过程与方法在“坐标系的建立”、“由坐标找点”及“由点找坐标”等过程中,体会“发现”、“探索”的乐趣,进一步提高学生学生数形结合意识,合作交流意识。
3、情感、态度与价值观在平面直角坐标系的建立过程中,进一步培养“空间观念”,并从中体会到合作的重要性,加强动手、操作能力和观察能力,培养形象思维能力。
二、教学重点正确建立坐标系;确定点的坐标的方法及点的坐标书写方法 三、教学难点点(a,b )与(b,a )的区别及特殊点的坐标的特征 四、教具准备挂图,小黑板 五、教学过程㈠学前准备1、在电影院内如何找到电影票上所指的位置?2、在地图上怎样确定唐山大地震的震中的具体位置? ㈡探究新知1、创设问题情景,引入新知(出示挂图)2、讲解平面直角坐标系的概念⑴平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
⑵x 轴(横轴)、y 轴(纵轴)直角坐标系的原点。
⑶平面直角坐标系,将平面分成了四个部分,强调按逆时针方向旋转。
⑷点P 的坐标的确定方法:过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a,b 分别叫点P 的横坐标和纵坐标,有序实数对(a,b )叫做点P 的坐标。
⑸各象限内的点的坐标的符号特点⑹比较点(a,b )与点(b,a )的区别,揭示有序实数对与坐标平面的点的对应关系。
3、例题教学 ⑴例1题目略学生回答各个顶点的坐标(出示小黑板) ①强调坐标书写方法②坐标轴上的点不属于任何一个象限⑵想一想:学生交流想一想中的问题,总结出一般结论 ①当两点的横坐标相同时,其连线平行于y 轴;当两点的纵坐标相同时,其连线平行于x 轴,反之亦然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系(基础)
知识讲解
平面直角坐标系(基础)知识讲解
【学习目标】
1.理解平面直角坐标系概念,能正确画出平面直角坐标系.
2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.
3.由数轴到平面直角坐标系,渗透类比的数学思想.
【要点梳理】
要点一、有序数对
定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:
有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.
要点二、平面直角坐标系与点的坐标的概念
1. 平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).
要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.
2. 点的坐标
平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.
要点诠释:
(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.
要点三、坐标平面
1. 象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.
要点诠释:
(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.
(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.
2. 坐标平面的结构
坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
要点四、点坐标的特征
1.各个象限内和坐标轴上点的坐标符号规律
要点诠释:
(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.
(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.
2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征
P(a,b)关于x轴对称的点的坐标为 (a,-b);
P(a,b)关于y轴对称的点的坐标为 (-a,b);
P(a,b)关于原点对称的点的坐标为 (-a,-b).
4.平行于坐标轴的直线上的点
平行于x轴的直线上的点的纵坐标相同;
平行于y轴的直线上的点的横坐标相同.
【典型例题】
类型一、有序数对
1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.
【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.
【答案】10,13.
【解析】由条件可知:前面的数表示排数,后面的数表示号数.
【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.
举一反三:
【变式】某地10:00时气温是6℃,表示为(10,6),那么(3,-7)表示
________.
【答案】3:00时该地气温是零下7℃.
类型二、平面直角坐标系与点的坐标的概念
2.如图,写出点A、B、C、D各点的坐标.
【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.
【答案与解析】
解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.
所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).
【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.
举一反三:
【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).
A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)
【答案】D.
3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).
【答案与解析】
解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y 轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.
所以,点A、B、C、D在直角坐标系的位置如图所示.
【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.
举一反三:
【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.
【答案】5.
类型三、坐标平面及点的特征
4.(2014春•夏津县校级期中)根据要求解答下列问题:
设M(a,b)为平面直角坐标系中的点.
(1)当a>0,b<0时,点M位于第几象限?
(2)当ab>0时,点M位于第几象限?
(3)当a为任意实数,且b<0时,点M位于何处?
【思路点拨】(1)利用第四象限点的坐标性质得出答案;
(2)利用第二、四象限点的坐标性质得出答案;
(3)利用第三、四象限和纵轴点的坐标性质得出答案.
【答案与解析】
解:∵M(a,b)为平面直角坐标系中的点.
(1)当a>0,b<0时,点M位于第四象限;
(2)当ab>0时,即a,b同号,故点M位于第一、三象限;
(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.
【总结升华】本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.
举一反三:
【变式1】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,
b+1)在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】解:由A(a+1,b﹣2)在第二象限,得
a+1<0,b﹣2>0.
解得a<﹣1,b>2.
由不等式的性质,得
﹣a>1,b+1>3,
点B(﹣a,b+1)在第一象限,
故选:A.
【高清课堂:第一讲平面直角坐标系1 369934练习3】
【变式2】若点P (a ,b)在第二象限,则:
(1)点P1(a ,-b)在第象限;
(2)点P2(-a ,b)在第象限;
(3)点P3(-a ,-b)在第象限;
(4)点P4( b ,a )在第象限.
【答案】(1)三;(2)一;(3)四;(4)四.
5.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.
【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.
【答案与解析】
解:如图,
∵点B与点A在同一条平行于y轴的直线上,
∴点B与点A的横坐标相同,
∴ x=-3.
∵点B到x轴的距离为3,
∴ y=3或y=-3.
∴点B的坐标是(-3,3)或(-3,-3).
【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.
举一反三:
【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().
A.(3,0) B.(3,0)或(–3,0)
C.(0,3) D.(0,3)或(0,–3)
【答案】B.
【高清课堂:第一讲平面直角坐标系1 369934练习4(5)】
【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P 的坐标是________.
【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).。