2016年重庆一中高2019级高一上期半期考试数学试题卷含答案
最新重庆一中高级高一上期期末考试数学试卷、答案
秘密★启用前2016年重庆一中高2018级高一上期期末考试数 学 试 题 卷 2016.1数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题:(本大题 12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置。
1.已知集合{}{}2,3,4,2,4,6A B ==,则A B =I ( )A.{}2B.{}2,4C.{}2,4,6D.{}2,3,4,62.已知扇形的中心角为3π,半径为2,则其面积为( ) A.6π B.43π C.3π D.23π3.已知1tan 3α=,则222cos 2sin cos ααα-=( ) A.79 B.13- C.13 D.79- 4.三个数20.320.3,log 0.3,2a b c ===之间的大小关系是( )A.a b c <<B.a c b <<C.b a c <<D.b c a <<5.已知在映射f 下,(,)x y 的象是(,)x y x y +-,其中,x R y R ∈∈。
则元素(3,1)的原象..为( ) A.(1,2) B.(2,1) C.(1,2)- D.(2,1)--6.已知函数2sin()(0,)2y x πωϕωϕ=+><的部分图像如图所示,则此函数的解析式为( )A.2sin()26x y π=-B.2sin(4)4y x π=+ C.2sin()26x y π=+ D.2sin(4)6y x π=+7.已知幂函数1()m f x x -=(,m Z ∈其中Z 为整数集)是奇函数。
重庆一中2016-2017学年高一下学期期中考试试卷数学含答案
19.(本小题满分12分)已知点 A, B 分别在射线 CM , CN (不含端点 C )上运动,
MCN
2 ,在 ABC 中,角 A, B, C 所对的边分别是 a, b, c . 3
(1)若 b 是 a 和 c 的等差中项,且 c a 4 ,求 c 的值; (2)若 c
3 ,求 ABC 周长的最大值.
-2-
a11 a12 a13 15.已知数阵 a21 a22 a23 中,每行的三个数依次成等差数列,每列的三个数也 a a 31 32 a33
依次成等差数列,若 a22 6 ,则所有九CB , E 为边 AC 上 16.(原创)在非直角 ABC 中, D 为 BC 上的中点,且 4 S CAB AB AD 一点, 2 BE BA BC , BE 2 ,则 ABC 的面积的最大值为 (其中 S ABC 表示 ABC 的面积).
x2 x2 1, b 2 ( x 0) ; 2 bx b x 1
故b
g ( x)
x2 t 1 1 5 1 2 2 ; x 1 (t 2) 1 t 5 4 2 5 4 2 t
5 1. 2
19.【解答】(1)因为 a, b, c 成等差数列,且公差为2,故 a c 4 , b c 2 ,
-1-
执行框中的②处应填的语句分别是( ) A. i 100 ? n n 1 B. i 100? n n 2 C. i 50 ? n n 2
7.已知平面上一条直线 l 上有三个不同的点 A, B, C , O 是直线 l 外一点,满足
a b 2 1 OA OB OC (a , b R ) , 则 的最小值为( ) 4 4 a b
2019学年重庆市高一上学期期中数学试卷【含答案及解析】
2019学年重庆市高一上学期期中数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________、选择题1.已知集合.「,那么'._■=()A、;__B、_.一 -.:C、:…D2. 式子斗工存.一的值为()_______A、 2 B 、3 C 、3. 下列函数为奇函数的是()A、「 ----------------------------B、_ :C、•「、 -------------------------------D、—r4. 已知「二二-I .,------ ,那么J是*的()条件r —4A、充分不必要___________B、充要____________C、必要不充分__________D、既不充分也不必要5. 已知幂函数,.....1 在实数集「上单调,那么实数■1=()A、一切实数B 、3 或-1 C 、-1 D 、36. 定义在实数集;■■上的函数二满足■■,若「—-I,:,那么点=消的值可以为()A、5_________ B 、-5 ___________ C 、0 ____________ D 、-17. 对于任意的if,以下不等式一定不成立的是()A、.:辱H -------------------------------------------B、]_C、_ ■. - ----------------------D、/">;:8. 以下关于函数; ------- 1 …的叙述正确的是()r —1A、函数一在定义域内有最值B、函数i':■- \在定义域内单调递增C、函数的图象关于点对称D、函数■,—的图象朝右平移3个单位再朝上平移2个单位即得函数•r9. 函数厂*:满足r、. f「,且当丫引时,.| : - _ ,则方程• | ;的所有实数根之和为()A、2 B 、3 __________ C 、4 ____________ D 、110. 已知关于的方程…一、「、一、「- ——「-J有两个不等的实数根,那么[- ■--的取值范围是()A、①炖]________________B、[0.1 ] ____________C、(CU ]_____________D、(CU)f a X11. 已知函数= 一・2 在区间[1.+8)上单调递增,那么实数口的取值范围是()A、(—L3)_________B、(-L3] ____________C、[0-习______________D、[0J)12. 对于任意A € R,函数/(.!)= X- -2^-|.¥-1-«|-|.7--2|+4的值非负,则实数的最小值为()11-5 C 、-3_________________ 、-2 7、填空题13. 将函数「二二― -I _的图象向上平移1个单位,再向右平移后得到函数的,那^2个单位加的表达式为__________________________________________ •14. 已知,那么实数口的最小值为 _______________________________________15. 函数「】•:.-.:* ---是实数集「上的偶函数,并且:的解为(-2.2),贝V £的值为________________ •16. 函数二严,貞町二F —十+,若对于任意的[-L2都存在re[^.2fr+l],使得g 二密⑴成立,则实数庄的取值范围是 __________________三、解答题( ( 9]17. 集合亍(1 )若集合,,只有一个元素,求实数的值;2 )若.,是-的真子集,求实数,的取值范围.T —18・函数■ I ■ ' - ■■■'''•r I r(1 )判断并证明函数的奇偶性;(2 )求不等式—-•—的解集s n19.如图,定义在||-:1 ::上的函数的图象为折线段 ,(1 )求函数 的解析式;(2 )请用数形结合的方法求不等式门;住.[世」\.7门 的解集,不需要证明20.集合貝二<|^+严・3”+号=0.工丘尺},月二{耳|「9、+严带+ 1 = 0“迂应},且 实数.:“ .;11 •C 1)证明:若I | L 八,则i.匚;(2 )是否存在实数一:;,,满足;-且;'.:?若存在,求出.的值,不存在说明理由•21.函数 > 1 ■ I ■I ' ■ ■11■■ •(1 )若函数的值域是一.• I ,求■的值;(2 )若汀込汽]化仝字辽・对于任意 心.9] 恒成立,求■的取值范围(1)请写出函数--■- —I :- 与函数J —-T*Y在一 「I 的单调区间(只写结论,不证明); (2 )求函数 的最值;(3 )讨论方程. • 一 I■实根的个数•22. 上单调递减,在区间)上单调递增;函数.•已知函数 -—■ 1 .第4题【答案】参考答案及解析第1题【答案】 AI【解析】析;A/ = (v|l<^<51.ve.V}={2J^} \^U^={L23.4},故选盘第2题【答案】【解析】第3题【答案】【解析】试题分析;沖函数定义域为[T 」],井且满足/(-x)=/(x),函数州駆甌 沖购定义I 或为/? ;,跚为非奇非偶国数j C 中函数定义域为[71],并目满足 f(-x) = -f(x),国数为奇函断D 中酗定义域再何2。
重庆市重庆一中高一数学上学期期中试题湘教版
秘密★启用前2013年重庆一中高2016级高一上期半期考试数 学 试 题 卷 2013.11一、选择题.( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知映射()():,3,3f x y x y x y →-+,在映射f 下()3,1-的原象是 ( ) (A) ()3,1- (B) ()5,7- (C) ()1,5 (D) 1,23⎛⎫- ⎪⎝⎭2.设集合{|,101},{|,||5}A x x Z x B x x Z x =∈-≤≤-=∈≤且且,则A B U 中的元素个数是 ( ) (A ) 15 (B ) 16 (C ) 10 (D ) 113.“12x -<成立”是“(3)0x x -<成立”的 ( ) (A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件4.下列函数中是奇函数的是 ( ) (A)2()f x x = (B)3()-f x x = (C)()=f x x (D)()+1f x x = 5.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么5[()]2f f 的值是( )(A )32 (B ) 52 (C ) 92 (D ) 12- 6. 函数()()ln 11f x x x =+-+在下列区间内一定有零点的是 ( )(A)[0,1] (B)[2,3] (C)[1,2] (D)[3,4]7.已知不等式|3||4|x x m -+-≥的解集为R ,则实数m 的取值范围( ) (A ) 1m < (B ) 1m ≤ (C ) 110m ≤(D ) 110m < 8.已知定义在R 上的函数()f x 的图象关于y 轴对称,且满足3()()2f x f x =-+,(1)1,(0)2f f -==-,则(1)(2)...(2015)f f f +++的值为 ( )(A )1 (B )2 (C ) 1- (D )2-9(原创).已知函数lg ,010y ()16,102x x f x x x ⎧<≤⎪==⎨-+>⎪⎩若a,b,c 互不相等,且)()()(c f b f a f ==,则abc 的取值范围是 ( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 10. (原创)若关于x 的方程24xkx x =+有四个不同的实数解,则k 的取值范围为 (A )(0,1) (B )(14,1) (C )(14,+∞) (D )(1, +∞)二.填空题(每小题5分,共25分)11.已知{1,2,3,4,5,6},{1,3,4}I A ==,则I C A = . 12.函数22()2x x f x -+=的单调递增区间为 .13.函数()f x =R ,那么a 的取值范围是________ 14.已知53()8f x ax bx cx =++-,且(2)20f -=,则(2)f =15.(原创)设定义在[],(4)a b a ≥-上的单调函数()f x,若函数())g x f m =与()f x 的定义域与值域都相同,则实数m 的取值范围为_________三.解答题.( 本大题共6小题,共75分.) 16.(13分) 计算: (1)3log 5333322log 2log log 839-+- (2)()04130.7533642162---⎛⎡⎤--+-+ ⎣⎦⎝⎭17.(13分)已知集合222{|560},{|180},{|280}A x x x B x x ax C x x x =-+==-+==+-=,若A B ≠∅I ,B C =∅I ,(1)用列举法表示集合A 和集合C (2)试求a 的值。
重庆市第一中学2016-2017学年高一上学期期中考试数学试题Word版含解析
数学试题
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选 项中,只有一项是符合题目要求的 . )
1. 设全集 U 1,2,3,4 ,集合 A 1,3,4 , B 2,4 ,则 CU A B ( )
A. 2
【答案】 B
.
2
e
,e3
考点:函数的零点的判定 .
7. 已知函数 f x
log 2 x x
x
3x0
0 ,则 f
1 f
8
的值是(
)
A. 27
B
.1
C.27
D
27
【答案】 D
1 .
27
【解析】
试题分析:因 f (1) 8
log
2
1 8
3 , 故 f ( 3) 3 3
1
, 应选 D.
27
考点:对数函数指数函数的求值计算 .
【答案】 (1) 1 ,1 ; (2) 单调递增, [0 , ) .
【解析】
试题分析: (1) 借助题设条件运用奇函数的性质求解; (2) 借助题设运用函数的单调性探求 .
试题解析:
( 1)由题意易知 f 0
0
20 20
a 20 20
,故 a
1.
所以 f x
x
x
22
x
x
22
2x
21
2
2x
1 2x
x R,
|x| 3
. 求解时
0 |x| 2
运用分析检验的方法进行分析推证 , 不难求出符合条件的数对为
a2a2
或
重庆一中2019级高一上10月份月考数学(1)
2016年重庆一中高2019级高一上期定时练习一、选择题:本大题共12个小题,每小题5分,共60分.1.设全集}4,3,2,1,0{=U ,集合}4,3,2{},3,2,1,0{==B A ,则)()(B C A C U U 等于( )}0.{A }1,0.{B }4,1,0.{C }4,3,2,1,0.{D2.下列有关集合的写法正确的是( ){0,1,2}}0.{∈A }0{.=∅B ∅∈0.C }{.∅∈∅D3.满足}5,4,3,2,1{}2,1{⊂⊆A 的集合A 的个数是( ).A 3 个 .B 5个 .C 7个 .D 8个4.下列函数中,在区间)1,1(-上是单调递减的函数为( )32.-=x y A xy B 1.=x y C 21.-= x x y D 3.2-= 5.以下从M 到N 的对应关系表示函数的是( ) x y x f y y N R M A =→>==:},0|{,.;22:},,0|{},,2|{.2+-=→∈≥=∈≥=*x x y x f N y y y N N x x x M B ;x y x f R N x x M C ±=→=>=:,},0|{.;xy x f R N R M D 1:,,.=→==; 6.已知函数xy 11-=的定义域是集合S ,则使T S T S =的集合T =( ) }10|.{≥<x x x A 或 }11|.{≥-≤x x x B 或 }10|.{≤<x x C }1|.{≥x x D7.函数2675x x y -+-=的值域是( )]5,11.[-A ]5,1.[B ]5,2.[C ]5,.(-∞D8.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) .A 10 .B 11 .C 12 .D 139.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线)(x f y =,一种是平均价格曲线)(x g y =(如3)2(=f 表示开始交易后第2个小时的即时价格为3元;4)2(=g 表示开始交易后两个小时内所有成交股票平均价格为4元),下面所给四个图像中,实线表示)(x f y =,虚线表示)(x g y =,其中可能正确的是( )10.已知函数3169)(22-+-+-=ax ax x x x f 的定义域是R ,则实数a 的取值范围是( ) 12.-<a A 012.≤<-a B 012.<<-a C 0.≥a D11.已知函数32)(2+-=ax x x f 在)1,1(-上是单调递增的,则a 的取值范围是( )]1,2.[--A ]1,.(--∞B ]2,1.[C ),1.[+∞D12.已知c b a >>,函数c bx ax x f ++=2)(与b ax x g +=)(的图像交于B A ,两点,过B A ,两点分别作x 轴的垂线,垂足分别是D C ,,若0)1(=f ,则线段CD 的长度的取值范围是( ))32,23.(A ),23.(+∞B )32,0.(C ),0.(+∞D 二、填空题:本大题共4小题,每小题5分,共20分.13.已知24)21(x x f =-,则)3(f = .14.函数32)(2-+=x x x f 的递减区间是 .15.已知函数)5(-=x f y 的定义域是]3,1[-,则)42(-=x f y 的定义域是 .16.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ⊆∈,有,D l x ∈+且)()(x f l x f ≥+,则称)(x f 为M 上的l 高调函数,那么实数l 的取值范围是 .三、解答题:本大题6个小题,共70分17.(本小题满分10分)已知}0)1(|{},5|32||{},02411|{22<--+=>-=>+-=a x a x x C x x B x x x A .(1)求B A ;(2)若∅≠C B ,求a 的取值范围.18.(本小题满分12分)},3,4|{},01)1(2|{},04|{222N k k k x x M a x a x x B x x x A ∈≤-===-+++==+=,(1)若7=a ,求B C A U ;(2)如果B B A = ,求实数a 的取值范围.19. (本小题满分12分)已知二次函数)(x f y =的最大值是4,且不等式0)(>x f 的解集是(-1,3).(1) 求)(x f 的解析式;(2) 若存在]2,2[-∈x ,使得0)(≤-m x f 成立,求实数m 的取值范围.20. (本小题满分12分)已知某企业原有员工1000人,每人每年可为企业创利润15万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的2%,并且每年给每位待岗员工发放生活补贴1万元.局评估,当待岗员工人数x不超过原有员工1.4%时,留岗员工每人每年可为企业多创利润)22(x-万元;当待岗员工人数x 超过1.4%时,留岗员工每年可为企业多创利润1.8万元.(1)求企业年利润y (万元)关于待岗员工人数x 的函数关系式)(x f y =;(2)为使企业年利润最大,应安排多少员工待岗.21.(本小题满分12分) 设定义在R 的函数)(x f 对于任意实数y x ,都有2)()()(-+=+y f x f y x f 成立,且1)1(=f ,当0>x 时,2)(<x f .(1)判断)(x f 的单调性,并加以证明;(2)试问:当21≤≤-x 时,)(x f 是否有最值?如果有,求出最值;如果没有,说明理由.(3)解关于x 的不等式)2()2()()(22b f x f x b f bx f -<-,其中22>b .22.(本小题满分12分)设0,0>>b a ,函数b a bx ax x f +--=2)(.(1)写出)(x f 的单调区间;(2)若)(x f 在[0,1]上的最大值为a b -,求ab 的取值范围; (3)若对任意正实数b a ,,不等式|2|)1()(a b x x f -+≤恒成立,求正实数x 的最大值.。
2016年XXX高2019级高一上期半期考试数学试题卷含答案
2016年XXX高2019级高一上期半期考试数学试题卷含答案2016年XXX高2019级高一上学期期中考数学试题第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集$U=\{1,2,3,4\}$,集合$A=\{1,3,4\}$,$B=\{2,4\}$,则$(C\cup A)B=$()A。
$\{2\}$ B。
$\{2,4\}$ C。
$\{1,2,4\}$ D。
$\varnothing$2.函数$f(x)=ax^{-1}-1(a\neq1)$的图像必经过定点()A。
$(0,-1)$ B。
$(1,-1)$ C。
$(-1,1)$ D。
$(1,0)$3.在$0\leq\theta\leq2\pi$范围内,与角$-\frac{4}{3}\pi$终边相同的角是()A。
$\frac{2}{3}\pi$ B。
$\frac{4}{3}\pi$ C。
$-\frac{2}{3}\pi$ D。
$-\frac{4}{3}\pi$4.函数$f(x)=\frac{1}{3}-2x+\log(x+2)$的定义域是()A。
$[-2,3)$ B。
$(-2,\frac{3}{2}]$ C。
$(-2,+\infty)$ D。
$(\frac{2}{3},+\infty)$5.已知$a=0.4\overline{2},b=20.\overline{3},c=\log_{5}0.3$,则()A。
$c<a<b$ B。
$a<b<c$ C。
$c<b<a$ D。
$a<c<b$6.函数$f(x)=\ln{x}-\frac{1}{x}$的零点所在的大致区间是()A。
$(\frac{1}{e},1)$ B。
$(1,e)$ C。
$(e,e^2)$ D。
$(e^2,e^3)$7.已知函数$f(x)=\begin{cases}\log_{2}x& (x>1)\\3x&(x\leq1)\end{cases}$,则$f(f(1))=$()A。
(完整版)重庆市第一中学2016_2017学年高一数学上学期期末考试试题
2017 年重庆一中高2019 级高一上期期末考试数学试题卷一. 选择题 .( 每题5分,共 60 分)1. 已知扇形的半径为 2 ,弧长为 4 ,则该扇形的圆心角为()A . 2B . 4C . 8D . 162. 设全集 U {1,2,3,4,5} ,会合 M {1,4} , N {1,3,5} ,则 N C U M 等于 ( ) A.{1,3} B .{1,5} C .{3,5} D . {4,5}3.14()sin3A. 3B. 1C. 1D. 32 2 224. 幂函数 y x( p 1)(4 p) ( p N ) 为偶函数,且在0, 上单一递加,则实数p ()A . 1B . 2C . 4D . 55. 已知( , ),且 sin 5 ,则 tan 2 ()52A .2B .1C .4D . 42 3 36. 函数 y a sin x b cos x 知足 f ( 2 x) f (x) ,那么a=()3 bA .3B . 1C .- 3D .- 17. 已知函数 f ( x) log 1 sin 2 x ,则以下说法正确的选项是()2A .函数f (x)为奇函数B .函数 f ( x) 有最大值0C .函数f (x)在区间( k ,2 k )(k Z) 上单一递加4D .函数f (x)在区间(0, ) 上单一递加48. 函数 f ( x) Asin( x )( A 0, 0, ) 的图象如下图,为2了获得 g( x) Asin 2x的图象,则只要将 f (x) 的图象()A .向左平移个长度单位12B .向右平移 个长度单位12C .向左平移 个长度单位6D .向右平移 个长度单位69. 已知函数 f ( x)2 xx 2 ,则不等式 f (2sin x) 3,x[2 , ] 的解集为()2A .(, )B ..D .6 6(, 3 ) C [,)(, ][ ,)( , ]3266 22 3 3 210. 若 关 于 x 的 函 数 f ( x) t x22 x t2x 2si n x(t 0)的最大值为M ,最小值为 N ,且x 2 tM N 4 ,则实数 t 的值为( )A . 1D . 411. (原创)已知对于 x 方程 log x1 1.4 x 1 ,则该方程的全部根的和为()12. (原创)已知f (x) 是定义在 R 上的奇函数,对随意 x R 知足 f (2 x 8) f (2 x ),且当x (0,4) 时, f (x)x 2x cosx 1 ,则函数 f ( x) 在区间 [ 4,12] 上的零点个数是()A .7B. 9C. 11D.13二. 填空题 .( 每题 5 分, 共 20 分)13. 已知角的始边落在 x 轴的非负半轴上,且终边过点 P( 3,1) ,且 [0,2 ),则.14. 求值: 2log 2 (lg5)lg 2ln e 2 ________ ___. (此中 e 为自然对数的底)15.求值: 2cos10 (1 sin10 ) . cos 2016. 已知二次函数 f ( x) ax2 bx c 知足条件:① 4a b 2a ;② x[ 1,1]时, f (x)1 ,若对随意的 x [ 2, 2] ,都有 f ( x) m 恒建立,则实数 m 的取值范围为 .三.解答题 .( 共 6小题,共 70分) 17.(本小题满分 10 分)已知( 1)求sin的值;(0, ), tan3,2 4(2)求 2sin( ) cos( )的值.sin( ) cos( )2 218. (本小题满分12 分)已知函数f (x) 2 log 2 x 的定义域为 A ,关于x的不等式x2 (a2 a) x a3 0 的解集为B,此中a 0 ,(1)求A;2ABB,务实数 a 的取值范围.()若19. (本小题满分12 分)在ABC 中,A, B为锐角,角A, B, C 所对应的边分别为a,b, c ,且cos 2A 3 , sinB 10 .5 10(1)求A B 的值;( 2)求函数 f (x) cos 2x 2 5 sin Asin x 的最大值.20. (本小题满分 12 分)已知函数 f ( x) (sin x cos x)2 2cos 2 x 2(0) .( 1)若f ( x)的最小正周期为,求 f (x) 在区间[ , ] 上的值域;4 4( 2)若函数 f ( x) 在 ( , ) 上单一递减.求的取值范围.221. (原创)(本小题满分 12 分)已知 f (x) 2x2 x , 定义在 (0,) 上的连续不停的函数 g( x) 知足 g( xy) g( x)g( y) ,当 x 1时, g( x)0 且 g(2)2 .( 1)解对于 x 不等式:f (2x) 5 f ( x)2 0 ;2( 2)若对随意的 x 1 (1, ) ,存在 x 2 R ,使得 g 2 ( x 1 )(1a) g( x 12) g (4) a f (2 x 2 ) 4 f ( x 2 ) 7 建立,务实数 a 的范围 .222. (原创)(本小题满分 12 分)已知函数f ( x) 2 x 1 , g( x)x 211 x3 ,333 2 32( 1) a R ,若对于 x 的方程log 4 [ f ( x 1) ] log 2 ( a x) log 2 ( 4 x ) 有两个不一样解,2 4务实数 a 的范围;( 2 )若对于 x 的方程: x[ f ( x) g ( x)] mx 0 有三个不一样解 0, x 1, x 2 (x 1 x 2 ) ,且对随意的x [ x 1 , x 2 ] , x[ f ( x) g( x)] m( x 1) 恒建立,务实数 m 的范围 .2 017 年重庆一中高 2019 级高一上期期末考试数 学 答 案一、选择题 ACDBDCCDCBDB二、填空题13.514.3 15.3 16. ( , 5]64三、解答题17. 解:( 1) sin3 ;( 2) 2sin( ) cos( ) 2sin cos 2tan 1 2 .5sin() cos() cos sin1 tan72218. 解:( 1) 2 log 2 x 0,log 2 x 2 log 2 4, A (0, 4] ;( 2)因为 AB B 因此BA ,x 2(a 2 a) x a 3 0(x a)( x a 2 ) 0 ,若 a 1 , B,切合题意;若 a 1 , B (a,a 2 ) (0, 4] ,则 a 2 4 1 a 2 ;若 0a 1, B (a 2 , a)(0, 4] ,则 0 a 1,综上, 0 a 2 .19. 解:(Ⅰ)A 、B 为锐角, sin B10 , cos B1 sin2 b3 101010又 cos2A1 2sin2 A3 , sin A5 , cos A1 sin2 A 2 5 ,5 55 cos( AB) cos A cos B25 3 10 5 10 2 0 A Bsin Asin B5105102A B;4( 2) f ( x) cos 2x 2 5 sin Asin x cos 2x 2sin x2sin 2 x 2sin x12(sin x 1)2 3 ,因此函数的最大值为 3 .2 2 220. 解:(Ⅰ)f ( x) (sin x cos x)22cos2x 2 sin 2x cos2x sin 2 x 1 2cos 2 x 2sin 2 x cos2 x 2 sin(2 x ) , f (x) 的最小正周期为, T 2 ,所以241, f (x ) 2 s i nx( 2 , x) [ , ] 时, 2x4 [4,3] , sin(2 x ) [2,1],4 4 4 4 4 2 因此函数值域为 [ 1, 2];( 2)0 时,令2k 2 x 3, k Z ,f ( x)的单减区间为2 42k2k[ k , 5 k] ,由题意 ( , ) [ k 5, k ,] 可得8k2,解得8 8 2 8 8 581 2k 5 k, k Z,只有当 k 0 时,15 .4 80 4 821. 解:( 1)f (2x) 5f ( x) 0 (22 x 2 2 2 x ) 5 (2x 2 x) 05 2 1)(2 x2(2 x 2 x ) 0 (2x 2) 0,解得 1 x 1 ;2 2( 2)y f (2 x) 4 f ( x) 7 (2 2 x 2 2 2 x) 4(2 x 2 x ) 5(2 x 2 x 2) 2 1 ,问题转变为对随意的x (0, ) ,有g2(x1) (1 a)g ( x12 ) g(4) a 1 恒2建立,即 g 2 ( x) (2 a) g( x) 4 a 1 恒建立,下证函数g ( x) 在(0, ) 上单增:取任意的 x1 x2 (0, ) ,g ( x1 ) g( x2 ) g( x1 ) g( x1 x2 ) g(x2 ) 0 ,因此函数 g( x) 在 (0, ) 上单增,x1 x1因为 g(1) 0 , g(2) 2 ,因此 x1 (1, ) 时函数可取到 (0, 2] 之间的全部值,g2 (x) 2g( x) 3( g( x) 1) 2恒建立,因此 a 2 2 ,当 g( x) 2 1时取等.ag( x) 1 g( x) 1log 4 (x 1) log a xx a1) ( ax )2,即22. 解:( 1 )原方程可化为,且,即 (x4 x 1 x 44 x x 1a x,且方程要有解, a 1 ,4 x①若 1 a 4,则此时 1x a 4 ,方程为 x 26 x a 4 0 ,20 4a 0 ,方程的解为x 35 a ,仅有 x35 a 切合 1x a 4 ;②若 a4,此时 1 x 4 ,20 4a 0 ,即 4 a 5 ,方程的解为x 3 5 a (1,4) 均切合题意,综上4 a5 ;( 2)原方程等价于x( x 2 3x2 m) 0 ,则 x 1 , x 2 为 x 2 3x 2m 0 的两个不一样根,因此9 4(2m) 0 ,解得 m1 ,而且令 h( x) x( x2 3x 2 m) ,4又对随意的x [ x 1, x 2 ] , x[ f (x) g(x)]m(x 1) 恒建立,即 x[ f ( x)g ( x)] mxm ,取x x 1 ,有 m 0 ,即 m 0,综上 1m 0,4由 维 达 定 理 x 1 x 2 2m 0 , x 1x 23 ,0 所 以 0 x 1 x 2 , 则 对 任 意 x ( x 1 , x 2 ) ,h( x) x(x 23x2 m) x( x x 1)( x x 2 ) 0 ,且 h max ( x) h(x 1) 0 ,因此当1 m 0 时,14原不等式恒建立,综上m 0 .4。
重庆一中高2016级14-15学年(上)半期试题——数学文
秘密★启用前2014年重庆一中高2016级高二上期半期考试数 学 试 题 卷(文科)2014.11本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
一、选择题(本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求.)1. 直线10x y -+=的倾斜角为( )A .30B .45C .60D .1202. 如果命题“p q ∨”为真命题,则( )A .,p q 中至少有一个为真命题B .,p q 均为假命题C .,p q 均为真命题D .,p q 中至多有一个为真命题 3. 全称命题“2,230x R x x ∀∈++≥”的否定是( )A. 2,230x R x x ∀∈++<B.2,230x R x x ∀∉++≥C. 2,230x R x x ∃∈++≤D.2,230x R x x ∃∈++< 4.已知直线,,m n l ,若//,m n n l P =,则m 与l 的位置关系是( ) A.异面直线 B.相交直线C.平行直线D.相交直线或异面直线5.(原创题)设x R ∈,则“12x >”是“2210x x +->”的( )A.充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件 6. 已知圆锥的母线长为4,侧面展开图的中心角为2π,那么它的体积为 ( )A .2 B C. 3D. 4π 7. 以直线20x y -=和240x y +-=的交点为圆心,且过点(2,0)的圆的方程为( ) A .22(2)(1)1x y -+-= B .22(2)(1)1x y +++=C .22(2)(1)2x y -+-=D .22(2)(1)2x y +++= 8. 对于直线,m n 和平面α,下列命题中正确的是( ) A.如果,,,m n m n αα⊂⊄是异面直线,那么//n α; B.如果,,,m n m n αα⊂⊄是异面直线,那么n 与α相交; C. 如果//,//,,m n m n αα共面,那么//m n D. 如果,//,,m n m n αα⊂共面,那么//m n ;9. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A 、B 两点,O 为坐标原点,若双曲线的离心率为2,AOB ∆则p =( ) A .32B .1C .2D .3 10. 过双曲线22221(,0)x y b a a b-=>的右焦点2F 向其一条渐近线作垂线l ,垂足为P ,若l 与另一条渐近线交于Q 点,且QF PF =222,则双曲线的离心率为( ) A .2 B. 3 C. 4 D. 6 二、填空题.(共5小题,每小题5分,共25分)11. 已知某几何体的三视图如右图所示,则该几何体的侧面积是________.12. 已知球的体积为323π,则球的大圆面积是_______. 13.设M 是圆22(5)(3)9x y -+-=上的点,则M 到直线3420x y +-=的最短距离是 .14. 一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为_________.15.(原创题)已知双曲线22154x y -=的右焦点为,F P 是双曲线右支上任意一点,定点(6,2)M,则3PM 的最小值是_________.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤,并把解答写在答题卷相应的位置上.16.(本题满分13分)如图直三棱柱111ABC A B C -,CA CB =,,F M E 、、分别是棱1CC 、AB 、1BB 中点.(1)求证:平面1//AEB CFM 平面;(2)求证:1CF BA ⊥17. (本题满分13分)已知命题p :方程22121x y m m -=-表示焦点在y 轴上的椭圆;命题q : 2150m m -<,若p q ∧为假命题,p q ∨为真命题,求m 的取值范围.18.(本题满分13分) 如图直线l :y x b =+与抛物线C :24x y =相切于点A.(1)求实数b 的值; (2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.MFA 119.(本题满分12分)(原创题)如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆焦点F 作弦AB.当直线AB 斜率为0时,弦AB 长4. (1)求椭圆的方程; (2)若6019AB =.求直线AB 的方程.20. (本题满分12分)(原创题)已知四棱锥G ABCD -,四边形ABCD 是长为2a 的正方形,ABG,GA=GB DA ⊥平面且,BH CAG,H ⊥平面垂足为, H CG 且在直线上. (1)求证:BGC AGD ⊥平面平面; (2)求三棱锥D ACG -的体积; (3)求三棱锥D ACG -的内切球半径.21.(本题满分12分)已知椭圆的两个焦点为12,(0),0)F F -,离心率e =. (1)求椭圆的方程;(2)设直线:y l x m =+,若l 与椭圆交于,P Q 两点,且||PQ 等于椭圆的短轴长,求m 的值; (3)以此椭圆的上顶点B 为直角顶点作椭圆的内接等腰三角形A BC ,这样的三角形是否存在?若存在,有几个;若不存在,说明理由.AB2014年重庆一中高2016级高二上期半期考试数 学 答 案(文科)2014.11一、选择题。
重庆一中高2016级13-14学年(下)半期试题——数学
秘密★启用前2014年重庆一中高2016级高一下期半期考试数 学 试 题 卷2014.5数学试题共4页,共21个小题。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题:本大题共10小题,每小题5分,共50 分,在每小题的四个选项中,只有一项是符合要求的.1.已知向量()()2,,,1m b m a ==,若b a //,则实数m 等于( )A .-2 B.2 C .-2或2 D .0 2.不等式1213-≤--x x 的解集是( ) A .324xx ⎧⎫≤≤⎨⎬⎩⎭ B .324x x ⎧⎫≤<⎨⎬⎩⎭C .324x x x ⎧⎫>≤⎨⎬⎩⎭或 D .{}2x x <3.执行如图所示的程序框图,如果输入2a =,那么输出的a 值为( ) A. B.16 C.256 D.3log 164.等腰直角三角形ABC 中,D 是斜边BC 的中点,若2=AB ,则⋅=( ) A. 2- B . C . D .3-5.下列命题正确的是( )A.ac bc a b <⇒<B.ba ab b a ><<则若,0 C.当0x >且1x ≠时,1lg lg x x+2≥a b <6.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,则z =5y -x 的最大值是( )A .16B .30C .24D .87.设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若cos cos sin b C c B a A +=, 则△ABC 的 形状是 ( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定8.已知2121,,,b b a a 均为非零实数,不等式011<+b x a 与不等式022<+b x a 的解集分别为集 合M 和集合N ,那么“2121b b a a =”是“N M =”的 ( ) A .充分非必要条件B .既非充分又非必要条件C .充要条件D .必要非充分条件9.(原创)在c b a ABC ,,,中∆分别是角A 、B 、C 的对边,若b c C a 2cos 2,1=+=且,则ABC ∆的周长的取值范围是( ) A .(]3,1B .[2,4]C .(]3,2D .[3,5]二.填空题:本大题共5个小题,每小题5分,共25分,把答案填在答卷对应的横线上. 11.已知等差数列{}n a 前15项的和15S =30,则1815a a a ++=___________.12.下面框图所给的程序运行结果为S =28,如果判断框中应填入的条件是 “a k >”,则整数=a _______.13.已知非零向量b a,满足a b a b a 332=-=+,则向量b a +与b a -的夹角为 .14.已知数集},,,,{321n a a a a A =,记和)1(n j i a a j i ≤<≤+中所有不同值的个数为)(A M .如当}4,3,2,1{=A 时,由321=+,431=+,53241=+=+,642=+,743=+,得5)(=A M .若{1,2,3,,}A n =, 则)(A M = .15.(原创)设实数d c b a ,,,满足:1001≤≤≤≤≤d c b a ,则dcb a +取得最小值时,=+++dc b a .三.解答题:本大题共6个小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足53cos =A ,3AB AC ⋅=. (1).求ABC ∆的面积; (2).若6b c +=,求的值.18.(13分)在分别是角A 、B 、C 的对边,,且. (1).求角B 的大小;(2).求sin A +sin C 的取值范围.19.(12分)已知数列的等比数列公比是首项为41,41}{1==q a a n ,设数列{}n b 满足 *)(log 3241N n a b n n ∈=+.(1).求数列{}n n b a +的前项和为n S ; (2).若数列nn n n b a c c ⋅=满足}{,若对1412-+≤m m c n 一切正整数恒成立,求实数m 的取值范C围.20.(12分)如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪, 图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上.(1).设x AD =(x≥0),y DE =,求用表示的函数关系 式,并求函数的定义域;(2).如果DE 是灌溉水管,为节约成本,希望它最短,DE 的 位置应在哪里?如果DE 是参观线路,则希望它最长, DE 的位置又应在哪里?请予证明.21.(12分)( 改编)设正项数列}{n a 的前项和为n S ,向量()()2,1,1,+==n n a b s a,(*N n ∈)满足b a //.(1).求数列}{n a 的通项公式; (2).设数列}{n b 的通项公式为n b nn a a t=+(*N t ∈),若,2b ,m b (*,3N m m ∈≥) 成等差数列,求和m 的值;(3).如果等比数列{}n c 满足11a c =,公比满足102q <<,且对任意正整数, ()21+++-k k k c c c 仍是该数列中的某一项,求公比的取值范围.命题人:黄勇庆 审题人:王 明2014年重庆一中高2016级高一下期半期考试(本部)数 学 答 案2014.550二填空题:(每小题分,满分25分)11.; 12.7; 13.60; 14.32-n ; 15.121. 三、解答题:16.(本小题满分13分) 解:(1)因为53cos =A ,所以54cos 1sin 2=-=A A ,又由3AB AC ⋅=,得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴== (2)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得2222cos 20a b c bc A =+-=,a ∴=17.(本小题满分13分)解:(1)由题知1,b 为方程ax 2-3x +2=0的两根,即⎩⎨⎧b =2a ,1+b =3a ,∴a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,所以:当c >2时解集为{x |x >c 或x <2};当c =2时解集为{x |x ≠2,x ∈R };当c <2时解集为{x |x >2或x <c }. 18.(本小题满分13分)解:(1)由n m⊥,得,cos )2(cos B c a C b -= .cos 2cos cos B a B c C b =+∴由正弦定理得,cos sin 2cos sin cos sin B A B C C B =+.cos sin 2)sin(B A C B =+∴又,A C B -=+π.cos sin 2sin B A A =∴又.21cos ,0sin =∴≠B A 又.3),,0(ππ=∴∈B B(2)∵A +B +C =π,∴A +C =2π3,∴sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛-A 32π=sin A +sin2π3 cos A -cos 2π3sin A =32sin A +32cos A =3sin ⎪⎭⎫ ⎝⎛+6πA , ∵0<A <2π3,∴π6<A +π6<5π6,∴12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,∴32<sin A +sin C ≤ 3.故sin A +sin C 的取值范围是⎥⎦⎤⎝⎛3,23. 19.(本小题满分12分)解:(1)由题意知,*)()41(N n a n n ∈=2log 341-=n n a b ∴23-=n b n∴()2341-+⎪⎭⎫ ⎝⎛=+n b a n n n ∴()2133411-+⎪⎭⎫⎝⎛-=n n S nn .(2)由(1)知,*)(23,)41(N n n b a n nn ∈-==*)(,)41()23(N n n c n n ∈⨯-=∴n n n n n n c c )41()23()41()13(11⋅--⋅+=-++ *)(,)41()1(91N n n n ∈⋅-=+∴当n=1时,4112==c c ;当n n n c c c c c c c n <<<<=<≥+ 43211,,2即时∴当n=1时,n c 取最大值是.又恒成立对一切正整数n m m c n 1412-+≤411412≥-+∴m m即510542-≤≥≥-+m m m m 或得。
重庆一中高一(上)期中数学试卷含答案
高一(上)期中数学试卷 题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.设全集U ={1,2,3,4},集合A ={1,3,4},B ={2,4},则(∁U A)∩B =( )A. {2}B. {2,4}C. {1,2,4}D. ⌀2.函数f(x)=a x−1−1(a >0且a ≠1)的图象必经过定点( )A. (0,−1)B. (1,−1)C. (−1,0)D. (1,0)3.在0到2π范围内,与角−4π3终边相同的角是( )A. π6B. π3C. 2π3D. 4π34.函数f(x)=13−2x +lg (x +2)的定义域是( )A. (−2,32)B. (−2,32]C. (−2,+∞)D. (32,+∞)5.已知a =0.42.1,b =20.3,c =log 50.3,则( )A. c <a <bB. a <b <cC. c <b <aD. a <c <b 6.函数f(x)=ln x−1x 的零点所在的大致区间是 ( )A. (1e ,1)B. (1,e)C. (e,e 2)D. (e 2,e 3)7.已知函数f(x)={log 2x(x >0)3x (x ≤0),则f[f(18)]的值是( )A. 27 B. 127 C. −27D. −1278.函数y=x⋅e x|x|的图象的大致形状是( )A. B.C. D.9.已知函数f(x)=log12(3x2−ax+5)在[−1,+∞)上是减函数,则实数a的取值范围是( )A. [−8,−6]B. (−∞,−6]C. (−8,−6]D. (−∞,−215)10.已知关于x的方程|2x−m|=1有两个不等实根,则实数m的取值范围是( )A. (−∞,−1]B. (−∞,−1)C. [1,+∞)D. (1,+∞)11.已知函数f(x)=ln(x2+1+x)+a xa x−1(a>0且a≠1),若f(lg(log23))=13,则f(lg(log32))=( )A. 0B. 13C. 23D. 112.设函数f(x)=e x+2x−a(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是( )A. [1,e]B. [1,1+e]C. [e,1+e]D. [0,1]二、填空题(本大题共4小题,共20.0分)13.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为增函数,则m=.14.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为______cm2.15.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,则当x<0时,f(x)=______.16.已知函数f(x)=lo g13(−|x|+3)定义域是[a,b](a,b∈Z),值域是[−1,0],则满足条件的整数对(a,b)有______对.三、解答题(本大题共6小题,共70.0分)17.化简:(1)(214)12−(3−π)0+log313+712log74;(2)lg5⋅lg20+(lg2)2+15+2−6−25.18.已知集合A为函数f(x)=x2+2x−1,x∈[1,2]的值域,集合B={x|x−4x−1≤0},则(1)求A∩B;(2)若集合C={x|a<x<a+1},A∩C=C,求实数a的取值范围.19.已知函数y=f(x)为二次函数,f(0)=4,且关于x的不等式f(x)−2<0解集为{x|1<x<2},(1)求函数f(x)的解析式;(2)若关于x 的方程f(x)−a =0有一实根大于1,一实根小于1,求实数a 的取值范围.20.已知函数f(x)=2x −a ⋅2−x2x +2−x 是定义在R 上的奇函数.(1)求实数a 的值,并求函数f(x)的值域;(2)判断函数y =f(x)的单调性(不需要说明理由),并解关于x 的不等式5f(2x +1)−3≥0.21.已知函数f(x)={2−(12)x ,x ≤012x 2−x +1,x >0,(1)画出函数f(x)的草图并由图象写出该函数的单调区间;(2)若g(x)=3x 2−x −a ,对于任意的x 1∈[−1,1],存在x 2∈[−1,1],使得f(x 1)≤g(x 2)成立,求实数a 的取值范围.22.对于在区间[m,n]上有意义的函数f(x),满足对任意的x1,x2∈[m,n],有|f(x1)−f(x2)≤1|恒成立,则称f(x)在[m,n]上是“友好”的,否则就称f(x)在[m,n]上是“不.友好”的,现有函数f(x)=log31+axx(1)若函数f(x)在区间[m,m+1](1≤m≤2)上是“友好”的,求实数a的取值范围;=1的解集中有且只有一个元素,求实数a的取(2)若关于x的方程f(x)log3[(a−3)x+2a−4]值范围.答案和解析1.【答案】A【解析】解:U ={1,2,3,4},A ={1,3,4},B ={2,4},∴∁U A ={2},(∁U A)∩B ={2}.故选:A .进行交集、补集的运算即可.本题考查了列举法的定义,交集和补集的运算,考查了计算能力,属于基础题.2.【答案】D【解析】解:令x−1=0,解得x =1,此时y =a 0−1=0,故得(1,0)此点与底数a 的取值无关,故函数y =a x−1−1(a >0且a ≠1)的图象必经过定点(1,0)故选:D .由指数函数的定义可知,当指数为0时,指数式的值为1,故令指数x−1=0,解得x =1,y =0,故得定点(1,0).本题考点是指数型函数,考查指数型函数过定点的问题.解决此类题通常是令指数为0取得定点的坐标.属于指数函数性质考查题.3.【答案】C【解析】【分析】本题考查终边相同的角的定义和表示方法,属于基础题.得到与角−4π3终边相同的角是 2kπ+(−4π3),k ∈Z 是解题的关键.【解答】解:与角−4π3终边相同的角是 2kπ+(−4π3),k ∈Z ,令k =1,可得与角−4π3终边相同的角是2π3,故选:C .4.【答案】A【解析】解:由{3−2x >0x +2>0,解得−2<x <32.∴函数f(x)=13−2x +lg (x +2)的定义域是(−2,32).故选:A .由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解.本题考查函数的定义域及其求法,是基础题.5.【答案】A【解析】解:∵0<a =0.42.1<0.40=1,b =20.3>20=1,c =log 50.3<log 51=0.∴c <a <b .故选:A .利用有理指数幂与对数的运算性质分别比较a ,b ,c 与0和1的大小得答案.本题考查对数值的大小比较,考查有理指数幂与对数的运算性质,是基础题.6.【答案】B【解析】解:由于连续函数f(x)=lnx−1x 满足f(1)=−1<0,f(1)=1−1e >0,且函数在区间(0,e)上单调递增,故函数f(x)=lnx−1x 的零点所在的区间为( 1,e).故选:B .由于连续函数f(x)=lnx−1x 满足f(1)<0,f(e)>0,根据函数零点判定定理,由此求得函数的零点所在的区间.本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.7.【答案】B【解析】解:∵f(x)={log 2x(x >0)3x (x ≤0)∴f[f(18)]=f(−3)=127故选B .由已知中的函数的解析式,我们将18代入,即可求出f(18)的值,再代入即可得到f[f(18)]的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.8.【答案】B【解析】解:当x >0时,y =e x ,排除C ,D .当x <0时,y =−e x ,为减函数,排除A .故选:B .根据绝对值的应用,分别求出当x >0和当x <0时的解析式,结合指数函数的图象和性质进行判断即可.本题主要考查函数图象的识别和判断,结合指数函数的性质是解决本题的关键.比较基础.9.【答案】C【解析】解:令t =3x 2−ax +5,则t =3x 2−ax +5在[−1,+∞)上是增函数,且t >0∴{a 6≤−13+a +5>0,∴−8<a ≤−6故选:C .令t =3x 2−ax +5,则t =3x 2−ax +5在[−1,+∞)上是增函数,且t >0,故可建立不等式组,即可得到结论.本题考查复合函数的单调性,解题的关键是确定内函数的单调性,属于中档题.10.【答案】D【解析】解:2x −m =1或2x −m =−1,即m =2x −1,或者m =2x +1,当m =2x −1>−1时,有一个解,当m =2x +1>1时,有一个解,所以m >1时,方程|2x −m|=1有两个不等实根,故选:D .分离参数,再根据指数函数性质求出.考查方程根的个数问题,利用了分类讨论法,分离参数法,中档题.11.【答案】C【解析】解:f(x)=ln(x 2+1+x)+a x a x −1,则f(−x)=ln(x 2+1−x)+a −x a −x −1,∴f(x)+f(−x)=ln(x 2+1+x)+ln(x 2+1−x)+a x a x −1+11−a x =ln1+a x −1a x −1=1,lg (lo g 23)=lg 1log 32=−lg (lo g 32),∴f(lg(log 23))+f(lg(log 32))=f(−lg(log 32))+f(lg(log 32))=1,∵f(lg (lo g 23))=13,∴f(lg (lo g 32))=1−f(lg (lo g 23))=1−13=23.故选:C .可以求出f(x)+f(−x)=1,从而可求出f(lg(log 23))+f(lg(log 32))=1,根据f(lg (lo g 23))=13即可求出答案.本题考查了对数的运算性质,对数的换底公式,考查了计算能力,属于基础题.12.【答案】B【解析】解:由f(f(b))=b ,可得f(b)=f −1(b)其中f −1(x)是函数f(x)的反函数因此命题“存在b ∈[0,1]使f(f(b))=b 成立”,转化为“存在b ∈[0,1],使f(b)=f −1(b)”,即y =f(x)的图象与函数y =f −1(x)的图象有交点,且交点的横坐标b ∈[0,1],∵y =f(x)的图象与y =f −1(x)的图象关于直线y =x 对称,∴y =f(x)的图象与函数y =f −1(x)的图象的交点必定在直线y =x 上,由此可得,y =f(x)的图象与直线y =x 有交点,且交点横坐标b ∈[0,1],∴e x +2x−a =x∴a =e x +x设g(x)=e x +x则g′(x)=e x +1>0在[0,1]上恒成立,∴g(x)=e x +x 在[0,1]上递增,∴g(0)=1+0=1,g(1)=e +1∴a 的取值范围是[1,1+e],故选:B .利用反函数将问题进行转化,再将解方程问题转化为函数的图象交点问题.本题主要考察了复合函数的性质,综合性较强,属于难题.13.【答案】2【解析】【分析】本题主要考查幂函数的表达形式以及幂函数的单调性,属于基础题.根据幂函数的系数一定为1可先确定参数m 的值,再根据单调性进行排除,可得答案.【解答】解:∵函数f(x)=(m 2−m−1)x m2+m−3是幂函数∴可得m 2−m−1=1解得m =−1或2,当m =−1时,函数为f(x)=x −3在区间(0,+∞)上单调递减,不满足题意;当m =2时,函数为f(x)=x 3在(0,+∞)上单调递增,满足条件.故答案为:2.14.【答案】4【解析】【分析】本题主要考查了扇形的面积公式的应用,考查计算能力,属于基础题.设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为R ,弧长为l ,面积为S ,圆心角为α,由于α=2弧度,可得:l =Rα=2R ,由于扇形的周长为8=l +2R ,所以:2R +2R =8,所以解得:R =2,扇形的弧长l =2×2=4,扇形的面积为:S =12lR =12×4×2=4(cm 2).故答案为4.15.【答案】−x2+2x【解析】解:当x<0时,−x>0,则f(−x)=(−x)2+2(−x)=x2−2x.又f(x)是R上的奇函数,∴当x<0时f(x)=−f(−x)=−x2+2x.故答案为:−x2+2x.当x<0时,−x>0,由已知表达式可求得f(−x),由奇函数的性质可得f(x)与f(−x)的关系,从而可求出f(x).本题考查函数解析式的求解及奇函数的性质,属基础题.16.【答案】5【解析】解:t=−|x|+3,值域是[−1,0],∵1≤t≤3,∴1≤−|x|+3≤3,−2≤−|x|≤0,−2≤x≤2,a=−2,0≤b≤2满足条件,−2≤a≤0,b=2满足条件,(−2,0)(−2,1)(−2,2)(−1,2)(0,2)一共有5对.故答案为:5.由函数f(x)=lo g13(−|x|+3)的定义域,知−2≤x≤2,由a=−2,0≤b≤2满足条件,−2≤a≤0,b=2满足条件,知满足条件的整数对(a,b)有5对.本题考查对数函数的定义域和应用,解题时要注意对数函数定义域的限制.17.【答案】解:(1)(214)12−(3−π)0+log313+712log74=(94)12−1+log33−1+7log72=32−1−1+2=32;(2)lg5⋅lg20+(lg2)2+15+2−6−25=lg5(lg10+lg2)+(lg2)2+5−2−(5−1)2=lg5+lg2(lg5+lg2)−1=0.【解析】(1)化带分数为假分数,化0指数幂为1,再由有理指数幂与对数的运算性质化简求值;(2)把分式分母有理化,把根式开方,再由有理指数幂与对数的运算性质化简求值.本题考查有理指数幂与对数的运算性质,是基础的计算题.18.【答案】解:(1)f(x)=(x+1)2−2,x∈[1,2],∴f(x)的值域A=[2,7],且B=(1,4],∴A∩B=[2,4];(2)∵A∩C=C,∴C⊆A,且C={x|a<x<a+1},A=[2,7],∴{a≥2a+1≤7,解得2≤a≤6,∴a的取值范围为[2,6].【解析】(1)可看出f(x)在[1,2]上单调递增,从而可求出A=[2,7],并且求出B=(1,4],然后进行交集的运算即可;(2)根据A∩C=C即可得出C⊆A,从而可得出{a≥2a+1≤7,解出a的范围即可.本题考查了函数值域的定义及求法,交集的定义及运算,考查了计算能力,属于基础题.19.【答案】解:(1)∵设函数f(x)=ax2+bx+c(a≠0),f(0)=c=4;由于关于x的不等式f(x)−2<0解集为{x|1<x<2},所以f(x)<2即ax2+bx+2<0的解集为{x|1<x<2},且1+2=−ba ,1×2=2a;∴解得a=1,b=−3;∴函数f(x)的解析式为:f(x)=x2−3x+4.(2)设g(x)=x2−3x+4−a则g(1)=1−3+4−a=2−a<0,故a>2.所以实数a的取值范围为(2,+∞).【解析】(1)根据给出的条件,用待定系数法求出函数解析式即可;(2)设g(x)=f(x)−a,则关于x的方程f(x)−a=0有一实根大于1,一实根小于1,转化为g(1)<0,解出a的取值范围即可.本题考查了三个“二次”的关系,待定系数法求函数解析式,数形结合的思想方法,属于基础题.20.【答案】解:(1)根据题意,函数f(x)=2x −a ⋅2−x 2x +2−x是定义在R 上的奇函数,则有f(0)=20−a ⋅2020+20=1−a 2=0,变形可得a =1.故f(x)=2x −2−x 2x +2−x =22x −122x +1,为奇函数,符合题意,又由f(x)=2x −2−x2x +2−x =22x −122x +1,变形可得a 2x =y +11−y,则有a 2x =y +11−y >0,解可得−1<y <1,即函数的值域为(−1,1);(2)根据题意,由(1)的结论,f(x)=2x −2−x2x +2−x =22x −122x +1=1−222x +1,易知f(x)在R 上为增函数,且f(1)=1−24+1=35,则5f(2x +1)−3≥0⇒f(2x +1)≥35⇒f(2x +1)≥f(1),则有2x +1≥1,解可得x ≥0,即不等式的解集为[0,+∞).【解析】(1)根据题意,由奇函数的性质可得f(0)=20−a ⋅2020+20=1−a2=0,分析可得a 的值,将函数的解析式变形可得a 2x =y +11−y,则有a 2x =y +11−y>0,解可得y 的取值范围,即可得答案;(2)根据题意,由函数的解析式分析函数的单调性以及f(1)的值,进而分析可得5f(2x +1)−3≥0⇒f(2x +1)≥35⇒f(2x +1)≥f(1),结合函数单调性分析可得答案.本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.21.【答案】解:(1)如下图所示,易知函数f(x)的单调递减区间为(0,1),单调递增区间为(−∞,0),(1,+∞),(2)由(1)知f(x )max =f(0)=1,g(x)=3x 2−x −a ,设t =x 2−x =(x−12)2−14,x ∈[−1,12],递减,[12,1]递增,因为3>1,所以g(x)在[−1,12],递减,[12,1]递增,g(x )max =max{g(1),g(−1)}=g(−1)=9−a ,由题意可得f(x )max ≤g(x )max ,所以9−a ≥1,即a ≤8.【解析】(1)画出图象即可得到;(2)任意的x 1∈[−1,1],存在x 2∈[−1,1],使得f(x 1)≤g(x 2)成立相当于f(x )max ≤g(x )max ,解出最值,代入即可得到.考查分段函数的画法,存在性问题和恒成立问题,复合函数的单调性问题,中档题.22.【答案】解:(1)f(x)=log 3(a +1x )在[m,m +1]上单调递减,∴f(x)的最大值为f(m)=log 3(1m +a),f(x)的最小值为log 3(1m +1+a).∵函数f(x)在区间[m,m +1](1≤m ≤2)上是“友好”的,∴log 3(1m +a)−log 3(1m +1+a)≤1,即1m+a 1m +1+a≤3,∴a ≥−12⋅2m−1m(m+1).令g(m)=−12⋅2m−1m(m +1),则g′(m)=2m 2−2m−12(m 2+m )2,∴当1≤m ≤1+32时,g′(m)<0,当1+32<m ≤2时,g′(m)>0,又g(1)=−14,g(2)=−14,∴g(m)的最大值为−14.∴a ≥−14.又对于任意的x ∈[m,m +1],1x +a >0恒成立,a >−1x 恒成立,即a >−1m+1≥−13,综上,a 的取值范围是[−14,+∞).(2)∵f(x)log 3[(a−3)x+2a−4]=1,即1x +a =(a−3)x +2a−4>0,且(a−3)x +2a−4≠1,①∴(a−3)x 2+(a−4)x−1=0,即[(a−3)x−1](x +1)=0,②当a =3时,方程②的解为x =−1,代入①,成立当a =2时,方程②的解为x =−1,代入①,不成立.当a ≠2且a ≠3时,方程②的解为x =−1或x =1a−3.将x =−1代入①,则(a−3)x +2a−4=a−1>0且a−1≠1,∴a >1且a ≠2,将x=1代入①,则(a−3)x+2a−4=2a−3>0,且2a−3≠1,a−3且a≠2.所以a>32,要使方程有且仅有一个解,则1<a≤32综上,a的取值范围为{a|1<a≤3或a=3}.2【解析】(1)根据单调性求出f(x)的最大值,根据定义列出不等式,分离参数得出a关于m的不等式,利用函数求出函数的最值得出a的范围;(2)化简方程,讨论a的范围和方程解得出结论.本题考查了函数单调性与最值的计算,对数的运算性质,属于中档题.。
重庆市一中高一数学上学期期中试题(含解析)
2017年重庆一中高2010级高一上半学期考试数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 实数不是下面哪一个集合的元素()A. 整数集B.C.D.【答案】C【解析】由题意,C选项集合为,不包含1,故选C。
2. 不等式的解集是()A. B. C. D.【答案】D【解析】,,所以,故选D。
3. 已知幂函数的图象过点,则()A. B. C. D.【答案】D【解析】,则,,所以,故选D。
4. 已知,则()A. B. C. D.【答案】A【解析】,所以,故选A。
5. 函数的单调递减区间是()A. B. C. D.【答案】C【解析】令,由复合函数“同增异减”性质,的单调递减区间即单调递减区间,所以单调递减区间为,故选C。
6. 将函数的图象经过下列哪一种变换可以得到函数的图象()A. 向左平移1个单位长度B. 向右平移1个单位长度C. 向左平移2个单位长度D. 向右平移2个单位长度【答案】B【解析】,所以是由右移1个单位得到,故选B。
7. 已知定义在上的减函数满足条件:对任意,总有,则关于的不等式的解集是()A. B. C. D.【答案】C【解析】令,则,得,所以,又在单调递减,所以,得,故选C。
8. 函数的值域是()A. B. C. D.【答案】B【解析】令,,则或,故选B。
9. 若,则()A. B. C. D.【答案】A【解析】,所以,故选A。
10. 已知函数与的定义如下表:则方程的解集是()A. B. C. D.【答案】A【解析】时,,是方程的解;时,,不是方程的解;时,,不是方程的解;所以方程的解集为,故选A。
..................11. 已知函数的值域是,则()A. B. C. D.【答案】D【解析】,所以在是奇函数,则,所以,故选D。
点睛:观察题目,题目函数较复杂,定义域为对称性区间,则函数很有可能具有对称性,经验证得到函数为奇函数,则值域的最大最小值互为相反数,得,所以。
重庆一中2019-2020学年高一上期期中考试数学试题卷及答案
重庆一中2019-2020学年高一上期期中考试数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.4.本卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}13,A x x x N =-<<∈,{}240B x x x =-<,则A B =( )A .{}0,1,2B .{}03x x <<C .{}14x x -<<D .{}1,22.已知函数2()(2)xf x f x ⎧=⎨-⎩(0)(0)x x <≥,则(1)f =( )A .2B .12C .2-D .12-3.已知函数3()2x f x x =-,则下列区间中,()f x 的零点所在的区间是( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3) 4.已知(21)31f x x -=-,且()5f m =,则m 等于( ) A .2-B .2C .3-D .35.函数212()log (23)f x x x =--的单调递减区间是( ) A .(3,)+∞B .(,1)-∞C .(1,)+∞D .(,1)-∞-6.国家法律规定,汽车驾驶员血液中酒精含量不能超过20mg/100ml ,否则违法。
某驾驶员在一次喝酒后血液中的酒精含量达到160mg/100ml ,如果该驾驶员血液中的酒精含量每小时减少一半,那么他要能合法驾驶机动车至少需要经过( ) A .4小时 B .3小时 C .2小时 D .1小时7.若函数()(21)()xf x x x a =+-是奇函数,则实数a =( )A .2B .2-C .12D .12-8.函数2()11x f x e =-+(e 是自然对数的底数, 2.71828e =)的大致图象为( )A .B .C .D .9.已知231()2a =,122()3b =,123log 2c =,则a ,b ,c 的大小关系为( )10.已知集合{}2(,)2A x y y x mx ==++,{}(,)10,02B x y x y x =-+=≤≤,若A B ≠∅,则实数m 的取值范围是( ) A . (],1-∞-B . (][),13,-∞-+∞C . (1,)-+∞D . [1,3]-11.已知函数()y f x =()x R ∈满足(1)()f x f x +=--,若方程1()21f x x =-有2022个不同的实数根(1,2,,2022)i x i =,则122022x x x +++=( )A .1010B .1011C .2020D .202212.如图,设平行于x 轴的直线分别与函数12x y =及222x y -=的图象交于P ,Q 两点,点(,)H m n 位于函数2y 的图象上,若PQH ∆为正三角形,则2m n +=( )A .123B .12C .53D .5二、填空题:本大题共4小题,每小题5分,共20分.把最简答案写在答题卡相应位置上. 13.已知幂函数()f x 满足(2)2f =,则(9)f =________;14.函数()2f x x x =--的最大值为________;15.已知函数11()ln 12x f x x x +=++-,则(lg5)(lg21)f f +-=________;16.定义{}x m =(1122m x m -<≤+且m Z ∈).则下列关于函数{}()3x xf x -=的四个命题:①函数()y f x =的定义域为R ,值域为[)1,+∞; ②函数()y f x =是偶函数且在1(0,)2上是增函数;③函数()y f x =满足:对任意的x R ∈,都有()()f x k f x +=-(k 为常数且k Z ∈)成立; ④函数32()log y f x x =-有2个不同零点.其中正确命题的序号是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知集合{}32A x a x a =-≤≤,函数22()log (2)f x x x =--的定义域为集合B . (1)当0a =时,求()R A C B ; (2)若A B R =,求实数a 的取值范围.计算下列各式的值:(1) 110295()1)(3)254π---+-;(2) 2log 321(lg2)(1lg2)lg5()2-++⨯-.19.(本小题满分12分)设函数2()log (124)x x f x k =-⋅+,其中k 为常数. (1)当0k =时,求()f x 的值域;(2)若对任意x R ∈,关于x 的不等式()f x x ≥恒成立,求实数k 的取值范围.20.(本小题满分12分)已知函数2()2()f x x mx m R =-++∈,1()()2x g x =.(1)当2m =时,求不等式12()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.已知函数2421()()3ax x f x -+=,其中a 为常数.(1)若()f x 在区间(2,)+∞上单调递减,求实数a 的取值范围;(2)已知1a ≤,若函数32log ()log 8xy f x =+在[1,2]x ∈内有且只有一个零点,求实数a 的取值范围.22.(本小题满分12分)已知函数2(1)()x xa t f x a --=(0a >且1a ≠)是定义域为R 的奇函数.(1)求实数t 的值;(2)设函数()(log a h x f =,判断()h x 在其定义域上的单调性,并用单调性的定义进行证明;(3)若()f x 的图象过点3(1,)2,是否存在正数(1)m m ≠,使函数22()log [()]x x m g x a a mf x -=+-,2[1,log 3]x ∈的最大值为0?若存在,求出m 的值;若不存在,请说明理由.重庆一中2019-2020学年高一上期期中考试数学参考答案一、选择题:本题共12小题,每小题5分,共60分。
重庆市第一中学2018-2019学年高一上学期期中考试试卷完整版 数学 Word版含答案
秘密★启用前2018年重庆一中高2021级高一上期期中考试数学测试试题卷注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。
2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3. 考试结束后,将答题卡交回。
一、 选择题:本题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知幂函数()y f x =的图像经过点(2,4),则f 的值为( )A . 1B .2C .3D . 42.函数()1log (2)a f x x =+-的图像经过定点( )A .(3, 1)B .(2, 0)C . (2, 2)D .(3, 0)3.已知集合{}|2,1x A y y x ==<,则集合R C A =( ) A .(0,2) B . [2,)+∞ C .(,0]-∞ D .(,0][2,)-∞+∞4.已知函数2()48f x x kx =--在(,5]-∞上具有单调性,则实数k 的取值范围是( )A .(24,40)-B .[24,40]-C .(,24]-∞-D .[40,)+∞5.命题“0x ∃<,使2310x x -+≥”的否定是( ) A .0x ∃<,使2310x x -+< B .0x ∃≥,使2310x x -+<C .0x ∀<,使2310x x -+<D .0x ∀≥,使2310x x -+<6.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年)。
在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。
可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。
纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。
[精选]重庆市第一中学人教版高一上学期数学期中试卷(有答案)
重庆市第一中学2016-2017学年高一数学上学期期中试题共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第I 卷(选择题,共60分)一、选择题:(本大题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置.1. 设全集{}4,3,2,1=U ,集合{}{}4,2,4,3,1==B A ,则()U C A B ⋂=( ) A .{}2B .{}4,2C .{}4,2,1 D .φ2. 函数()()1011≠>-=-a a a x f x 且的图象必经过定点( )A .()1,0-B .()1,1-C .()0,1-D .()0,13. 在0到π2范围内,与角34π-终边相同的角是( ) A .6π B .3π C .32π D .34π4. 函数()()2lg 231++-=x xx f 的定义域是( ) A .⎪⎭⎫ ⎝⎛-232, B .⎥⎦⎤ ⎝⎛-232, C .()∞+-,2 D .⎪⎭⎫⎝⎛∞+,23 5. 已知3.0log 24.053.01.2===c b a ,,,则( )A .b a c <<B .c b a <<C .a b c <<D .bc a <<6. 函数()xx x f 1ln -=的零点所在的大致区间是( ) A .⎪⎭⎫ ⎝⎛1,1eB .()e ,1C .()2,e e D .()32,e e7. 已知函数()(),03)0(log 2⎩⎨⎧≤>=x x x x f x 则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛81f f 的值是( )A .27-B .271-C .27D .2718. 函数xx y xe ⋅=的图像的大致形状是( )A B C D9. 已知函数()()53log 221+-=ax x x f 在[)∞+-,1上是减函数,则实数a 的取值范围是( )A .(]6,-∞-B .[)68,- C .(]68--,D .[)+∞-,8 10. (原创)已知关于x 的方程12=-m x 有两个不等实根,则实数m 的取值范围是( )A . (]1,-∞-B .()1,-∞-C .[)∞+,1 D .()∞+,1 11.(原创)已知函数()()()1011ln2≠>-+++=a a a a x x x f xx且,若()()313log lg 2=f ,则()()=2log lg 3f ( )A .0B .31 C .32D . 1 12. 设函数()a x e x f x-+=2(e R a ,∈为自然对数的底数),若存在实数[]1,0∈b 使()()b b f f =成立,则实数a 的取值范围是( )A .[]e ,0B .[]e 1,1+C . []e +2,1D .[]1,0第II 卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上. 13. 幂函数()()3221-+--=m mx m m x f 在()∞+,0上为增函数,则实数m =______. 14. 扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为____2cm .15. 已知函数()x f 是定义在R 上的奇函数,且当0≥x 时,()x x x f 22+=,则当0<x 时,()x f =__________.16. 已知函数()3||log )(31+-=x x f 的定义域是[]b a ,()Z b a ∈,,值域是[]0,1-,则满足条件的整数对()b a ,有________对.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(原创)化简:(1))7112log 423112log 743π⎛⎫-++ ⎪⎝⎭;(2)()5262512lg 20lg 5lg 2--+++⋅.18.(12分)(原创)已知集合A 为函数()[]2,1,122∈-+=x x x x f 的值域,集合⎭⎬⎫⎩⎨⎧≤--=014x x xB ,则(1)求A B ;(2)若集合{}1+<<=a x a x C ,C C A =⋂,求实数a 的取值范围.19. (12分)(原创)已知函数()x f y =为二次函数,()40=f ,且关于x 的不等式()02<-x f 解集为{}21<<x x ,(1)求函数()x f 的解析式;(2)若关于x 的方程()0=-a x f 有一实根大于1,一实根小于1,求实数a 的取值范围.20. (12分)(原创)已知函数()xx xx a x f --+⋅-=2222是定义在R 上的奇函数.(1)求实数a 的值,并求函数()x f 的值域;(2)判断函数()x f y =的单调性(不需要说明理由),并解关于x 的不等式()03125≥-+x f .21. (12分)(原创)已知函数()⎪⎪⎩⎪⎪⎨⎧>+-≤⎪⎭⎫⎝⎛-=0,1210,2122x x x x x f x,(1)画出函数()x f 的草图并由图像写出该函数的单调区间;(2)若()a x g x x -=-23,对于任意的[]1,11-∈x ,存在[]1,12-∈x ,使得()()21x g x f ≤成立,求实数a 的取值范围.22. (12分)对于在区间],[n m 上有意义的函数)(x f ,若满足对任意的21,x x ],[n m ∈,有|)()(|21x f x f -1≤恒成立,则称)(x f 在],[n m 上是“友好”的,否则就称)(x f 在],[n m 上是“不友好”的.现有函数()xaxx f +=1log 3,(1)若函数)(x f 在区间]1,[+m m ()21≤≤m 上是 “友好”的,求实数a 的取值范围;(2)若关于x 的方程()[]1423log )(3=-+-a x a x f 的解集中有且只有一个元素,求实数a 的取值范围.2016年重庆一中高2019级高一上期半期考试数 学 答 案2016.12一、选择题:(本大题共12个小题,每小题5分,共60分) ADCAA BDBCD CB二、填空题:(本大题共4个小题,每小题5分,共20分)13. 2 14.4 15. x x 22+- 16.5 三、解答题:解答应写出文字说明、证明过程或演算步骤。
重庆市第一中学19年-20年学年高一上学期期中考试数学试题 Word版含解析
重庆市第一中学高一上学期期中考试数学试题一、选择题:本题共10小题,每题6分,共60分。
1.已知幂函数的图像经过点,则的值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】由待定系数法可得f(x)的解析式,由此能求出.【详解】∵幂函数y=f(x)=x a的图象经过点(2,4),∴2a=4,解得a=2,∴y=x2,∴=2=2.故选:B.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意幂函数性质的合理运用.2.函数的图像经过定点()A. (3, 1)B. (2, 0)C. (2, 2)D. (3, 0)【答案】A【解析】【分析】由对数函数的性质可知,当真数为1时,对数式的值为0,故令真数x-2=1可求y,可得定点【详解】由对数函数的性质可知,当x-2=1时,y=1即函数恒过定点(3,1)故选:A.【点睛】本题考查了对数型函数过定点的问题.解决此类题通常是令真数为1解得定点的坐标.属于基础题.3.已知集合,则集合()A. B. C. D.【答案】D【解析】【分析】化简集合A,根据补集的定义计算即可.【详解】集合={y|0<y<2}=(0,2),则∁R A=(﹣∞,0],故选D.【点睛】本题考查了补集的运算与指数函数的值域问题,属于基础题.4.已知函数在上具有单调性,则实数k的取值范围是()A. B. C. D.【答案】D【解析】【分析】已知函数f(x)=4x2﹣kx﹣8,求出其对称轴,要求f(x)在上具有单调性,列出不等式,从而求出k的范围;【详解】∵函数f(x)=4x2﹣kx﹣8的对称轴为:x,∵函数f(x)=4x2﹣kx﹣8在上具有单调性,根据二次函数的性质可知对称轴x,解得k≥40;∴k∈ [40,+∞),故选:D.【点睛】本题主要考查二次函数的图象及其性质的应用,属于基础题.5.命题“,使”的否定是()A. ,使B. ,使C. ,使D. ,使【答案】C【解析】【分析】根据特称命题的否定是全称命题进行判断.【详解】命题“,使”的否定是“∀x,x2﹣3x+1<0”,故选C.【点睛】本题主要考查全称与特称命题的否定,属于基础题.6.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年重庆一中高2019级高一上期半期考试数学试题卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}1,2,3,4U =,集合{}1,3,4A =,{}2,4B =,则()U C A B =( )A .{}2B .{}2,4C .{}1,2,4D .∅ 2.函数()()1101x f x a a a -=->≠且的图象必经过定点( )A .()0 1-,B .()1 1-,C .()1 0-,D .()1 0, 3.在0到2π范围内,与角43π-终边相同的角是( )A .6π B .3π C .23π D .43π4.函数()()1lg 232f x x x=++-的定义域是( )A .22 3⎛⎫- ⎪⎝⎭,B .3( 2 ]2-, C.()2 -+∞,D .3 2⎛⎫+∞ ⎪⎝⎭, 5.已知 2.10.350.4 2 log 0.3a b c ===,,,则( ) A .c a b << B .a b c << C.c b a << D .a c b <<6.函数()1ln f x x x=-的零点所在的大致区间是( )A .1 1e ⎛⎫⎪⎝⎭, B .()1 e , C.()2 e e , D .()23 e e ,7.已知函数()()()2log 030x x x f x x >⎧⎪=⎨≤⎪⎩,则18f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是( ) A .27- B .127-C.27 D .1278.函数xx e y x⋅=的图象的大致形状是( )A .B . C. D .9.已知函数()()212log 35f x x ax =-+在[ 1 )-+∞,上是减函数,则实数a 的取值范围是( )A .( 6]-∞,B .[8 6)-, C.(8 6]--, D .[8 )+∞,10.(原创)已知关于x 的方程21x m -=有两个不等实根,则实数m 的取值范围是( ) A .( 1]-∞, B .() 1-∞-, C.[1 )+∞, D .()1 +∞,11.(原创)已知函数())ln 1x x a f x x a =+-(0a >且1a ≠),若()()21lg log 33f =,则()()3lg log 2f =( )A .0B .13C.23 D .112.设函数()2x f x e x a =+-(a R ∈,e 为自然对数的底数),若存在实数[]0 1b ∈,使()()f f b b =成立,则实数a 的取值范围是( )A .[]0 e ,B .[]1 1e +, C.[]1 2e +, D .[]0 1, 第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.幂函数()()2231mm f x m m x +-=--在()0 +∞,上为增函数,则实数m = . 14.扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为 2cm .15.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,()22f x x x =+,则当0x <时,()f x = . 16.已知函数()()13log 3f x x =-+的定义域是[]() a b a b Z ∈,,,值域是[]1 0-,,则满足条件的整数对() a b ,有 对. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)(原创)化简:(1))7112log 423112log 743π⎛⎫-++ ⎪⎝⎭;(2)()2lg5lg 20lg 2⋅+18. (本小题满分12分)(原创)已知集合A 为函数()[]22 1 1 2f x x x x =+-∈,,的值域,集合401x B x x ⎧-⎫=<⎨⎬-⎩⎭.(1)求A B ;(2)若集合{}1C x a x a =<<+,A C C =,求实数a 的取值范围. 19. (本小题满分12分)(原创)已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()0f x x -<解集为{}12x x <<. (1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有一实根大于1,一实根小于1,求实数a 的取值范围. 20. (本小题满分12分)(原创)已知函数()2222x x x xa f x ---⋅=+是定义在R 上的奇函数. (1)求实数a 的值,并求函数()f x 的值域;(2)判断函数()y f x =的单调性(不需要说明理由),并解关于x 的不等式()52130f x +->. 21. (本小题满分12分)(原创) 已知函数()212 021 1 02xx f x x x x ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭=⎨⎪-+>⎪⎩,,.(1)画出函数()f x 的草图并由图像写出该函数的单调区间; (2)若()23x xg x a -=-,对于任意的[]1 1 1x ∈-,,存在[]2 1 1x ∈-,,使得()()12f x g x ≤成立,求实数a 的取值范围.22. (本小题满分12分)对于在区间[] m n ,上有意义的函数()f x ,若满足对任意的[]12 x x m n ∈,,,有()()121f x f x -≤恒成立,则称()f x 在[] m n ,上是“友好”的,否则就称()f x 在[] m n ,上是“不友好”的,现有函数()31log axf x x+=. (1)若函数()f x 在区间[] 1m m +,(12m ≤≤)上是“友好”的,求实数a 的取值范围; (2)若关于x 的方程()()31log 324f x a x a =-+-⎡⎤⎣⎦的解集中有且只有一个元素,求实数a 的取值范围.2016年重庆一中高2019级高一上期半期考试数学答案一、选择题1-5:ADCAA 6-10:BDBCD 11、12:CB 二、填空题13.2 14.4 15.22x x -+ 16.5 三、解答题 17.解:(1)原式3311222=--+=. (2)原式()()()22lg10lg 2lg5lg 25251=+++---()lg5lg 2lg5lg 210=+⋅+-=.综上,a 的取值范围为[]2 6,. 19.解:(1)∵设函数()()20f x ax bx c a =++≠,则()04f c ==,()2f x <即220ax bx ++<,故12b a +=-,212a⨯=,1 3a b ==-,,∴()234f x x x =-+.(2)()234g x x x a =-+-,则()113420g a a =-+-=-<,故2a >.20.解:(1)由题意易知()0000220022a f -⋅==+,故1a =.所以()()222222121222121x x x x x x x f x x R ----===-∈+++,∵220x >,∴2211x +>,∴210121x <<+,∴222021x --<<+,∴2211121x -<-<+,故函数()f x 的值域为()1 1-,.(2)由(1)知()22121x f x =-+, 易知()f x 在R 上单调递增,且()2311415f =-=+, 故211x +≥,∴0x ≥,所以不等式()52130f x +-≥的解集为[0 )+∞,.21.解:(1)如下图所示,易知函数()f x 的单调递减区间为()0 1,,单调递增区间为() 0-∞,,()1 +∞,.(2)由题意可得()()1max 2max f x g x ≤⎡⎤⎡⎤⎣⎦⎣⎦,其中()()max 01f x f ==,()()max 19g x g a =-=-, 即19a ≤-,故8a ≤, 综上所述,( 8]a ∈-∞,. 22.解:(1)由题意可得()3311log log ax f x a x x +⎛⎫==+ ⎪⎝⎭在[] 1m m +,上单调递减, 故()()3max 1log f x f m a m ⎛⎫==+ ⎪⎝⎭,()()3min 11log 1f x f m a m ⎛⎫=+=+ ⎪+⎝⎭,∴()()33max min 11log log 11f x f x a a m m ⎛⎫⎛⎫-=+-+≤ ⎪⎪+⎝⎭⎝⎭, 即1131a a m m ⎛⎫+≤+⋅ ⎪+⎝⎭,∴()max12121m a m m ⎛⎫-≥-⋅ ⎪ ⎪+⎝⎭,令()2113t m t =-≤≤,则12t m +=,则()2214113314312244m t t y t t t m m t t t-====+++++⋅++,当3t =或1时,min 12y =,∴14a ≥-. 又对于任意的[] 1x m m ∈+,,110ax a x x +=+>,故max 11113a x m ⎛⎫>-=-≥- ⎪+⎝⎭, 综上,a 的取值范围是14a a ⎧⎫≥-⎨⎬⎩⎭.(2)()()31log 324f x a x a =-+-⎡⎤⎣⎦,即()13240x a x a x+=-+->,且()3241a x a -+-≠① ∴()()23410a x a x -+--=,即()()3110a x x --+=⎡⎤⎣⎦ ②当3a =时,方程②的解为1x =-,代入①,成立 当2a =时,方程②的解为1x =-,代入①,不成立 当2a ≠且3a ≠时,方程②的解为1x =-或13x a =-, 将1x =-代入①,则()32410a x a a -+-=->且11a -≠, 所以1a >且2a ≠, 将13x a =-代入①,则()324230a x a a -+-=->,且231a -≠, 所以32a >且2a ≠, 则要使方程有且仅有一个解,则312a <≤, 综上,若方程()()31log 324f x a x a =-+-⎡⎤⎣⎦的解集中有且仅有一个元素,则a 的取值范围为3132a a a ⎧⎫<≤=⎨⎬⎩⎭或.。