核酸的酶促降解和
核酸降解与核苷酸代谢
嘧啶碱的分解
不同生物嘧啶碱的分解过程也不 一样,一般情况下含氨基的嘧啶要 先水解脱去氨基,脱氨基也可以在 核苷或核苷酸水平上进行。
2.嘧啶碱的分解
NH 2 N
N
O
H
-NH2
β-丙氨酸
O
NH
二氢尿嘧啶
N
O
H
(开环)
H2O
H2O
β-脲基丙酸
嘧啶还原途径的分解
-CH3
嘧啶分解
• 其中二氧化碳经呼吸道排出体外,氨在
AMP激酶
AMP + ATP —— 2ADP
glycolytic enzymes or oxidative phosphorylation
ADP —— ATP
2 .ATP通过核苷单磷酸激酶生成其他NDP
ATP + NMP —— ADP + NDP
3.NTP的生成
核苷二磷酸激酶
XTP + NDP
XDP + NTP
肠黏膜细胞中还有核苷酸酶 (磷酸单 酯酶),水解核苷酸为核苷和Pi。
脾、肝等组织中的核苷酶进一步水解 核苷为戊糖和碱基。
核酸酶
核酸
核苷酸酶
核苷酸
磷酸
核苷酶
核苷
戊糖
碱基
(嘌呤碱,嘧啶碱)
核酸酶(Nuclease)
核酸酶是作用于核酸磷酸二酯键的水 解酶,包括核糖核酸酶(RNase)和脱氧核 糖核酸酶(DNase),其中能水解核酸分子 内磷酸二酯键的酶又称为核酸内切酶 (endonuclease),从核酸的一端逐个水解 下核苷酸的酶称为核酸外切酶 (exonuclease)。
NH 2 N
N
N H
N
10核酸酶促降解和核苷酸代谢
10核酸酶促降解和核苷酸代谢
核酸酶是一组分子量较大的蛋白质,是DNA和RNA的重要降解酶,可以促进DNA与RNA的合成、降解、改造等反应。
这些反应包括线粒体DNA 的重组和修复、DNA的合成与维护、RNA的转录、基因表达、以及核苷酸代谢等。
除此之外,核酸酶还可以促进核酸复制、转录和翻译等步骤,具有促进基因表达和改变基因组结构,修复和维护DNA和RNA的能力。
核酸酶分子通过承载一组众多的催化朙朙,可以与目标核酸分子特异性结合,从而促进其降解,从而获得活性核苷酸供后续合成、降解及修复反应中进行活性相互作用。
核苷酸代谢是基因表达和维护生物体内水平的重要过程。
它通过把位于染色体中的胞嘧啶转录成嘧啶碱型核苷酸,并通过不断转化的反应来修改基因表达水平,定期的转录修复等,从而维护细胞内的水平。
核苷酸代谢可以通过核酸酶来促进,核酸酶可以促进核苷酸复制、转录和翻译,从而促进核苷酸的代谢。
核苷酸代谢可以在一些特定的细胞有效地合成、降解、传播和重组信号,以改变基因表达组成如RNA和DNA的重组和修复,从而调节基因的水平。
生物化学_09 核酸降解和核苷酸的代谢
IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。
关于核酸的酶促降解课件
二、核酸酶
2、核酸酶的功能
生物体内的核酸酶负责细胞内外催化核 酸的降解
参与DNA的合成与修复及RNA合成后的剪接等重要基 因复制和基因表达过程
负责清除多余的、结构和功能异常的核酸,同时也可 以清除侵入细胞的外源性核酸
在消化液中降解食物中的核酸以利吸收 体外重组DNA技术中的重要工具酶
第二节 核苷酸的降解
嘌呤碱的最终 代谢产物
(人、猿、鸟)
(非灵长类哺乳动物) (硬骨鱼)
(鱼类、两栖类) (低等动物)
痛风症
痛风症患者由于体内嘌呤核 苷酸分解代谢异常,可致血中尿 酸水平升高,以尿酸钠晶体沉积 于软骨、关节、软组织及肾脏, 临床上表现为皮下结节,关节疼 痛等。
三、嘧啶的分解代谢
嘧啶核苷酸的结构
三、嘧啶的分解代谢
核苷酸酶
嘧啶核苷酸
核苷
PPi
1-磷酸核糖
核苷磷酸化酶
嘧啶碱
还原反应
开环
脱氨氧化
还原反应
开环
嘧啶核苷酸
核苷酸酶 嘧啶核苷
核苷酶
嘧啶
NH2
C
N
CH
C
CH
O
N H
胞嘧啶
NH3 HN
O NADPH+H+
C
CH
C
CH
O
N H
尿嘧啶
O NADP+
C
HN
CH2
C O
N H
CH2
H2O
O
β-丙氨酸
CO2+NH3
AMP
GMP
IMP生成总反应过程
2)AMP和GMP的生成
①腺苷酸代琥珀酸合成酶 ③IMP脱氢酶 ②腺苷酸代琥珀酸裂解酶 ④GMP合成酶
核酸的降解
第九章核酸的酶促降解和核苷酸代谢核酸在生物体内核酸酶、核苷酸酶、核苷酶等的作用下,分解为氨、尿素、尿囊素、尿囊酸、尿酸等终产物,排泄到体外。
在核酸的分解过程中,产生的核糖可以沿磷酸戊糖途径代谢,产生的核苷酸及其衍生物几乎参与细胞的所有生化过程。
如A TP是生物体内的通用能源;腺苷酸还是几种重要辅酶的组成成分;cAMP和cGMP作为激素作用的第二信使,是生物体内物质代谢的重要调节物质。
第一节核酸的分解代谢动物和异养型微生物可以分泌消化酶来分解食物中的核蛋白和核酸类物质,以获得各种核苷酸、核苷及嘌呤碱、嘧啶碱和戊糖。
植物一般不能消化体外的有机物质。
但所有生物细胞都含有与核酸代谢有关的酶类,能使细胞内的核酸分解,促使核酸更新。
在体内,核酸的分解过程如下:嘌呤碱和嘧啶碱+ 戊糖—1—磷酸。
一、核酸的降解(解聚)在生物体内能催化磷酸二酯键水解而使核酸解聚的酶,称为核酸酶。
其中专一作用于RNA的称为核糖核酸酶(RNase);专一水解DNA的称为脱氧核糖核酸酶(DNase)。
核糖核酸酶和脱氧核糖核酸酶中,能水解核酸分子内部磷酸二酯键的酶称为核酸内切酶(Endonuclease);而能从DNA或RNA以及低聚多核苷链的一端逐个水解下单核苷酸的酶称为核酸外切酶(Exonuclease)。
二、核苷酸的降解各种单核苷酸受细胞内磷酸单酯酶或核苷酸酶的作用水解为核苷和磷酸。
核苷在核苷酶的作用下进一步分解。
核苷酶的种类很多,可以分为两大类:一类是核苷磷酸化酶(Nucleoside Phosphorylase),一类是核酸水解酶(Nucleoside hydrolase)。
三、碱基的分解1.嘌呤的分解嘌呤碱的分解首先是在各种脱氨酶的作用下脱去氨基。
在许多动物体内广泛含有鸟嘌呤脱氨酶,可以催化鸟嘌呤水解脱氨生成黄嘌呤。
但腺嘌呤脱氨酶含量极少,而腺苷脱氨酶和腺苷酸脱氨酶活性很高。
因此,腺嘌呤的脱氨反应是在腺苷酸和腺苷的水平上进行的。
蛋白质、核酸的酶促降解和含氮化合物代谢
蛋白质、核酸的酶促降解和含氮化合物代谢学习要点蛋白质是生命物质的基础,是维持生命活动正常进行以及生长发育所必不可少的。
泛素系统和溶酶体系统是细胞内蛋白质两个最重要的降解系统。
氨基酸经过转氨基与氧化脱氨基和联合脱氨基作用,生成氨和相应的α-酮酸。
氨可通过多种途径安全地排出体外;α-酮酸可参入糖酵解、三羧酸循环、糖异生和酮体代谢途径。
氨基酸还可以转化成辅酶、激素、生物碱等重要物质。
自然界中的不同氮化物相互转化形成氮素循环。
固氮生物和工业固氮将N2转变成NH3,NH3被硝化细菌氧化成NO3-,植物吸收NO3-并还原成NH3,通过还原氨基化同化为Glu,再以Glu和Gln为氨基供体合成其它氨基酸和含氮有机物。
核酸酶催化核酸水解为核苷酸,可分为核酸内切酶、核酸外切酶和限制性内切酶。
核苷酸可进一步降解为戊糖、磷酸和含氮碱。
在人体内嘌呤碱的降解产物为尿酸、嘧啶碱彻底降解。
生物可利用氨基酸和其它代谢物从头合成核苷酸,还能通过补救途径利用核苷和碱基合成核苷酸。
9.1 蛋白质的酶促降解9.1.1 蛋白水解酶生物体内的蛋白质经常处于不断合成和降解的动态变化之中。
生物体内几乎到处都有水解肽键的酶,既包括消化道中消化食物蛋白的蛋白酶,血液中参与血液凝固和溶解血栓的酶以及补体系统,也包括种类繁多、结构和功能更复杂的细胞内蛋白酶。
这些酶可按其作用特点分为肽链内切酶和肽链外切酶。
肽链内切酶又称蛋白酶,水解肽链内部的肽键,对参与形成肽键的氨基酸残基有一定的专一性,常见的蛋白酶及其作用位点参看表9-1。
肽链外切酶包括氨肽酶和羧肽酶,分别降解肽链N端和C端的肽键。
如羧肽酶A优先作用于中性氨基酸为羧基端的肽键;羧肽酶B则水解以碱性氨基酸为羧基端的肽键(表9-1)。
表9-1 蛋白水解酶作用的专一性按其活性部位的结构特征可将蛋白酶分为四类:(1)丝氨酸蛋白酶类活性部位含有Ser残基,受二丙基氟磷酸(DIFP)的强烈抑制。
胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、枯草杆菌蛋白酶等均属此类。
第八章 核酸的酶促降解
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 1 页 共 8 页
第八章 核酸的酶促降解和核苷酸代谢
第一节 核酸的酶促降解 第二节 核苷酸的降解代谢 第三节 核苷酸的合成代谢
1
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 2 页 共 8 页
一、降解方式
3
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 4 页 共 8 页
应用极广。
限制性内切酶的命名较为特殊:如大肠杆菌的一种限制性内切 E——EcoRI
E coR I
细菌属
酶编号
菌名 菌株
5ˊ pGAATTCp
3ˊ 5ˊ pG pAATTCp
3ˊ
3ˊ pCTTAAG
5ˊ 3ˊ pCTTAAp Gp 5ˊ
5
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 6 页 共 8 页
R5 P ATP
Gln Gly
甲酸
CO2 甲酸 Gln Asp
G TP A sp
AMP
PRPPP P OCH2 O P P
IMP GMP
G ln A T P
二、嘧啶核苷酸的合成
(一)嘧啶环组成成分来源
氨甲酰磷酸 Asp
UDP
核酸的酶促降解和核苷酸代谢
核酸的酶促降解和核苷酸代谢核酸是构成生物体遗传物质的重要分子之一、它们在生物体内起着关键的功能,包括存储遗传信息、传递遗传信息和参与生物体的代谢过程。
然而,核酸分子并不是永久存在的,它们会经历酶促降解和核苷酸代谢过程。
酶促降解是一种通过酶催化反应将核酸分子分解为较小的碎片的过程。
这一过程在细胞中起着至关重要的作用,因为它能够控制细胞内的核酸浓度,并对细胞进行修复和调控。
具体而言,核酸的酶促降解主要通过核酸酶参与。
核酸酶可以识别特定的核酸分子,切割磷酸二酯键并将其分解成较小的碎片。
酶促降解的过程是高度调控的,这意味着细胞可以根据需要来降解核酸分子。
核酸酶的酶促降解反应可以发生在DNA和RNA分子上。
在DNA分子中,核酸酶可以通过识别特定的序列或结构来切割DNA链。
这些酶可以在DNA复制、修复和重组过程中发挥重要的作用。
在RNA分子中,核酸酶则可以通过识别特定的次级结构来切割RNA链。
这些酶在RNA降解和剪接等过程中起着关键作用。
核苷酸的合成通常发生在两个方向上。
一方面,细胞通过核苷酸合成途径将脱氧核苷酸和核苷酸合成为DNA和RNA的单体。
这些途径包括脱氧核苷酸合成途径和核苷酸合成途径。
另一方面,细胞还可以通过核苷酸分解途径将核苷酸分解为核苷和磷酸。
这些途径包括核苷酸降解途径和氨基酸代谢途径。
核酸酶和核苷酸代谢的失调会导致DNA和RNA的不稳定和降解,影响细胞的正常功能。
此外,核苷酸代谢紊乱还与多种人类疾病的发生和发展密切相关。
因此,研究核酸的酶促降解和核苷酸代谢机制对于理解生物体的正常功能和疾病的发生具有重要意义。
核酸的酶促降解与苷酸代谢
C
HN
CH
C O
CH
N H
尿嘧啶
NADPH
+ H+
NADP +
O
C
HN
C H2
C
CH 2
O
N H 二氢尿嘧啶
H 2O
H 2N
C O
CO OH C H2
CH 2 N H
H 2O
H 2N
CH 2 CH 2 CO OH
β-丙 氨 酸
HN C
O
HN C
O
O
C C CH 3
CH N H
NADPH
胸腺嘧啶 + H+
两栖类------尿素、乙醛酸
医学ppt
10
最终产物
人、灵长类、鸟类、爬行类等------尿酸 其他哺乳动物----尿囊素 硬骨鱼类------尿囊酸 两栖类------尿素、乙醛酸 植物---------尿囊酸
医学ppt
11
二
嘧 啶 的 分 解
N
C O
NH 2 C
CH
CH
N H
胞嘧啶
NH 2
O
医学ppt
6
第二节 核苷酸的分解代谢
一、核苷酸的分解代谢 二、嘌呤的分解代谢 三、嘧啶的分解代谢
医学ppt
7
一、核苷酸的分解代谢
核苷酸 核苷酸酶 核苷 核苷酶 碱基 + 核糖
Pi
核苷磷酸化酶
1-磷酸核糖 碱基
医学ppt
8
二、嘌呤的分解
NH2
N
N
N
N H
O HN
N O
HN
H2N
N
O
N
核酸的酶促降解和核苷酸代谢客观题带答案
核酸的酶促降解和核苷酸代谢(客观题带答案)核酸的酶促降解和核苷酸代谢一、名词解释1.核苷磷酸化酶(nucleoside phosphorylase):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。
2.从头合成(de novo synthesis ):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。
3.补救途径(salvage pathway):与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。
4.限制性内切酶:二、单选题(在备选答案中只有一个是正确的)( 3 )1.嘌呤核苷酸从头合成时首先生成的是:①GMP; ②AMP; ③IMP; ④ATP( 2 )2.提供其分子中全部N和C原子合成嘌呤环的氨基酸是:①天冬氨酸; ②甘氨酸; ③丙氨酸; ④谷氨酸( 1 )3.嘌呤环中第4位和第5位碳原子来自下列哪种化合物?①甘氨酸②天冬氨酸③丙氨酸④谷氨酸( 3 )4.嘌呤核苷酸的嘌呤核上第1位N原子来自①Gly②Gln③ASP④甲酸三、多项选择题1.嘧啶分解的代谢产物有:(ABC)A.CO2; B.β-氨基酸C.NH3D.尿酸2.嘌呤环中的氮原子来自(ABC)A.甘氨酸; B.天冬氨酸; C.谷氨酰胺; D.谷氨酸四、填空题1.体内脱氧核苷酸是由____核糖核苷酸_____直接还原而生成,催化此反应的酶是____核糖核苷酸还原酶______酶。
2.人体内嘌呤核苷酸分解代谢的最终产物是______尿酸______,与其生成有关的重要酶是___黄嘌呤氧化酶_________。
3.在生命有机体内核酸常与蛋白质组成复合物,这种复合物叫做染色体。
4.基因表达在转录水平的调控是最经济的,也是最普遍的。
五、问答题:1.降解核酸的酶有哪几类?举例说明它们的作用方式和特异性。
2.什么是限制性内切酶?有何特点?它的发现有何特殊意义?3.简述蛋白质、脂肪和糖代谢的关系?蛋白质AA糖EMP 丙酮酸乙酰辅酶A TCA脂肪甘油脂肪酸六、判断对错:(对)人类和灵长类动物缺乏尿酸氧化酶,因此嘌呤降解的最终产物是尿酸。
核酸的酶促降解与核苷酸代谢
A+P R P P
A M P+P P i
腺 嘌 呤
次 黄 嘌 呤 / 鸟 嘌 呤 磷 酸
G /I +P R P P
G M P /IM P+P P i
鸟 嘌 呤 / 次 黄 嘌 呤
核 糖 转 移 酶
2024/6/22
(三)、 嘧啶核苷酸的合成
嘧啶环各原子的来源 氨基甲酰磷酸
C
4
N3
5C
C2 6C
1
N
一、 核苷酸的生理功能
1、 核酸合成的原料:
2、 能量的利用形式: ATP、GTP、UTP、CTP
3、 参与代谢和生理调节: ATP/ADP/AMP, cAMP、 cGMP
4、 组成辅酶(基):腺苷酸
5、 活性中间代谢物:UDPG、ADPG葡萄糖:糖原合成
• 合成
CDP- 胆碱:磷酸甘油酯
2024/6/22
作用于核糖或 脱氧核糖核苷
作用于核糖核苷
2024/6/22
核苷
2024/6/22
பைடு நூலகம்
(一)、嘌呤核苷酸的分解代谢
2024/6/22
(二)、嘧啶核苷酸的分解代谢
嘧啶核苷酸
胞嘧啶 尿嘧啶
嘧啶碱+磷酸核糖 NH3、CO2、β-丙氨 酸
胸腺嘧啶
NH3、CO2、β-氨基异丁酸
2024/6/22
N H2 C N CH
11)FAICAR脱水环化,生成IMP
2024/6/22
2024/6/22
腺苷酸代琥珀酸 2.AMP和GMP的生成 腺苷酸
次黄嘌呤 核苷酸
2024/6/22
黄嘌呤核苷酸
鸟苷酸
2024/6/22
华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢
第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。
二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。
食物中的核酸也需要在核酸酶的作用下被消化。
核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。
按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。
核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。
(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。
核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。
肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。
核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。
不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。
嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。
核苷酸的合成代谢受多种因素的调节。
(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。
嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。
核酸的酶促降解
①生成乳清苷酸
②由乳清苷酸转化成其它化合物
↗CO2 乳清苷酸→UMP+ATP尿嘧啶核苷酸激酶
UDP+ADP UDP+ATP核苷二磷酸激酶UTP+ADP UTP+谷氨酰胺+ATP+H2OCTP合成酶 →CTP+谷氨酸+ADP+Pi (2)补救途径与嘌呤核苷酸补救途径相 似
AMP-S
AMP
XMP
GMP
Gln
(2)补救合成途径 嘌呤碱和PRPP在特异的磷酸核糖转 移酶作用下生成嘌呤核苷酸
腺嘌呤+PRPP腺嘌呤磷酸核糖转移酶 →AMP+PPi
鸟嘌呤+PRPP次黄嘌呤-鸟嘌呤磷酸核糖转移酶 →GMP+PPi
2、嘧啶核苷酸的生物合成
(1)从头合成。 特点:A、先合 成嘧啶环,再与PRPP作用生成 嘧啶核苷酸;B、初产物为乳清
腺苷酸及鸟苷酸的合成:
IMP在腺苷酸代琥珀酸合成酶的催化下,由天 冬氨酸提供氨基合成腺苷酸代琥珀酸(AMPS),然后裂解产生AMP;IMP也可在IMP脱氢酶 的催化下,以NAD+为受氢体,脱氢氧化为黄苷 酸(XMP),后者再在鸟苷酸合成酶催化下, 由谷氨酰胺提供氨基合成鸟苷酸(GMP)。
IMP
Asp NAD+
根据核酸酶对底物的专一性将其分为 三类:核糖核酸酶;脱氧核糖酸 酶;非特异性核酸酶。
脱氧核糖核酸酶
脱氧核糖核酸酶专一水解DNA而不作用 于RNA。分为内切酶和外切酶。
内切酶中的限制性内切酶是一种重要 的工具酶。它作用于特定的核苷酸序列, 有极高的专一性,切割后形成平齐末端 和粘性末端。
核酸的酶促降解范文
核酸的酶促降解范文核酸的酶促降解是指通过酶的作用,将核酸分子降解成较小的碱基单元。
这个过程在生物体内起着至关重要的作用,可以调控基因的表达,修复DNA损伤以及保持细胞的健康状态。
本文将详细探讨核酸的酶促降解机制及其意义。
核酸是由若干个核苷酸单元组成的大分子。
核苷酸是由碱基、糖和磷酸基团构成的,包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)、胞嘧啶(Cytosine)和尿嘧啶(Uracil)等几种碱基,以及核糖或脱氧核糖。
在细胞内,核酸是遗传信息的载体,在DNA和RNA形式中存在。
核酸酶是一类特殊的酶,具有降解核酸的能力。
在细胞中,核酸酶通过切割核酸链的磷酸二酯键来发挥作用。
具体来说,核酸酶可以选择性地切割单链核酸或双链核酸。
对于单链核酸,核酸酶可在任意位置切割;而对于双链核酸,酶作用可以导致链的断裂或链的解旋,从而分离两个链。
核酸酶的酶促降解具有多种生物学功能。
首先,核酸酶在DNA修复中发挥着重要作用。
当DNA受到损伤时,核酸酶可以识别并切割受损的区域,为后续的修复提供便利。
其次,核酸酶可以参与基因的表达调控。
例如,转录因子可以结合到特定的DNA序列上,从而启动或抑制基因转录。
核酸酶可以切割这些DNA序列,从而干扰基因的表达。
此外,核酸酶还可以降解RNA分子,是RNA降解的重要因素。
RNA降解过程中,核酸酶通过切割RNA链的方式,分解RNA分子。
这是调节RNA稳定性和清除异常RNA的重要过程。
在细胞内,核酸酶的活性受到严格的调控。
细胞通过调节酶的表达量、活性以及酶-底物相互作用来控制核酸降解的过程。
例如,在DNA修复中,细胞可以调节特定的核酸酶表达量,以应对不同类型的DNA损伤。
此外,细胞还通过蛋白质修饰或辅因子的参与来调节核酸酶的活性。
因此,酶的高度调控保证了核酸降解的精确性和准确性。
总结起来,核酸的酶促降解是生物体中一个复杂的过程,通过核酸酶的作用,将核酸分子降解为较小的碱基单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)嘌呤核苷酸从头合成的调节
抑制部位的酶均为变构酶。
磷酸核糖焦磷酸转酰胺酶 腺苷酸转琥珀酸合成酶 次黄嘌呤核苷酸脱氢酶 原则之一:满足需求,防止供过于求
(-) (+) (-) (+) (-) PAR (-) IMP XMP (-) GMP GDP GTP
酰基转移酶 腺苷酸代 琥珀酸
R-5-PPRPP合 成 酶PRPP
活化中间代谢物:
UDPG,CDP-DG,SAM
核糖核苷酸和脱氧核糖核苷酸
NH2 N
NH2
N N
5
磷酸酯键
N O¯
N
5
O¯
5´ O¯ P O CH2 O
O
H
H H
N 5´ O O¯ P O CH2 O O H H H HO H H
均为
β-糖
苷键
H
HO OH
腺嘌呤核苷酸
(5′-AMP)
胞嘧啶脱氧核苷酸 (5′-dCMP)
共同分解中产物为黄嘌呤,产物也是尿酸。 若浓度过高会引起尿结石、风湿性关节炎。
痛风症
嘌呤代谢异常的一种疾病
代谢异常的突出表现是尿酸生成过多, 使血尿酸
临床表现:尿酸含量过高,血中尿酸含 量升高,难溶性的尿酸盐沉积于关节和 软骨及肾等处,导致关节炎、尿路结石 及肾疾病。
血中尿酸含量:超过8mg%
※胸腺嘧啶分解终产物为β-氨基异丁酸
HO H OO O CH O 乙酸 NH2 尿嘧啶 H O CH 3 HO OH H CHH H H 33 NH 乙酸+3NH +2CO NADPH+H CHNADPH+H HOO 3 HNH2 H2 CH2 H 胸腺嘧啶 N H H HO OH H H H CO2 CH2 H H NADPH β-氨基异丁酸 NADPH +CO +NH O O 2N N H H HNHN 2 3 H 2 CO H HOβ-丙氨酸 HH H 排出体外或进入有机酸 H CO HOCO +NH 代谢。 2 3 3 2 NH
嘌呤核苷酸的补救合成
腺嘌呤磷酸核糖转移酶
腺嘌呤+PRPP
COOH
Asp
H2 C HC COOH O P
O NH C
H HN C C N CH O fumarate P CH2
O C
C
H2 N O OH C N
N CH
CH2
H2 N O
N
OH OH 5-氨基咪唑-4(N-琥珀酸)?﹠ -甲酰胺核苷酸
OH
10 N -CHO-FH 4
5-氨基咪唑-4 -甲酰胺核苷酸
属 系 株
Haemophilus influenzae d株 流感嗜血杆菌d株的第三种酶
序
第一个字母取自产生该酶的细菌属名,用大写; 第二、第三个字母是该细菌的种名,用小写; 第四个字母代表株; 用罗马数字表示发现的先后次序。
Ⅱ类酶识别序列特点—— 回文结构(palindrome)
GGATCC CCTAGG 切口 :平端切口、粘端切口
β-氨基异丁酸
3
胞嘧啶
+
3
2 +
+
+
2
3
22
3
嘧啶核苷酸的分解代谢历程
NH2
N O C N C CH CH
NH3H N
O C
O C CHNADPH NADP+ HN CH C O N CH H2O CH
O
HO C
CH H NH C CH O N
O
H2O
HO C
CH CH
H 胞嘧啶
O
C N
H 尿嘧啶
牛脾磷酸二酯酶则相反,从游离5‘端开始 水解,逐个水解下3’核苷酸
二、脱氧核糖核酸酶DNase ※牛胰脱氧核糖核酸酶(DNaseI)可 切割双链和单链DNA。产物是以5’-磷 酸为末端的寡核苷酸。
三、限制性核酸内切酶
定义: 限制性核酸内切酶(restriction 围切割双链DNA的一类内切酶。
Bam HⅠ GGATCC CCTAGG G + GATCC CCTAG G
endonuclease,
RE)是识别DNA的特异序列, 并在识别位点或其周
分类:Ⅰ、Ⅱ、Ⅲ (基因工程技术中常用Ⅱ型)
作用: 与甲基化酶共同构成细菌的限制修饰 系统,限制外源DNA, 保护自身DNA。
命名:
Hin dⅢ
H 二氢尿嘧啶
H β-脲基丙酸
β-丙氨酸
HN H
CO 2 + NH 3
O HN O C N C
O
O
C CH3
CH
NADPH NADP+
HN O C
C
C CH3 H2O
CH
N
CH CH3 H 2O H NH C CH O N
HO C
O
HO C CHCH3 HN H β-氨基异丁酸
CH
H 胸腺嘧啶
H 二 氢胸 腺嘧 啶
天冬氨酸
甲酸
N1 C2
C C N 6 7
5 8 9
CO2
甘氨酸
C N N
3
4
C
甲酸
嘌 呤 碱
谷氨酰胺
(2)从头合成途径
磷酸核糖焦磷酸合成酶 ATP AMP
5-磷酸核糖 PRPP 焦磷酸激酶,镁离子。
PRPP 5-磷酸核糖胺 IMP AMP GMP
PRPP
O P CH2 OH O OH OH ATP AMP
H C H N O
O
O C C N N CH HO 2 HN C
C
N
O
P
HC CH2
N O OH
HC C CH P O N N CH2 O OH OH
OH
5-甲酰氨基-4-氨基甲酰 咪唑核苷酸 (FAICAR)
次黄嘌呤核苷酸 IMP
(3)嘌呤核苷酸从头合成的特点
合成原料:磷酸核糖、氨基酸、一碳单位和 CO2等简单物质 合成部位:主要在肝细胞液 是在5-磷酸核糖的基础上逐步合成嘌呤环,而 不是首先单独合成嘌呤碱,然后再与磷酸核糖 结合的 首先合成次黄嘌呤核苷酸,然后再转变成AMP, GMP 重要的催化酶:PRPP合成酶、PRPP酰胺转移 酶(嘌呤核苷酸合成的重要调节点)
脱氨基酶
黄嘌呤
尿酸
OH 2 OH NH OH
HO H
N N
HNH H N N
H2O
H2O
O2 O
黄嘌呤氧化酶
黄嘌呤氧化酶
HO2 O
N N 核苷磷酸化酶
N N Pi 次黄嘌呤 H H2O2 H
A-腺嘌呤
核糖-1-磷酸 H2O2
核糖
次黄苷 腺苷
嘌呤核苷酸的分解代谢历程
NH2 H N C C N OH C N N CH
H β-脲 基 异 丁 酸
第三节 核苷酸的生物合成
(一)核苷酸生物合成的基本途径
1.从“头合成”途径:利用磷酸核糖、氨基酸及CO2 等简单物质为原料,经一系列酶促反应,合成嘌呤 核苷酸的途径。
2.补救合成途径:利用体内游离的嘌呤核苷或嘧啶核 苷,经过简单的反应过程,合成核苷酸的途径。
核苷酸生物合成途径概括
别嘌呤醇治疗痛风症的机理
(1)抑制黄嘌呤氧化酶,从而抑制尿酸的生成 (2)同时反馈抑制嘌呤核苷酸从头合成的酶系
鸟嘌呤
黄嘌呤氧化酶
黄嘌呤
黄嘌呤氧化酶
尿酸
(-)
次黄嘌呤
OH N N N C N N (-) N OH C N N
别嘌呤醇
三、嘧啶核苷酸的分解代谢
核苷酸酶 核苷磷酸化酶
嘧啶核苷酸 核苷 嘧啶 C、U:CO2、NH3、 ß -丙氨酸 终产物 T:CO2、NH3、 ß -氨基异丁酸
AMP
ADP
ATP
(-)
原则之二:交叉调解,相互调整,比例平衡
(-)
腺苷酸代 琥珀酸
AMP
ADP
ATP
GTP IMP XMP
(+) (+) GMP ATP (-) GDP GTP
2.补救合成及生理意义
原料:已有的嘌呤碱、嘌呤核苷、PRPP 重要的酶:
腺嘌呤磷酸核糖转移酶(APRT) 次黄嘌呤—鸟嘌呤磷酸核糖转移酶(HGPRT), 最重要 磷酸核糖供体:PRPP 节约能量和一些氨基酸的消耗。 有些组织(如脑、骨髓)不能从头合成嘌呤核苷酸,只能进 行嘌呤核苷酸的补救合成。
(一)嘌呤的分解
在各种脱氨酶作用下水解脱去氨基。
※脱氨基作用主要在核糖、核苷酸和碱基三个水平进行。 ※不同种类的生物分解嘌呤的能力不同,终产物也不同 排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类 排尿囊素动物:哺乳动物(灵长类除外)、腹足类 排尿囊酸动物:硬骨鱼类 排尿素动物:大多数鱼类、两栖类
※某些低等动物能将尿素进一步分解成NH3和CO2排出。 ※植物分解嘌呤的途径与动物相似,产生各种中间产物 (尿囊素、尿囊酸、尿素、NH3)。 ※微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲 酸、乙酸、乳酸、等)。
N C OH
尿酸
Uric acid
嘌呤碱的分解
嘌呤碱包括: A-腺嘌呤、G-鸟嘌呤
A-腺嘌呤的分解
不同种类动物将尿酸直排或进行不同程度的继续降解排出 体外。H2O2在SOD(超氧化物歧化酶)或过氧化氢酶作用 下分解为H2O。 在人体中嘌呤碱基的分解是不开环,而不断在环外不断加 氧氧化的过程。
G-鸟嘌呤分解与A类似
O P CH2
P O Gln Glu
O CH2
OH
O
NH
OH
2
5-磷酸核糖 R-5-P H2 C ATP Gly OH O P CH2 O C O NH NH2