传感器基础知识.
传感器基础知识单选题100道及答案解析
![传感器基础知识单选题100道及答案解析](https://img.taocdn.com/s3/m/88b4b3dffc0a79563c1ec5da50e2524de518d08a.png)
传感器基础知识单选题100道及答案解析1. 传感器能感知的输入量的最小变化量称为()A. 分辨率B. 灵敏度C. 精度D. 线性度答案:A解析:分辨率是指传感器能感知的输入量的最小变化量。
2. 下列不属于传感器静态特性指标的是()A. 重复性B. 固有频率C. 线性度D. 迟滞答案:B解析:固有频率属于传感器的动态特性指标。
3. 传感器的输出量与输入量之间的实际关系曲线偏离拟合直线的程度称为()A. 线性度B. 灵敏度C. 重复性D. 分辨率答案:A解析:线性度描述的是实际关系曲线偏离拟合直线的程度。
4. 传感器在正、反行程中输出输入曲线不重合的现象称为()A. 线性度B. 重复性C. 迟滞D. 灵敏度误差答案:C解析:迟滞指传感器在正、反行程中输出输入曲线不重合。
5. 衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间不一致的程度的指标是()A. 线性度B. 迟滞C. 重复性D. 灵敏度答案:C解析:重复性是衡量同一工作条件下,特性曲线不一致的程度。
6. 以下哪种传感器属于物性型传感器()A. 电容式传感器B. 电感式传感器C. 压电式传感器D. 电阻应变式传感器答案:C解析:压电式传感器是利用某些物质的压电效应制成,属于物性型传感器。
7. 属于结构型传感器的是()A. 光电式传感器B. 霍尔式传感器C. 压电式传感器D. 热敏电阻答案:B解析:霍尔式传感器是基于霍尔效应,属于结构型传感器。
8. 传感器的线性范围越宽,则其量程()A. 越小B. 越大C. 不变D. 不确定答案:B解析:线性范围宽,意味着能测量的输入量的范围大,即量程越大。
9. 下列对传感器的动态特性描述正确的是()A. 输入量随时间变化缓慢时的特性B. 输入量为常量时的特性C. 输入量随时间快速变化时的特性D. 以上都不对答案:C解析:动态特性是指输入量随时间快速变化时传感器的特性。
10. 传感器的频率响应特性是指()A. 传感器对不同频率正弦输入信号的响应特性B. 传感器在单位时间内的响应特性C. 传感器在不同温度下的响应特性D. 传感器在不同压力下的响应特性答案:A解析:频率响应特性指传感器对不同频率正弦输入信号的响应特性。
第一章 传感器的基本知识
![第一章 传感器的基本知识](https://img.taocdn.com/s3/m/f1065c0dc281e53a5802ff6d.png)
第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。
2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。
人们为了从外界获得信息,必须借助于感觉器官。
◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。
◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。
传感器是人类“五官”的延伸,是信息采集系统的首要部件。
电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。
◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。
◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。
传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。
◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。
◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。
采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。
传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。
传感器基础知识点整理
![传感器基础知识点整理](https://img.taocdn.com/s3/m/3322ef6c76232f60ddccda38376baf1ffc4fe3d9.png)
传感器基础知识点整理
本文档旨在梳理传感器的基础知识点,帮助读者了解传感器的工作原理和常见类型。
1. 传感器简介
传感器是一种用于检测和测量物理量的器件,可以将各种物理量(如温度、压力、力、光等)转换为可读取的电信号。
2. 传感器的工作原理
传感器工作原理根据不同的物理量而异,但通常包括以下几个步骤:
- 接收:传感器接收待测物理量的信号。
- 转换:传感器将接收到的信号转换成可读取的电信号。
- 输出:传感器将转换后的电信号输出给其他设备或系统。
3. 传感器的常见类型
3.1 温度传感器
温度传感器用于测量环境或物体的温度。
常见的温度传感器有:
- 热电偶:基于热电效应,利用两种不同金属的接触产生电势
差来测量温度。
- 热敏电阻:利用材料电阻与温度的关系来测量温度。
3.2 压力传感器
压力传感器用于测量气体或液体的压力。
常见的压力传感器有:
- 压阻式传感器:利用应变片的变形来测量压力。
- 电容式传感器:利用电容的变化来测量压力。
- 压力膜片传感器:利用薄膜片的弯曲来测量压力。
3.3 光传感器
光传感器用于检测光的存在、光的强度或光的颜色。
常见的光传感器有:
- 光敏电阻:利用光照射产生的光电效应来测量光的强度。
- 光电二极管:基于光电效应来测量光的强度。
- 光电三极管:在光电二极管的基础上增加了一个控制端口,用于增强灵敏度。
4. 总结
本文档简要介绍了传感器的基础知识点,包括传感器的工作原理和常见类型。
通过了解这些知识,读者可以更好地理解传感器的应用场景和原理。
1 传感器的基础知识-半导体传感器原理与应用-李新-清华大学出版社
![1 传感器的基础知识-半导体传感器原理与应用-李新-清华大学出版社](https://img.taocdn.com/s3/m/8ed320ff192e45361166f5d7.png)
线性模型: y=a0+a1x或y=ax ➢ 动态模型(输入信号随时间变化): 微分方程
and n y / dtn a1dy / dt a0 y bmd mx / dtm b1dx / dt b0x c
当传感器的数学模型初值为0时,对其进行拉氏变换,可得
1、传感器的基础知识
取决于传感器本身,可通过传感器本身的改善来加以抑制, 有时也可以对外界条件加以限制。
冲振
外界影响
温度
电磁场
电源
输入
输出
Sensor
线性 迟滞 重复性
温漂 稳定性(零漂) 灵敏度
衡量传感器特性的主要技术指标
传感器的输入-输出关系
1、传感器的基本特性
➢ 传感器的数学模型 指传感器的输入输出关系。 ➢ 传感器的静态模型(输入信号不随时间变化):
➢最小二乘法线性度
设拟合直线方程: y=kx+b
y
yi
若实际校准测试点有n个,则第i个校准
数据与拟合直线上响应值之间的残差为 0
Δi=yi-(kxi+b)
y=kx+b
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 2i 为最小值,即
n
n
2
2i yi kxi b min
i 1
i 1
2i 对k和b一阶偏导数等于零,求出b和k的表达式
规定工作条件下,环境温度每变化1℃,零点输出变化(灵敏度变化) 与满量程输出(灵敏度)之比,称为零点温漂(灵敏度温漂)。
➢ 精度 表征测试系统的测量结果与被测量真值的符合程度。
方和根表示法:
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/f268d55ba6c30c2259019ed5.png)
酒精测试仪
呼气管
电子湿度计模块
封装后的外 形
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物 理量的最后结果,则称这样的测量为组合测量。
2020年08月27日
Thursday
39
①主称——传感器代号C ②被测量—用一个或两个汉语拼音 的第一个大写字母标记。③转换原理——用一个或两个汉语 拼音的第一个大写字母标记。④序号——用一个阿拉伯数字 标记,厂家自定,用来表征产品设计特性、性能参数、产品 系列等。
例:应变式位移传感器: C WY-YB-20 光纤压力传感器:C Y-GQ-2
④+①超调量σ 传感器输出超过稳态值的最 大值。
④ +②衰减比d 衰减震荡的二阶传感器输 出响应曲线第一个峰值与第二个峰值之比。
2. 频率响应特性
传感器对不同频率正弦输入信号的响应特性,称为 频率响应特性。
频率响应法是从传感器的频率特性出发研究传感器 的动态特性。
(1)零阶传感器的频率特性 (2)一阶传感器的频率特性 (3) 二阶传感器的频率特性 (4)频率响应特性指标
检测技术主要研究被测量的测量原理、测量方
法、检测系统和数据处理等方面的内容。
不同性质的被测量要采用不同的原理去测量, 测量同一性质的被测量也可采用不同测量原 理。
2020年08月27日
Thursday
43
自动检测技术的重要性
(1)测试手段就是仪器仪表 在工程上所要测量的参数大多数为非电量,促使 人们用电测的方法来研究非电量,即研究用电测 的方法测量非电量的仪器仪表,研究如何能正确 和快速地测得非电量的技术。
传感器基础知识讲解
![传感器基础知识讲解](https://img.taocdn.com/s3/m/4451bb63814d2b160b4e767f5acfa1c7aa0082e4.png)
传感器基础知识讲解传感器,在现代科技中扮演着重要的角色。
它们是将物理量或化学量转化为可测量、可感知的电信号或其他形式的能量输出的装置。
本文将为您详细介绍传感器的基础知识,包括其工作原理、分类和应用领域等。
一、传感器的概念及工作原理传感器是指能够将所测量的物理量或化学量转换成可读的电信号或其他形式的能量输出的装置。
传感器的工作原理主要分为以下几种:1. 电阻式传感器:电阻式传感器利用物理量改变电阻值的特性,通过测量电阻值的变化来获取目标物理量的值。
例如,温度传感器就是一种电阻式传感器,它根据温度的变化来改变电阻值。
2. 压阻式传感器:压阻式传感器利用物理量改变电阻值的原理,通过测量电阻值的变化来间接获取目标物理量的值。
比如,压力传感器利用介质压力的变化引起电阻值的变化,从而测量介质的压力大小。
3. 电容式传感器:电容式传感器利用物理量改变电容值的特性,通过测量电容值的变化来获得目标物理量的值。
例如,湿度传感器就是一种电容式传感器,它根据湿度的变化引起电容值的变化来测量湿度。
4. 磁敏式传感器:磁敏式传感器利用物理量改变磁场强度的原理,通过测量磁场强度的变化来获得目标物理量的值。
例如,磁力传感器可以根据磁场强度的变化来测量磁力大小。
二、传感器的分类根据应用领域和测量原理的不同,传感器可以分为多个类别。
以下是一些常见的传感器分类:1. 温度传感器:用于测量环境或物体的温度,常见的有热敏电阻、热电偶和红外温度传感器等。
2. 压力传感器:用于测量气体或液体的压力,常见的有压电传感器、压阻传感器和压电式绝对压力传感器等。
3. 湿度传感器:用于测量空气或物体的湿度,常见的有电容式湿度传感器和表面声波湿度传感器等。
4. 光电传感器:用于检测光源、物体的透明度或反射光强度,常见的有光电开关和光电二极管等。
5. 位移传感器:用于测量物体的位移或位置,常见的有电感位移传感器和光电编码器等。
6. 加速度传感器:用于测量物体的加速度或振动,常见的有压电加速度传感器和微机械加速度传感器等。
传感器基础知识介绍重点
![传感器基础知识介绍重点](https://img.taocdn.com/s3/m/2477110914791711cc791781.png)
湖南铁道职业技术
传感器基础知识介绍
应 用 电 子 技 术 专 业 教 学 资 源 建 设
三、传感器的基本特性
任务4 掌握线性度的概念 线性度又称非线性误差,是指传感器实际特性曲 线与拟合直线(有时也称理论直线)之间的最大 偏差与传感器量程范围内的输出之百分比。
湖南铁道职业技术
传感器基础知识介绍
湖南铁道职业技术
传感器基础知识介绍
应 用 电 子 技 术 专 业 教 学 资 源 建 设
三、传感器的基本特性
任务1 了解传感器的特性参数有哪些 传感器的特性一般指输入、输出特性。 传感器的特性包括:灵敏度、分辨力、线性度、 迟滞、重复性、漂移等。
湖南铁道职业技术
传感器基础知识介绍
应 用 电 子 技 术 专 业 教 学 资 源 建 设
一、传感器的定义和作用
任务3 理解传感器的作用
在流水线上, 边加工,边检 验,可提高产 品的一致性和 加工精度。
湖南铁道职业技术
传感器基础知识介绍
应 用 电 子 技 术 专 业 教 学 资 源 建 设
二、传感器的组成与分类
任务1 理解传感器的组成
举例:测量压力的电位器式压力传感器
湖南铁道职业技术
传感器基础知识介绍
当传感器的输出、输入量的量纲相同时,灵敏度 可理解为放大倍数。 提高灵敏度,可得到较高的测量精度。但灵敏度 愈高,测量范围愈窄,稳定性也往往愈差。
湖南铁道职业技术
传感器基础知识介绍
应 用 电 子 技 术 专 业 教 学 资 源 建 设
三、传感器的基本特性
任务3 理解分辨力的概念 分辨力:指传感器能检出被测信号的最小变化 量。 当被测量的变化小于分辨力时,传感器对输入 量的变化无任何反应。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/e6794773a417866fb84a8e5f.png)
第1章传感器的基本知识一、简述题1-1何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。
1-2一个实用的传感器由哪几部分构成?各部分的功用是什么?用框图标示出你所理解的传感器系统。
1-3衡量传感器静态特性的主要指标有哪些?说明它们的含义。
1-4什么是传感器的静态特性和动态特性?差别何在?1-5怎么评价传感器的综合静态性能和动态性能?二、计算题1-6有一只压力传感器的校准数据如下表所列。
根据这些数据求最小二乘法线性化的拟合直线方程,并求其线性度。
1-7液体温度传感器是一阶传感器,现已知某玻璃水银温度计特性的微分方程为4dy/dx+2y = 2×103x。
式中y为汞柱高(m),x为被测温度(℃)。
试求:(1) 水银温度计的传递函数;(2) 温度计的时间常数及静态灵敏度;(3) 若被测物体的温度是频率为0.5 Hz的正弦信号,求此时传感器的输出信号振幅误差和相角误差。
1-8今有两加速度传感器均可作为二阶系统来处理,其中一只固有频率为25 kHz,另一只为35 kHz,阻尼比均为0.3。
若欲测量频率为10kHz 的正弦振动加速度,应选用哪一只传感器?试计算测量时将带来多大的振幅误差和相位误差。
第3章电感式传感器3-1简述变气隙式自感传感器的工作原理和输出特性,传感器的灵敏度与哪些因素有关?如何提高其灵敏度?3-2电源频率波动对自感式传感器的灵敏度有何影响?如何确定传感器的最佳电源频率?3-3差动变压器式传感器的等效电路包括哪些元件和参数?各自的含义是什么?3-4试分析差动变压器式电感传感器的相敏整流测量电路的工作过程。
带相敏整流的电桥电路具有哪些优点?3-5差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?3-6图3.38所示为差动变压器式接近开关原理图,结构中使用H型铁芯,分析它的工作原理,并设计后续信号处理电路,使被测金属部件与探头距离达设定距离时,继电器吸合。
高二传感器知识点总结
![高二传感器知识点总结](https://img.taocdn.com/s3/m/f0216d3626284b73f242336c1eb91a37f1113202.png)
高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。
传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。
二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。
2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。
3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。
接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。
三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。
2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。
3. 多功能性强传感器可以感知多种物理量,具有多功能性。
4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。
5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。
四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。
2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。
3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。
4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。
五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。
第一章传感器技术基础知识
![第一章传感器技术基础知识](https://img.taocdn.com/s3/m/649a4bbcdbef5ef7ba0d4a7302768e9951e76ec9.png)
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X
传感器技术基础知识教材
![传感器技术基础知识教材](https://img.taocdn.com/s3/m/5f449a9f964bcf84b9d57b95.png)
1.用物理现象、化学反应和生物效应设计制作各种用途 的传感器,这是传感器技术的重要基础工作。
例如,利用某些材料的化学反应制成的能识别气体的“电 子鼻”;利用超导技术研制成功的高温超导磁传感器等。
2.传感器向高精度、一体化、小型化的方向发展。 工业自动化程度越高,对机械制造精度和装配精度要求 就越高,相应地测量程度要求也就越高。因此,当今在传感 器制造上很重视发展微机械加工技术。
2. 测量方法 测量方法是实现测量过程所采用的具体方法,
应当根据被测量的性质、特点和测量任务的要求来 选择适当的测量方法。按照测量手续可以将测量方 法分为直接测量和间接测量;按照获得测量值的方 式可以分为偏差式测量、零位式测量和微差式测量; 此外,根据传感器是否与被测对象直接接触,可区 分为接触式测量和非接触式测量;而根据被测对象 的变化特点又可分为静态测量和动态测量等。
6.传感器的代号 依次为主称(传感器) 被测量—转换原理—序 号
主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大 写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个 大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定, 用来表征产品设计特性、性能参数、产品系列 等。例:应变式位移传感器: C WY-YB-20; 光纤压力传感器:C Y-GQ-2。
间的关系式为:y=f(x1x2x3…) 。间接测量手续多,
花费时间长,当被测量不便于直接测量或没有相应直 接测量的仪表时才采用。
(2)偏差式测量、零位式测量和微差式测量 Ⅰ.偏差式测量 在测量过程中,利用测量仪表指针相对 于刻度初始点的位移(即偏差)来决定被测量的测量方法,称为 偏差式测量。它以间接方式实现被测量和标准量的比较。 偏差式测量仪表在进行测量时,一般利用被测量产生的 力或力矩,使仪表的弹性元件变形,从而产生一个相反的作 用,并一直增大到与被测量所产生的力或力矩相平衡时,弹 性元件的变形就停止了,此变形即可通过一定的机构转变成 仪表指针相对标尺起点的位移,指针所指示的标尺刻度值就 表示了被测量的数值。偏差式测量简单、迅速,但精度不高, 这种测量方法广泛应用于工程测量中。
公共基础知识传感器技术基础知识概述
![公共基础知识传感器技术基础知识概述](https://img.taocdn.com/s3/m/6273e3856e1aff00bed5b9f3f90f76c661374cee.png)
《传感器技术基础知识概述》一、引言在当今科技飞速发展的时代,传感器技术作为现代信息技术的三大支柱之一,正发挥着越来越重要的作用。
传感器犹如人类的感官,能够感知周围环境的各种物理量、化学量和生物量,并将其转化为电信号或其他易于处理和传输的信号,为人们提供了了解和控制世界的重要手段。
从智能手机中的各种传感器到工业自动化中的精密传感器,从医疗诊断中的生物传感器到环境监测中的智能传感器,传感器技术已经广泛应用于各个领域,深刻改变了人们的生活和工作方式。
本文将对传感器技术的基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、传感器的基本概念(一)定义传感器是一种能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
敏感元件是指传感器中直接感受被测量的部分,它能将被测量转化为另一种物理量;转换元件则将敏感元件输出的物理量转换为电信号或其他易于处理和传输的信号。
(二)分类传感器的分类方法有很多种,常见的分类方式有以下几种:1. 按被测量分类:可分为物理量传感器、化学量传感器和生物量传感器。
物理量传感器包括温度传感器、压力传感器、位移传感器、速度传感器等;化学量传感器包括气体传感器、湿度传感器等;生物量传感器包括生物传感器、免疫传感器等。
2. 按工作原理分类:可分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁电式传感器、光电式传感器等。
3. 按输出信号分类:可分为模拟式传感器和数字式传感器。
模拟式传感器输出的是连续变化的电信号,数字式传感器输出的是离散的数字信号。
(三)主要性能指标1. 灵敏度:指传感器在稳态下输出变化量与输入变化量之比,它反映了传感器对被测量的敏感程度。
2. 线性度:指传感器的输出与输入之间的线性关系程度,通常用非线性误差来表示。
3. 精度:指传感器的测量结果与真实值之间的接近程度,它包括准确度和精密度两个方面。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/3d79238e77eeaeaad1f34693daef5ef7ba0d12b3.png)
直接感受被测量的变化,并输出与被测量成确 定关系的某一物理量的元件。
敏感元件是传感器的核心
2024/9/29
3
转换元件: 将敏感元件输出的物理量转换成 适于传输或测量电信号的元件。
2024/9/29
4
测量电路: 将转换元件输出的电信号进行进 一步转换和处理的部分,如放大、滤波、线性 化、补偿等,以获得更好的品质特性,便于后 续电路实现显示、记录、处理及控制等功能。
y
ΔLmax
x
②过零旋转拟合
曲线过零的传感器。拟合时,使
y
ΔL1 = ΔL2 = ΔLMax
ΔL1 ΔL2
x
③端点连线拟合
把输出曲线两端点的连线作为拟合直线
y
ΔLmax x
④端点连线平移拟合
在端点连线拟合基础上使直线平移,移动距离为
原先的一半 y
ΔL2 = ΔL1 = ΔL3 = ΔLMax
ΔL3
6
2.传感器的分类
(3)按照其结构分:
传感器可分为结构型、物性型和复合型传 感器。
A、物性型传感器是依靠敏感元件材料本身物理性 质的变化来实现信号变换,如:水银温度计。
B、结构型传感器是依靠传感器结构参数的变化实 现信号变换,如:电容式传感器。
2024/9/29
7
1.1.3 传感器基本特性
传感器的基本特性是指系统的输入与输出关系特性, 即传感器系统的输出信号y(t)和输入信号(被测量) x(t)之间的关系,
2024/9/29
41
1.2 检测技术理论基础
1.2.1 检测技术
检测技术主要研究被测量的测量原理、测量方
法、检测系统和数据处理等方面的内容。
不同性质的被测量要采用不同的原理去测量, 测量同一性质的被测量也可采用不同测量原 理。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/edec800cd1f34693daef3ead.png)
专业知识部分泰钦的主要产品是测力传感器及测控仪表(一)首先了解什么叫传感器传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。
所以它由敏感元器件(感知元件)和转换器件两部分组成。
外界信号一般为非电物理量如:力、压力、重量、力矩位移、速度、温度、角度、高度。
电信号一般为易于精确处理的电量或电参量,如电流、电压、电阻、电感、频率。
我公司生产的传感器叫测力传感器,用专业术语统称应变式负荷传感器、称重传感器等。
应变式负荷传感器就是由电阻应变片,弹性体和检测电路三大重要部分组成。
1.电阻应变片。
电阻应变片分金属箔式应变片----(做出来的传感器又叫箔式传感器),另一个分为半导体应变片(做成的传感器叫半导体应变片)。
金属箔式应变片---用金属箔为敏感栅,能把被测试件的应变量转换成电阻变化量的敏感元件。
我公司常用阻值有:350Ω,650Ω,1KΩ等。
半导体应变计具有灵敏系数大、横向效益小,阻值范围宽等特性,广泛用于各种力敏传感器的线性补偿及传感器的力电转换元件。
它的缺点是系数大,长期稳定性较差。
2.弹性体---弹性体是一个有特殊形状的结构件。
它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变区电信号的转换任务。
3.检测电路检测电路的功能是把电阻应变片的电阻变化转变为电压输出。
应变式负荷传感器采用惠斯登电桥原理。
因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。
从以上三个部分我们总结一下,传感器的工作原理:当有力沿应变计丝栅方向产生时,因为弹性体的形变导致应变计丝栅长度变化,根据欧姆定律,应变计阻值发生变化,结合惠斯登电桥原理,于是产生了与受力大小相对应的电压变化。
传感器技术及其应用复习基础知识
![传感器技术及其应用复习基础知识](https://img.taocdn.com/s3/m/fbb3a94933687e21ae45a90f.png)
第1章 传感器基础知识1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。
我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。
我国国家标准对传感器的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。
定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
按使用的场合不同传感器又称为变换器、换能器、探测器。
2 传感器由哪几部分组成?试述它们的作用及相互关系。
答:组成——由敏感元件、转换元件、基本电路组成;①敏感元件:指传感器中直接感受被测量的部分。
②传感器:能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
③信号调理器:对于输入和输出信号进行转换的 装置。
④变送器:能输出标准信号的传感器关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。
传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。
第二章:传感器特性 何谓传感器的静态特性,传感器的主要静态特性有哪些? 静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。
主要包括线性度、灵敏度、迟滞、重复性、漂移等。
(1) 线性度指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
(2) 灵敏度灵敏度是传感器静态特性的一个重要指标。
其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。
它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏.(3) 迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。
传感器基础知识课件
![传感器基础知识课件](https://img.taocdn.com/s3/m/896ace13302b3169a45177232f60ddccdb38e658.png)
分辨率
分辨率是指传感器能够检测到的最 小输入变化量。分辨率越高,传感 器能够检测到的信号越微弱。
交叉灵敏度
交叉灵敏度是指传感器对非测量方 向的输入变化的敏锐程度。交叉灵 敏度会影响传感器的测量精度和稳 定性。
分辨率
绝对分辨率
绝对分辨率是指传感器能够检测 到的最小输入变化量。绝对分辨 率反应了传感器对微弱信号的检
新技术
新兴技术如物联网、人工智能等正在与传感器技术深度融会,推动传感器向智能化、网络化方向发展 。
微型化与集成化
微型化
随着微纳加工技术的进步,传感 器正变得越来越微型化,这使得 传感器能够应用于更广泛的领域 ,如生物医疗、环境监测等。
集成化
将多个传感器集成到一个芯片上 ,实现多参数、多功能的测量, 有助于提高传感器的测量效率和 精度。
环境稳定性
环境稳定性是指传感器在不同环境条件下(如温度、湿度 、压力、振动等)的性能表现。环境稳定性是衡量传感器 在不同工作环境下性能稳定性的重要指标。
重复性
重复性是指传感器在相同条件下重复测量同一物理量时, 其输出值的一致程度。重复性是衡量传感器测量精度的重 要指标。
响应时间
响应时间
响应时间是指传感器从接收到输入信号到产生相应输出信号所需 的时间。响应时间是衡量传感器快速响应能力的重要指标。
工作原理
转换机制
传感器的工作原理是将输入的信号转换成电信号。例如,电阻式传感器通过改 变电阻值来测量压力或温度;光电传感器则利用光电效应将光信号转换成电信 号。
放大与调节
传感器内部通常包含放大器和调节器,用于放大和调节转换后的电信号,以便 进行后续处理和测量。
传感器在日常生活中的应用
01
传感器的基础知识
![传感器的基础知识](https://img.taocdn.com/s3/m/f56eaaa080eb6294dd886cf5.png)
理想的线性 关系
关于原点对称, 在输入X=0较大的范围
有较好的线性关系
线性差,一 般很少采用
一般情况
1.3传感器的类型和特性
传感器的静态特性指标
静态特性校准曲线
传感器静态校准曲线(实际曲线)是在静态标准条件下测定的。 利用一定精度等级的校准设备,对传感器进行往复循环测 试,即可得到输出-输入数据。将这些数据取平均,即为传 感器的静态校准曲线。
Y a0 a1X a2 X 2 an X n
讨论a0=0时的情形,即静态特性曲线通过原点的情形:
(1) 理想的线性特性 (2) 仅有奇次非线性项 (3) 仅有偶次非线性项 (4)同时有奇偶次非线性项
Y a1X
Y a1X a3 X 3 a5 X 5
Y a1X a2 X 2 a4 X 4
传感器的分类
•按被测对象的参数分类 位移传感器、力传感器、力矩传感器、压力传感器、振
动传感器、加速度传感器、流量传感器、流速传感器、液 位传感器、温度传感器、湿度传感器等 • 按变换原理分类
电阻式传感器、电容式传感器、电感式传感器、压电式 传感器、光电式传感器、热电式传感器、超声波传感器、 光栅传感器、红外传感器、光纤传感器、激光传感器等 • 按输出特性的线性与否分类
Y
0
X
1.3传感器的类型和特性
传感器的静态特性指标
(1)线性度 (2)灵敏度 (3)最小检测量和分辨力 (4)迟滞 (5)重复性 (6)零点漂移 (7)温漂
1.3传感器的类型和特性 y
传感器的静态特性指标
(1)线性度
YFS 实 际 特性 曲 线
在规定的条件下,传感器静态 校准曲线(实际曲线)与拟合直线 间最大偏差与满量程输出值的百 分比称为线性度。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/e6794773a417866fb84a8e5f.png)
第1章传感器的基本知识一、简述题1-1何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。
1-2一个实用的传感器由哪几部分构成?各部分的功用是什么?用框图标示出你所理解的传感器系统。
1-3衡量传感器静态特性的主要指标有哪些?说明它们的含义。
1-4什么是传感器的静态特性和动态特性?差别何在?1-5怎么评价传感器的综合静态性能和动态性能?二、计算题1-6有一只压力传感器的校准数据如下表所列。
根据这些数据求最小二乘法线性化的拟合直线方程,并求其线性度。
1-7液体温度传感器是一阶传感器,现已知某玻璃水银温度计特性的微分方程为4dy/dx+2y = 2×103x。
式中y为汞柱高(m),x为被测温度(℃)。
试求:(1) 水银温度计的传递函数;(2) 温度计的时间常数及静态灵敏度;(3) 若被测物体的温度是频率为0.5 Hz的正弦信号,求此时传感器的输出信号振幅误差和相角误差。
1-8今有两加速度传感器均可作为二阶系统来处理,其中一只固有频率为25 kHz,另一只为35 kHz,阻尼比均为0.3。
若欲测量频率为10kHz 的正弦振动加速度,应选用哪一只传感器?试计算测量时将带来多大的振幅误差和相位误差。
第3章电感式传感器3-1简述变气隙式自感传感器的工作原理和输出特性,传感器的灵敏度与哪些因素有关?如何提高其灵敏度?3-2电源频率波动对自感式传感器的灵敏度有何影响?如何确定传感器的最佳电源频率?3-3差动变压器式传感器的等效电路包括哪些元件和参数?各自的含义是什么?3-4试分析差动变压器式电感传感器的相敏整流测量电路的工作过程。
带相敏整流的电桥电路具有哪些优点?3-5差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?3-6图3.38所示为差动变压器式接近开关原理图,结构中使用H型铁芯,分析它的工作原理,并设计后续信号处理电路,使被测金属部件与探头距离达设定距离时,继电器吸合。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/18ac391a03d8ce2f00662338.png)
• 温漂
–表示温度变化时,传感器输出值的偏离程度。一般以 温度变化1摄氏度,输出最大偏差与满量程的百分比来 表示。
可靠性 :是反映检测系统在规定的条件下,在规
定的时间内是否耐用的一种综合性的质量指标。
“老化”试验:在检测设备通电的情况下,将之放
置于高温环境 低温环境 高温环境……反复循环。 老化之后的系统在现场使用时,故障率大为降低 。
1 静态测量
对缓慢变化的对象进行 测量亦属于静态测量。 e.g. 温度计
2、动态测量
地震测量的振动波形
设备振动检测、故障 诊断
地震时间 ( 分)
便携式仪表
可以显示波 形的便携式 仪表
3、直接测量
电子卡尺
4、间接测量
对多个被测量进行测量,经过计 算求得被测量(阿基米德测量)。
5、接触式测量
(三)、传感器基本特性
传感器的特性一般指:输入、输出特性,包
括: 灵敏度、分辨力、线性度、重复性、零点漂 移、温漂、可靠性、稳定度、电磁兼容性等
灵敏度 :
灵敏度是指传感器在稳态下输出变化 值与输入变化值之比,用K 来表示:
dy y K dx x
作图法求灵敏度过程
y
Δy
切点
传感器 特性曲线
三、传感器的基本特性
(一)、传感器的组成 举例:测量压力的电位器式压力传感器
传感器 组成框图
1-弹簧管 2-电位器
弹性敏感元件(弹簧管) 敏感元件在传感器中直接感受被测量, 并转换成与被测量有确定关系、更易于转换 的非电量。
弹性敏感元件(弹簧管) 在下图中,弹簧管将压力转换为角位移α
弹簧管放大图 当被测压力p增大时,弹簧管撑直,通过齿 条带动齿轮转动,从而带动电位器的电刷产生 角位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、重复性
传感器在输入按同一方向连续多次变动时 所得特性曲线不一致的程度
正行程的最大重复性偏差 ΔRMax1
反行程的最大重复性偏差 Δ RMax2
取较大者为
Δ RMax
R ( R Max yFS ) 100%
R ( R Max yFS ) 100%
8. 零点漂移
漂移是指在外界的干 扰下,在一定时间间 隔内,传感器输出量 发生与输入量无关的 或不需要的变化。漂 移包括零点漂移和灵 敏度漂移等,如图所 示。
2018/11/26 5
2.传感器的分类
(1)按照其工作原理分:
传感器可分为电参数式(如电阻式、电感式和 电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象分:
传感器可分为力、位移、速度、加速度传感 器等。常见的被测物理量有机械量、声、磁、温 度和光等。
2018/11/26 6
第1章 传感器理论基础
1.1 传感器基础
1.1.1 传感器的概念 传感器---是一种能感受规定的被测量并按 照一定的规律转换成可用量的器件和装置。 传感器就是把非电量转换成电量的装置。
1
1.1.2 传感器的组成和分类
1.传感器的组成 传感器是由敏感元件、转换元件和测量电路 组成。
2018/11/26
y
ΔLmax
x
②过零旋转拟合
曲线过零的传感器。拟合时,使
y
ΔL1 = ΔL2 = ΔLMax
ΔL1 ΔL2
x
③端点连线拟合
把输出曲线两端点的连线作为拟合直线
y
ΔLmax x
④端点连线平移拟合
在端点连线拟合基础上使直线平移,移动距离为 原先的一半 y ΔL3 ΔLmax
ΔL2 = ΔL1 = ΔL3 = ΔLMax
的输入量的响应特性。
反映输出值真实再现变化着的输入量的能力。
研究传感器的动态特性主要是从测量误差角度分析
产生动态误差的原因以及改善措施。
时域:瞬态响应法
频域:频率响应法
1. 瞬态响应特性
传感器的瞬态响应即为时间响应。
在研究传感器的动态特性时,有时需要从时域中
对传感器的响应和过渡过程进行分析,这并输出与被测量成确 定关系的某一物理量的元件。 敏感元件是传感器的核心
2018/11/26 3
转换元件: 将敏感元件输出的物理量转换成 适于传输或测量电信号的元件。
2018/11/26
4
测量电路: 将转换元件输出的电信号进行进 一步转换和处理的部分,如放大、滤波、线性 化、补偿等,以获得更好的品质特性,便于后 续电路实现显示、记录、处理及控制等功能。
9. 稳定性: 稳定性表示传感器在一个较
长的时间内保持其性能参数的能力。 10. 分辨率 : 分辨率是指检测仪表能够精确 检测出被测量最小变化值的能力。 一般模拟式仪表的分辨率规定为最小刻度分 格值的一半。数字式仪表的分辨率是最后一 位的一个字。
2018/11/26 26
2)传感器的动态特性
传感器的动态特性是指传感器的输出对随时间变化
入量 与最大输入量 之间的范围称为传感器的 测量范围。
2. 量程:传感器测量范围的上限值 与下限
值 的代数差 称为量程。
2018/11/26 9
3. 精度:
传感器的精度是指测量结果的可靠程度。 工程技术中为简化传感器精度的表示方法, 引用了精度等级的概念。
精度等级以一系列标准百分比数值分档表示。
代表传感器测量的最大允许误差,即相对误差。
2.传感器的分类
(3)按照其结构分: 传感器可分为结构型、物性型和复合型传 感器。
A、物性型传感器是依靠敏感元件材料本身物理性 质的变化来实现信号变换,如:水银温度计。 B、结构型传感器是依靠传感器结构参数的变化实 现信号变换,如:电容式传感器。
2018/11/26 7
1.1.3 传感器基本特性
2018/11/26 10
4. 灵敏度:灵敏度是指传感器输出的
变化 量与引起该变化量的输入变化 量之比,如下图所示。
s y x
2018/11/26
11
灵敏度表征传感器对输入量变化的反应能力
(a) 线性传感器
(b) 非线性传感器
5. 线性度:指其输出量与输入量之间
的关系曲线偏离理想直线的程度。 a、在非线性误差不太大的情况下,通常采 用直线拟合的方法来线性化。 b、线性度就用输入-输出关系曲线与拟合 直线之间最大偏差与满量程输出的百分比 来表示。
④ +②衰减比d 衰减震荡的二阶传感器输 出响应曲线第一个峰值与第二个峰值之比。
2. 频率响应特性
传感器的基本特性是指系统的输入与输出关系特性, 即传感器系统的输出信号y(t)和输入信号(被测量) x(t)之间的关系,
传感器系统示意图
当传感器的输入信号是常量,不随时间变化 时,其输入输出关系特性称为静态特性。
2018/11/26 8
1.1.3 传感器基本特性
1)传感器的静态特性:
1. 测量范围:传感器所能测量到的最小输
二阶传感器 一阶传感器
⑶ 瞬态响应特性指标
各指标定义如下:
① 时间常数τ 一阶传感器的上升到 63.2% 所需的时间,称为时 间常数。 ② 延迟时间td 输出达到稳态值的50%所用的时间。 ③上升时间tr 输出达到稳态值的90%所用的时间。
⑶ 瞬态响应特性指标
④峰值时间tp 阶跃响应曲线达到第一个峰 值所需时间。 ④+①超调量σ 传感器输出超过稳态值的最 大值。
L (LMax yFS ) 100%
最大非线性误差 满量程输出
直线拟合线性化
出发点
拟合方法:
获得最小的非线性误差
①理论拟合; ②过零旋转拟合; ③端点连线拟合; ④端点连线平移拟合; ⑤最小二乘拟合; ⑥最小包容拟合
①理论拟合
拟合直线为传感器的理论特性,与实际测试值无关。 方法十分简单,但一般说 Δ 较大 LMax
ΔL1
ΔL2 x
6、迟滞
正(输入量增大)反(输入量减小)行程 中输出输入曲线不重合称为迟滞
H (1 2)( HMAX yFS ) 100%
ΔHMAX —正反行程间输出的最大差值。
迟滞误差的另一名称叫回程误差,常用绝对误差表示 检测回程误差时,可选择几个测试点。对应于每一输 入信号, 传感器正行程及反行程中输出信号差值的最大者即为 回程误差。