三角函数全章复习
锐角三角函数全章复习(可用)
sin A cos A 1
2 2
sin A tan A cos A
巩固
5、 Rt△ABC中,∠C=90°,若sinA
2 = ,则cosB的值为( 2 1 A. B. 2 2 2 3 C. D. 1 2
)
6、 如果sin2α+sin230o =1,那么锐角 α的值是( ) A. 15o B. 30o C. 45o D. 60o
坡度(坡比):坡面的铅 直高度h和水平距离l的 比叫做坡度,用字母i表 示,则 i h tan
h
l
的形式.
l h 坡度通常写成 i tan l
练习(1)一段坡面的坡角为60°,则坡度 i=______; ______,坡角α______度. 一段河坝的横断面为等腰三角形ABCD, 试根据下图中的数据求出坡角α和坝底 宽AD。(单位是米,结果保留根号)
∴渔船不改变航线继续向东航行,有触礁危险.
6、准备在A、B两地之间修一条2千米的笔 直公路经测量,在A的北偏东60°方向,B 地的北偏西45°方向的C处有一个半径为 0.7千米的公园,问计划修建的公路会不 会穿过公园?为什么? C
45°
60°
A
B
3.坡度、坡角
坡角:坡面与水平面的夹角叫做坡角,用字母α表示.
A. 45 C.
)
5 B.
1 D. 45
1 5
巩固 1、如图,在△ABC中,∠C=90°, BD为∠ABC的平分线,BC=3,CD= ,求∠ABC和AB。 A
3
D
C
B
二.特殊角的三角函数值
1 2
3 2
3 3
2 2
2 2
第7章 三角函数(课件)高一数学单元复习(沪教版2020必修第二册)
2π
f 3 的值;
解析 :
-2
由题意,f(x)=-cos 2x- 3sin 2x=
π
3
1
sin 2x+ cos 2x=-2sin2x+6 ,
2
2
故
2π
4π π
f 3 =-2sin 3 +6 =-2sin
3π
=2.
2
考点2、三角函数的奇偶性与单调性
π
π
π,且在4,2 上单调递增的奇函数是
3π
A.y=sin2x+ 2
π
B.y=cos2x- 2
π
C.y=cos2x+ 2
π
D.y=sin2-x
3π
2x+
解析:y=sin
2 =-cos
π
y=cos2x-2 =sin
在_________________________
_______上是递增函数, 在
[2kπ,2kπ
单调性
____________
π
3π
上是递增函数
+2kπ, +2kπ
____
在2
2
____________
(k∈Z)上是递减函数
_______
上是递减函数
在__________________
2x 为偶函数,排除 A;
第6章 三角函数复习1
第6章 三角函数一.教学目的:1理解正弦函数sin y x =、余弦函数cos y x =和正切函数tan y x =的意义,会作它们的图像;2掌握正弦函数、余弦函数、正切函数的奇偶性、周期性、单调性、值域、最大值和最小值等性质及其图像特征;3对于函数sin()y A x ωϕ=+(0A >,0ω>)掌握它与函数sin y x =之间的关系,领会A 、ω、ϕ对函数的图像和性质的影响,掌握它的周期性、单调性、最大值和最小值等性质;4理解反正弦函数、反余弦函数和反正切函数的概念,知道它们的图像和性质,会用反三角函数的值表示角的大小,会求简单三角方程的解集;5了解三角函数的应用价值二.注:1本章对sin()y A x ωϕ=+的讨论仅限于参数A 、ω、ϕ是具体实数,且0A >,0ω>的情形,面对更一般情形的讨论不作要求;2三角方程主要限于形式sin()A x a ωϕ+=的方程三.本章内容:1三角函数;2反三角函数;3最简单三角方程本章的重点1三角函数的性质和图像;2学习性质的关键是:对三角函数的图像的认识和理解3利用五点法作图,把握正弦、余弦、正切函数图像的主要特征(一个周期内的图像)复习一 三角函数的图像与性质教学过程一.本节的主要内容1.了解正弦、余弦、正切函数图像的画法,会用“五点法”画正弦、余弦函数和sin()y A x ωϕ=+的简图,掌握由函数sin y x =的图像得到函数sin()y A x ωϕ=+的图像变换原理,并能解决与正弦曲线有关的问题;2.求经简单变形可化为sin()y A x ωϕ=+等形式的三角函数的周期; 3.求三角函数的定义域、值域;4.判断三角函数的奇偶性、单调性,求出单调区间; 5.综合三角函数的性质、图像解决三角函数有关问题 二.主要方法1.“五点法”画正弦、余弦函数、sin()y A x ωϕ=+的简图,五个特殊点通常都是取三个平衡点、一个最高、一个最低点(0x =、2π、π、32π、2π)2.给出图像求sin()y A x B ωϕ=++的解析式的难点在于ω、ϕ的确定,用待定系数法。
三角函数知识点总结
高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαkSIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:(6个)8、同角三角函数的基本关系式:αααt a n c o s s i n =αααc o t s i n c o s =1c o t t a n =⋅αα 1sin csc =α⋅α 1c o s s e c =α⋅α1c o s s i n 22=+αα1tan sec 22=-αα1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=-公式组四 公式组五 公式组六公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππx x x x x x x x c o t)2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (-=--=-=--=-ππππx x xx x x xx c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n 22s i n= βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=- 2c o s12s i n αα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-=2tan 12tan2tan 2αα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== . 10. 正弦、余弦、正切、余切函数的图象的性质:(定义域,值域,图像,周期性,单调性,)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)c o s (ϕω+=x y 的()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)t a n (ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T );x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f Tωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )y=|cos2x +1/2|图象由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
高职单招高考数学复习第六章-三角函数全章
【例2】 在0°~360°之间,找出与下列各角终边相同的 角,并分别判定各角是哪个象限的角. (1)-120° (2)640° (3)-955°
【解】 (1)∵-120°=240°-360° ∴-120°与240°的角的终边相同,它是第三象限的角
角的集合. 3.会判断所给角的象限.
【知识回顾】 1.角的概念 一条射线OA绕着它的端点O,旋转到另一位置OB而形成
的图形,叫做角.OA叫角的始边,OB叫角的终边. 2.正角、负角、零角 规定:一条射线按逆时针方向旋转形成的角为正角,按顺
时针方向旋转形成的角为负角,当射线没有作任何旋转时,也 认为它形成一个角,此角为零角.
2.理解任意角的正弦、余弦、正切的定义. 3.掌握三角函数值的符号;掌握特殊角的正弦、余弦、正切的值;掌握 同角三角函数的基本关系式:sin2α+cos2α=1,������������������������=tanα 和正弦、余弦的诱导
������������������������
公式,能由已知三角函数值求指定区间内的角的大小. 4.掌握两角和的正弦、余弦公式;了解两角和的正切公式;了解二倍角
(2)∵640°=280°+360° ∴640°与280°的角的终边相同,它是第四象限的角
(3)∵-955°=125°-3×360° ∴-955°与125°的角的终边相同,它是第二象限的角
【例3】 已知四个角:①160°,②480°,③-960°,④-1600°, 问其中是第二象限角的有哪些?
【解】 ∵480°=120°+360°, -960°=120°-3×360°, -1600°=200°-5×360° ∴第二象限角有160°,480°,-960°
锐角三角函数 全章复习
锐角三角函数1.如图所示,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=,BC=10,则AB的值是().A.3B.6 C.8D.9第1题图第2题图2.如图所示,在菱形ABCD中,DE⊥AB,,tan∠DBE的值是( ).A. B.2 C. D.3.如图所示,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tan C等于().A.B.C.D.4.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为().A.30°B.50°C.60°或120°D.30°或150°5.如图所示,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若,则AD的长为().A.2B.C.D.16.如图所示,已知Rt△ABC中,斜边BC上的高AD=4,,则AC=________.7.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到,使点与C重合,连接,则tan∠的值为________.第6题图第7题图8.如图所示,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB 的延长线上的处,那么tan∠BAD′等于________.第8题图第9题图9.如图所示,在△ABC中,∠ACB=90°,CD是AB边的中线,AC=6,CD=5,则sinA等于________.10.已知,如图,中,,,,求cos A及tan A.11. 为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图所示).已知立杆AB高度是3 m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.12.如图所示,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.13.如图所示,点E、C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=,ME=,将线段CE绕点C顺时针旋转,使点E 旋转到AB上的G处,求旋角∠ECG的度数.14. 如图所示,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.15. 如图所示,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?16.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为(i=1:是指铅直高度DE与水平宽度CE的比),CD的长为10 m,天桥另一斜面AB的坡角∠ABC=45°.(1)写出过街天桥斜面AB的坡度;(2)求DE的长;(3)若决定对该过街天桥进行改建,使AB斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF,试计算此改建需占路面的宽度FB的长(结果精确到.0.01 m).。
高考数学-三角函数专题复习
高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。
解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。
解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。
解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。
解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。
解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。
解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。
三角函数的图像与性质复习教案
三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。
引导学生理解三角函数的周期性和奇偶性。
1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。
引导学生理解图像的平移、伸缩等变换。
第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。
举例讲解如何利用三角函数的图像与性质解决实际问题。
第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。
引导学生理解平移的方向和距离对图像的影响。
6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。
引导学生理解伸缩的比例和对称性对图像的影响。
第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。
引导学生理解周期性在图像上的表现。
7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。
引导学生理解对称性在图像上的表现。
第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。
锐角三角函数全章复习
B
D
C
专题二、锐角三角函数的性质
1.锐角三角函数的增减性: (1)当角度在00~900之间变化时, 正弦和正切值随角度的增大而增大; 余弦随角度的增大而减小。 (2)当∠A为锐角时, 0<sinA<1;0<cosA<1; tanA>0 2.互余两角的三角函数之间关系 ∠A为锐角时,sinA=cos(900-∠A) cosA=sin(900-∠A)
• 例4.若∠A为锐角,且 cosA≤0.5,则∠A的范围是( ) A.00<∠A≤600 B.600≤∠A<900 C.00<∠A≤300 D.300≤∠A<900
• 例5.当锐角A>450时,下列不等式 中不成立的是 ( )
2 A. sin A 2 2 B. cos A 2 C. t an A 1 D. t an A 1
• 例6.下列不正确的是(
A. sin 48 37 cos 41 21
0 / 0 / 2
)
B.RtABC中,C=90 ,则sin A sin B 1
0 2
C.RtABC中,C=90 ,则AB=ACsinB
0
1 D.RtABC中,C=90 ,则 sinB cosB tanB
0
专题三、解直角三角形及其应用
1.定义; 2.直角三角形边角关系; 3.解直角三角形的应用 (1)在测量距离方面的应用; (2)在工程建筑、航空、航海等 方面的应用.
• 例7.在△ABC中,
BC 1 3, B 60 ,
0
∠C=450,求AB的长
A
B
C
• 例8.A、B之间有条河,原来从A到B需 过桥CD:A→D→C→B。 A 现建桥EF,可沿直线AB 从A到B.已知 D ∠A=450, C ∠B=300,BC= E 11km,CD∥AB, F 则现在从A到B比 原来少走多少路程?
数学复习:第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数
第三章三角函数、解三角形错误!错误!错误!1。
了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识点一角的概念的推广角的特点角的分类从运动的角度看角可分为______、______和______从终边位置来看可分为________和轴线角α与β角的终边相同β=______________(或α+k·2π,k∈Z)正角负角零角象限角α+k·360°,k∈Z1.若α是第二象限角,β是第三象限角,则角α,β的大小关系是________.解析:角α可以大于角β,也可以小于角β,但是不能等于角β.答案:不确定2.终边在直线y=x上的角的集合是________.解析:终边在直线y=x上,且在[0°,360°)内的角为45°,225°,写出与其终边相同的的角的集合,整合即得.答案:{α|α=k·180°+45°,k∈Z}知识点二弧度的概念与公式在半径为r的圆中:分类定义(公式)1弧度的角把长度等于______长的弧所对的圆心角叫做1弧度的角,用符号1 rad表示角α的弧度数公式|α|=______(弧长用l表示)角度与弧度的换算①1°=______ rad②1 rad=________弧长公式弧长l=______扇形面积公式S=______=__________答案半径错误!错误!错误!°r|α| 错误!lr错误!r2|α|3.(必修④P10习题1.1A组第10题改编)单位圆中,200°的圆心角所对的弧长为()A.10π B.9πC。
910π D。
错误!π解析:单位圆的半径r=1,200°的弧度数是200×错误!=错误!π,由弧度数的定义得109π=lr,所以l=109π。
答案:D4.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r,弧长为l,则错误!解得错误!或错误!从而α=错误!=错误!=4或α=错误!=错误!=1。
2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数
2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
第一章 三角函数复习题(一)-学生版
知识点部分:1.任意角的三角函数的定义定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=.2.三角函数值的符号记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,其中k∈Z.公式二:sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sinα,cos(﹣α)=cosα.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cosα.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.4.三角函数的周期性①一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.③函数y=Asin(ωx+φ),x∈R及函数y=Acos(ωx+φ);x∈R(其中A、ω、φ为常数,且A≠0,ω>0)的周期T=.5.正弦函数、余弦函数、正切函数的图象和性质函数y=sin x y=cos x y=tan x 图象定义域R R x≠2kπ+(k∈Z)值域[﹣1,1] [﹣1,1] R单调性递增区间:(2kπ﹣,2kπ+)(k∈Z);递减区间:(2kπ+,2kπ+)(k∈Z)递增区间:(2kπ﹣π,2kπ)(k∈Z);递减区间:(2kπ,2kπ+π)(k ∈Z)递增区间:(kπ﹣,kπ+)(k∈Z)最值x=2kπ+(k∈Z)时,ymax=1;x=2kπ﹣(k∈Z)时,ymin =﹣1x=2kπ(k∈Z)时,ymax=1;x=2kπ+π(k∈Z)时,ymin=﹣1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+,k∈Z 对称中心:(kπ+,0)(k∈Z)对称轴:x=kπ,k∈Z对称中心:(,0)(k∈Z)无对称轴周期2π2ππ6.函数y=Asin(ωx+φ)的图象变换函数y=sin x的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤练习题部分:1.(2020春•新余期末)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f()=()A.B.1 C.D.2.(2020春•驻马店期末)有以下变换方式:①先向右平移个单位长度,再将每个点的横坐标缩短为原来的倍;②先向左平移个单位长度,再将每个点的横坐标伸长为原来的2倍;③先将每个点的横坐标伸长为原来的2倍,再向左平移个单位长度;④先将每个点的横坐标缩短为原来的倍,再向右平移个单位长度.其中能将函数的图象变为函数y=2sinx的图象的是()A.①和④B.①和③C.②和④D.②和③3.(2020春•未央区校级期末)若函数f(x)=sinx+cosx﹣2sinxcosx+1﹣a在上有零点,则实数a的取值范围()A.[﹣,2] B.[﹣,] C.[﹣2,] D.[,]4.(2020春•驻马店期末)已知扇形AOB的圆心角为α,周长为4.那么当其面积取得最大值时,α的值是.5.(2020•江苏)将函数y=3sin(2x+)的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.6.(2019秋•新华区校级期末)若在区间[﹣a,a]上是增函数,则正实数a的最大值为;7.(2020春•沈阳期末)已知角α终边上一点坐标(1,﹣3),f(α)=.(1)求f(α)的值.(2)求f()的值.(3)求sin()cos()的值.8.(2020春•潍坊月考)已知cos(+θ)=,求+的值9.(2020春•吉林期末)已知.(1)求2+sinαcosα﹣cos2α的值;(2)求的值.10.(2019秋•遂宁期末)已知角α的终边经过点,且α为第二象限角.(1)求m、cosα、tanα的值;(2)若,求的值.11.(2019秋•上高县校级期末)已知函数.(1)化简f(x)并求的值.(2)设函数g(x)=1﹣2f(x)且,求函数g(x)的单调区间和值域.12.(2016秋•东安区校级月考)设函数f(x)=tan()(1)求函数f(x)的定义域、最小正周期、单调区间及对称中心.(2)求不等式﹣1≤f(x)≤的解集.13.(2020春•驻马店期末)已知函数的部分图象如图所示.(Ⅰ)求f(x)的解析式及对称中心坐标;(Ⅱ)先将f(x)的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到g(x)的图象,求函数y=g(x)在上的单调减区间和最值.14.(2020•宁波模拟)已知函数.(Ⅰ)求f(x)的振幅、最小正周期和初相位;(Ⅱ)将f(x)的图象向右平移个单位,得到函数y=g(x)的图象,当时,求g(x)的取值范围.15.(2016秋•福建月考)已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤),满足:最大值为2,其图象相邻两个最低点之间距离为π,且函数f(x)的图象关于点(,0)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若向量=(f(x﹣),1),=(,﹣2cosx),,设函数,求函数g(x)的值域.。
高一数学三角函数章节期末复习
三角函数期末复习一、任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”作单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2,二、任意角的三角函数(1)任意角的三角函数定义设P (x ,y )是角α终边上任一点,且|PO |=r (r >0),则有sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数.(2)三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.三.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos α,sin α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.(1)三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.(2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎩⎨⎧⎭⎬⎫β| β=π2+k π,k ∈Z ;终边落在坐标轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫β⎪⎪β=k π2,k ∈Z . 一个命题规律近几年主要考查运用三角函数概念解题,判断角的象限及三角函数值的符号,运用同角三角函数关系式、诱导公式进行化简、求值,是三角函数化简、求值、证明的必要前提. 实战检验1.已知角α(0≤α<2π)的终边过点P ⎝⎛⎭⎫sin 2π3,cos 2π3,则α=________. 2.若-π2<α<0,则点P (cos α,sin α)位于第________象限.3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.4.下列命题:①第二象限角为钝角;②锐角是第一象限角;③若α是第二象限角,则α+180°是第四象限角;④角α与π+α终边在一条直线上.其中正确的是________. 5.已知点P (tan α,cos α)在第二象限,则角α的终边在第________象限. 6.已知角α的终边与π6的终边关于角π4的终边对称,则α的取值集合为________.7.已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?8.已知角α的终边经过点(2,-2),则sin α=________,cos α=________,tan α=________. 9.若点(a,9)在函数y =3x 的图象上,则tan a π6=________.10.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 11.已知sin αtan α<0且cos α·tan α<0,则角α是第________象限角.12.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角α的终边上,且α∈[0,2π),则α的值为________. 13.已知一扇形的中心角α=60°,所在圆的半径R =10 cm ,则扇形的弧长为________cm ,面积为________cm 2.14.已知角α终边经过点P(x,-2)(x≠0),且cos α=36x,求sin α,tan α的值.同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin2_α+cos2_α=1.(2)商数关系:sin αcos α=tan_α.2.下列各角的终边与角α的终边的关系3.六组诱导公式(1)三角函数诱导公式k π2+α(k ∈Z )的本质是:奇变偶不变,符号看象限.(2)对诱导公式口诀“奇变偶不变,符号看象限”含义的理解:即诱导公式的左边为π2·k +α(k ∈Z )的正弦或余弦函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角或小于锐角还有可能是任意角),然后分析π2·k +α(k ∈Z )为第几象限角,再判断公式左边这个三角函数(原函数)是正还是负,也就是公式右边的符号. 实战1.计算sin 23π6等于________.2.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=________. 3.已知sin(2π-α)-2cos(2 013π+α)=0,则cos α=________. 4.已知α∈⎝⎛⎭⎫-π2,0,sin α=-35,则cos(π-α)=________. 5. 已知α∈⎝⎛⎭⎫0,π2,sin α-cos α=15. (1)求sin α+cos α的值; (2)求2sin 2α+sin 2α1-tan α的值.练习 已知α∈⎝⎛⎭⎫π4,π2,sin α·cos α=18. (1)求cos α-sin α的值; (2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.6.(1)化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z ).(2)已知α是第三象限角,且f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)tan (-π-α).①化简f (α);②若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值.练习 (1)化简tan (π+α)cos (2π+α)sin ⎝⎛⎭⎫α-3π2cos (-α-3π)sin (-3π-α);(2) 已知f (x )=sin (π-x )cos (2π-x )tan (-x +π)cos ⎝⎛⎭⎫-π2+x ,求f ⎝⎛⎭⎫-31π3的值.7. (1)求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ.(2)已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.(3)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α)=-tan α.8.已知sin α-cos α=2,α∈(0,π),则tan α=________. 9.已知α是第二象限角,tan α=-12,则cos α=________.10.若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. 11.计算cos ⎝⎛⎭⎫-113π=________. 12.已知cos(π+x )=35,x ∈(π,2π),则tan x =________.13.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为________.14.已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 15.已知0<α<π2,若cos α-sin α=-55,试求2sin αcos α-cos α+11-tan α的值.三角函数的图象与性质1.“五点法”作图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦和正切函数的图象和性质(下表格中的k ∈Z )一般地,对于函数f (x ),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).函数y =A sin(ωx +φ)或y =A cos(ωx +φ)(ω>0且为常数)的周期T =2πω,函数y =A tan(ωx +φ)(ω>0且为常数)的周期T =πω.两条规律(1)周期性:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(2)奇偶性:三角函数中奇函数一般可化为y =A sin ωx 或 y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 一个命题规律主要考查三角函数的图象、周期性、单调性、对称性、有界性、奇偶性、函数的解析式与图象的关系以及三角函数图象的平移,题型以填空题为主,难度以容易、中档题为主,在对三角函数其他知识的考查中,直接或间接考查本讲的基本方法与技能.1.函数f (x )=2sin ⎝⎛⎭⎫πx +14的最小正周期是________. 2.已知函数f (x )=3sin x2,如果存在实数x 1,x 2,使得对任意的实数x ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为________.3.函数y =sin x -cos x 的定义域为________; 4.函数y =2cos 2x -sin x 的值域为________.5.写出下列函数的单调区间及周期: ①y =sin ⎝⎛⎭⎫-2x +π3;②y =|tan x |.练习 求下列函数的单调区间: (1) y =12sin ⎝⎛⎭⎫π4-2x 36..设函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2与y 轴的交点为(0,3),则下列结论:①图象关于点⎝⎛⎭⎫π4,0对称;②图象关于直线x =π12对称;③在⎣⎡⎦⎤0,π6上是增函数;④f (x )图象向左平移π12个单位所得函数为偶函数,其中所有正确的结论序号是________.7.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间为________.8.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于________.9.设定义在区间⎝⎛⎭⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 10.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2. (1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值.11.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )的最小正周期为________. 12.函数y =sin ⎝⎛⎭⎫x -π4的图象的对称中心为________. 13.(2012·苏北五市期末联考)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),若f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π2,且f (x )在区间⎝⎛⎭⎫π6,π2内有最大值,无最小值,则ω=________.函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示2.函数y =sin x 的图象变换得到y =A sin(ωx +φ)(ω>0)的图象的步骤3.当函数y =A sin(ωx +φ)(A >0,ω>0,x ∈(0,+∞))表示一个振动时,A 叫做振幅,T =2πω叫做周期,f =1T 叫做频率,ωx +φ叫做相位,φ叫做初相.确定y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π)中参数的方法在由图象求解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个复习指导抓住正弦型函数y =A sin(ωx +φ)的图象的“五点法”作图和图象的变换以及应用正弦型函数解析式解决三角函数的性质问题.通过适量的训练,掌握解决问题的通性通法.例题讲解与练习1.函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈(0,π))的图象如图所示,则φ=________. 2.若函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的最小值为-2,其图象上相 邻最高点与最低点的横坐标之差为π2,且图象过点(0,3),则其解析式是________.3.把函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________. 4.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是________.5. 已知函数y =2sin ⎝⎛⎭⎫2x +π3, (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.6. 设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象; (3)若f (x )>22,求x 的取值范围.7. 如图为y =A sin(ωx +φ)(A >0,ω>0,-π<φ<0)的图象的一段. (1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位后得y =f (x ),求f (x )的对称轴方程.8. 已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,π12时,求f (x )的最值.9.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象向左平移________个单位. 10.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.11.已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;。
高中三角函数知识点复习总结
第四章 三角函数一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式:r l⋅=α 扇形面积公式:22121r lr S α==3.任意角的三角函数yxx y x rr x y rr y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式(一) 诱导公式:α±⋅2k )(Z k ∈与α的三角函数关系是“立变平不变,符号看象限”。
如:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+απαπαπ25sin ;5tan ,27cos 等。
(二)同角三角函数的基本关系式:①平方关系1cos sin22=+αα;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系αααtan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
(三) 关于公式1cos sin22=+αα的深化sin αtan αα()2cos sin sin 1ααα±=±;αααcos sin sin 1±=±;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);b)化简同角三角函数式; 证明同角的三角恒等式。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题
c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。
高三一轮复习 三角函数全章 练习(7套)+易错题+答案
第五章三角函数第1节任意角、弧度制、任意角的三角函数一、选择题1.给出下列四个命题:①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( C )(A)1个(B)2个(C)3个(D)4个解析:-是第三象限角,故①错误.=π+,从而是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.选C.2.已知点P(tan α,cos α)在第三象限,则角α的终边所在象限是( B )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:由题意知tan α<0,cos α<0,所以α是第二象限角.选B.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( C )(A)(B)(C) (D)2解析:设圆半径为r,则其内接正三角形的边长为r,所以α==,选C.4.设集合M={x|x=²180°+45°,k∈Z},N={x|x=²180°+45°,k∈Z},那么( B )(A)M=N (B)M⊆N(C)N⊆M (D)M∩N=∅解析:由于M={x|x=²180°+45°,k∈Z}={…,-45°,45°,135°, 225°,…},N={x|x=²180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°, 180°,225°,…},显然有M⊆N,故选B.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( A )(A)1 (B)2 (C)3 (D)4解析:举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin =sin ,但与的终边不相同,故④错;当θ=π,cos θ=-1时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.选A.6.设θ是第三象限角,且|cos |=-cos ,则是( B )(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角解析:由θ是第三象限角,知为第二或第四象限角,因为|cos |=-cos ,所以cos ≤0,综上知为第二象限角.选B.二、填空题7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.解析:设扇形的半径为R,则αR2=2,所以R2=1,所以R=1,所以扇形的周长为2R+α²R=2+4=6.答案:68.若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.答案:,,,9.已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E∩F= .解析:由单位圆的正、余弦线,容易得E={θ|<θ<π},又由F可知θ应在第二、四象限,所以E∩F={θ|<θ<π}.答案:{θ|<θ<π}10.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为.解析:由已知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-111.满足cos α≤-的角α的集合为.解析:作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.答案:{α|2kπ+π≤α≤2kπ+π,k∈Z}三、解答题12.已知角α的终边经过点P(-,y),且sin α=y(y≠0),判断角α所在的象限,并求cos α,tan α的值.解:因为r=|OP|==,所以sin α==y.因为y≠0,所以9+3y2=16,解得y=±,所以角α在第二或第三象限.当角α在第二象限时,y=,cos α==-,tan α=-;当角α在第三象限时,y=-,cos α=-,tan α=.13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.解:设扇形的半径为r cm,弧长为l cm,则解得所以圆心角α==2(rad).如图,过O作OH⊥弦AB于H,则∠AOH=1 rad.所以AH=1²sin 1=sin 1(cm),所以AB=2sin 1(cm).所以圆心角的弧度数为2 rad,弦长AB为2sin 1 cm.14.求函数y=lg(2sin x-1)+的定义域.解:要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2kπ+,2kπ+)(k∈Z).第2节同角三角函数的基本关系及诱导公式一、选择题1.已知A=+(k∈Z),则A的值构成的集合是( C )(A){1,-1,2,-2} (B){-1,1}(C){2,-2} (D){1,-1,0,2,-2}解析:当k为偶数时,A=+=2;k为奇数时,A=-=-2.故选C.2.已知sin α=,则sin4α-cos4α的值为( B )(A)- (B)- (C)(D)解析:sin4α-cos4α=sin2α-cos2α=2sin2α-1=-.3.等于( A )(A)sin 2-cos 2(B)sin 2+cos 2(C)±(sin 2-cos 2)(D)cos 2-sin 2解析:===|sin 2-cos2|=sin 2-cos 2.4.若函数f(x)=则f(-)的值为( A )(A)(B)- (C)(D)-解析:由已知得f(-)=f(-)+1=f()+2=-cos +2=.5.已知=1,则sin2θ+3sin θcos θ+2cos2θ的值是( C )(A)1 (B)2 (C)3 (D)6解析:由已知得=1,即tan θ=1,于是sin2θ+3sin θcos θ+2cos2θ===3.6.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( B )(A)1+ (B)1-(C)1± (D)-1-解析:由题意知sin θ+cos θ=-,sin θ²cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.二、填空题7.若=2,则sin(θ-5π)sin(-θ)= .解析:由=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=, 所以sin(θ-5π)sin(-θ)=sin θcos θ=.答案:8.已知cos(-α)=,则sin(α-)= .解析:sin(α-)=-sin[+(-α)]=-cos(-α)=-.答案:-9.已知cos 31°=a,则sin 239°²tan 149°= .解析:sin 239°²tan149°=sin(180°+59°)²tan(180°-31°)=-sin 59°²(-tan 31°)=cos 31°²=sin 31°==.答案:10.若x∈(0,),则2tan x+tan(-x)的最小值为 .解析:因为x∈(0,),所以tan x>0.所以2tan x+tan(-x)=2tan x+≥2,所以2tan x+tan(-x)的最小值为2.答案:211.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:由题意,得cos(θ+)=,所以tan(θ+)=.所以tan(θ-)=tan(θ+-)=-=-.答案:-12.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则 f (2 017)的值为.解析:因为f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,所以f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-3.答案:-3三、解答题13.已知sin(3π+θ)=,求+的值.解:因为sin(3π+θ)=-sin θ=,所以sin θ=-.所以原式=+=+=+====18.14.已知0<α<,若cos α-sin α=-,试求的值. 解:因为cos α-sin α=-,所以1-2sin α²cos α=.所以2sin α²cos α=,所以(sin α+cos α)2=1+2sin αcos α=1+=.因为0<α<,所以sin α+cos α=.由cos α-sin α=-,sin α+cos α=得sin α=,cos α=,所以tan α=2,所以==-.15.是否存在α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在α,β使得等式成立,即有由诱导公式可得③2+④2得sin2α+3cos2α=2,所以cos2α=.又因为α∈(-,),所以α=或α=-.将α=代入④得cos β=.又β∈(0,π),所以β=,代入③可知符合.将α=-代入④得cos β=.又β∈(0,π),所以β=,代入③可知不符合.综上可知,存在α=,β=满足条件.第3节两角和与差的正弦、余弦和正切公式一、选择题1.化简的结果是( C )(A)tan (B)tan 2x (C)-tan x (D)解析:原式===-tan x,故选C.2.在△ABC中,2cos Bsin A=sin C,则△ABC的形状一定是( D )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形解析:由条件得2cos Bsin A=sin(A+B),即2cos Bsin A=sin Acos B+cos Asin B,得sin Acos B-cos Asin B=0,即sin(A-B)=0.因为角A,B是三角形的内角,所以A-B=0,△ABC是等腰三角形,故选D.3.函数f(x)=sin x-cos(x+)的值域为( B )(A)[-2,2] (B)[-,](C)[-1,1] (D)[-,]解析:因为f(x)=sin x-cos(x+)=sin x-(cos xcos -sin xsin)=sin x-cos x=sin(x-),所以值域为[-,],故选B.4.已知tan α,tan β是方程x2+3x+4=0的两根,若α,β∈(-,),则α+β等于( D )(A) (B)或-(C)-或 (D)-解析:由韦达定理得tan α+tan β=-3<0,tan α²tan β=4>0,故tan α<0,tan β<0,所以α,β∈(-,0),故α+β∈(-π,0).又tan(α+β)==,所以α+β=-.故选D.5.已知sin(α+)+cos α=-,则cos(-α)等于( C )(A)-(B)(C)- (D)解析:由sin(α+)+cos α=-,展开化简可得sin(α+)=-,所以cos(-α)=cos[-(+α)]=sin(+α)=-.6.在三角函数中,如果角α与角β可能相等,我们称这两个角是“亲情角”.已知tan(β-)=2,下列选项中,哪个角α与已知的角β互为亲情角( C )(A)tan α=3 (B)tan α=(C)tan2(α+)=(D)cos α=解析:由条件得=2,解得tan β=-3,由于A,B,D三个选项的tan α≠-3,所以均不符合.对于选项C,由tan2(α+)=()2=,解得tan α=-3或tan α=-,故选C.二、填空题7.计算cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α) = .解析:原式=cos [(α-35°)-(25°+α)]=cos 60°=.答案:8.已知tan(+θ)=3,则sin 2θ-2cos2θ= .解析:由tan(+θ)=3,求得tan θ=,而sin 2θ-2cos2θ===-.答案:-9.已知sin(x+)=,则sin(x-)+sin2(-x)的值是.解析:因为sin(x-)=-sin(x+)=-,sin2(-x)=cos2(+x)=1-sin2(+x)=,所以原式=-+=.答案:10.在△ABC中,若cos A=,sin B=,则cos C= .解析:因为cos A=,则sin A=,且45°<A<60°.又因为sin B=,sin B<,则0°<B<30°或150°<B<180°(舍去),所以cos B=,从而有cos C=-cos(A+B)=-cos Acos B+sin Asin B=-.答案:-11.已知cos(α-β)=,则(sin α+sin β)2+(cos α+cos β)2的值为.解析:(sin α+sin β)2+(cos α+cos β)2=2+2(cos αcos β+sin αsin β)=2+2cos(α-β)=.答案:12.设a,b,∈R,c∈[0,2π),若对任意实数x都有2sin(3x-)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.解析:因为2sin(3x-)=asin(bx+c),所以a=±2,b=±3.当a,b确定时,c唯一.若a=2,b=3,则c=;若a=2,b=-3,则c=;若a=-2,b=-3,则c=;若a=-2,b=3,则c=,故共有四组.答案:4三、解答题13.已知cos(α-β)=-,cos β=,α∈(,π),β∈(0,),求cos(α-2β)的值.解:由条件得α-β∈(0,π),sin(α-β)=,sin β=,所以cos(α-2β)=cos [(α-β)-β]=.14.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.解:(1)因为f(x)=sin(ωx-)+sin(ωx-)=sin ωxcos -cos ωxsin -cos ωx=sin ωx-cos ωx=sin(ωx-),由题设f()=0,得-=kπ,k∈Z,故ω=6k+2,考虑到0<ω<3,故有ω=2.(2)由上可知f(x)=sin(2x-),所以g(x)=sin(x+-)=sin(x-).因为x∈[-,],所以x-∈[-,],当x-=-,即x=-时,g(x)取最小值是-.15.已知函数f(x)=2sin(x-).(1)求f(x)的单调区间;(2)设α,β∈[0,],f((3α-)=-,f(3β+π)=,求cos(α+β)的值.解:(1)由-+2kπ≤x-≤+2kπ,k∈Z,解得-+6kπ≤x≤+6kπ,k∈Z,即得单调递增区间是[-+6kπ,+6kπ],k∈Z.同理可求单调递减区间是[+6kπ,+6kπ],k∈Z.(2)因为得即因为α,β∈[0,],解得从而有cos(α+β)=-.第4节二倍角公式一、选择题1.化简²的结果为( B )(A)tan α (B)tan 2α(C)1 (D)解析:原式=²==tan 2α,故选B.2.若设a=cos 6°-sin 6°,b=,c=,则有( C )(A)c<b<a (B)a<b<c(C)a<c<b (D)b<c<a解析:经计算得a=sin 24°,b=tan 26°,c=sin 25°,所以a<c<b,故选C.3.已知sin α+cos α=,则sin2(-α)等于( B )(A) (B) (C)(D)解析:由sin α+cos α=,两边平方得1+sin 2α=,解得sin 2α=-,所以sin2(-α)===,故选B.4.函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:因为f(x)=1-2sin2x+6sin x=-2(sin x-)2+,当sin x=1时,f(x)取最大值为5,故选B.5.设α为锐角,且cos(α+)=,则sin(2α+)的值为( A )(A)(B)(C)(D)解析:因为α为锐角,且cos(α+)=,得sin(α+)=,所以sin[2(α+)]=,cos[2(α+)]=,从而有sin(2α+)=sin [2(α+)-]=³-³=,故选A.6.已知不等式f(x)=3sin cos +cos2-+m≤0对于任意的-≤x≤恒成立,则实数m的取值范围是( C )(A)[,+∞) (B)(-∞,)(C)(-∞,-] (D)[-,]解析:因为f(x)=sin +cos +m=(sin +cos )+m=sin(+)+m.因为-≤x≤,则-≤+≤,所以-≤sin(+)≤,即f(x)的最大值是²+m=+m≤0,解得m≤-,故选C.二、填空题7.已知角α终边过点P(3,4),则cos 2α= .解析:因为角α终边过点P(3,4),所以cos α=,sin α=,cos 2α=-.答案:-8.某会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是四个全等的直角三角形与一个小正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.解析:设直角三角形的两直角边长分别为a,b,则4³(ab)+1=25,得ab=12.又因为a2+b2=25,联立方程组可解得或所以cos θ=,从而有cos 2θ=2cos2θ-1=.答案:9.若=2 018,则+tan 2α= .解析:+tan 2α=+=+====2 018.答案:2 01810.已知4cos Acos B=,4sin Asin B=,则(1-cos 4A)(1-cos 4B) = .解析:由条件得4cos Acos B²4sin Asin B=²,即sin 2Asin 2B=,所以原式=2sin22A²2sin22B=4(sin 2Asin 2B)2=4()2=3.答案:311.设△ABC的三个内角分别为A,B,C,则cos A+2cos 的最大值是.解析:因为cos A+2cos =cos A+2sin=-2sin2+2sin +1=-2+,所以当sin =,即A=时,cos A+2cos 的最大值是.答案:三、解答题12.已知f(x)=sin x+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin =,x0∈(,π),求f(x0)的值.解:(1)由条件可得f(x)=sin x+cos x=sin(x+).因为f(α)=,α∈(-,0),所以sin(α+)=.则α+=,解得α=-.(2)因为sin =,x0∈(,π),得sin x0=,cos x0=-,所以f(x0)=.13.已知函数f(x)=2cos x(sin x+cos x)-1.(1)求f()的值;(2)若f(x0)=,x0∈[0,],求sin 2x0的值.解:(1)因为f(x)=sin 2x+cos 2x=2sin(2x+),所以f()=2.(2)由上可知,f(x0)=2sin(2x0+)=,所以sin(2x0+)=.由x0∈[0,],得2x0+∈[,].由0<sin(2x0+)=<,知2x0+∈(,π),从而有cos(2x0+)=-, 所以sin 2x0=sin[(2x0+)-]=²-(-)²=.14.已知函数f(x)=sin 2xsin ϕ+cos2xcos ϕ-sin(+ϕ)(0<ϕ<π),其图象过点(,).(1)求ϕ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值.解:(1)由条件得f(x)=sin 2xsin ϕ+cos ϕ-cos ϕ=sin 2xsin ϕ+cos 2xcos ϕ=cos(2x-ϕ).又函数图象过点(,),得=cos(2²-ϕ),-ϕ=2kπ,ϕ=-2kπ,k∈Z.又因为0<ϕ<π,解得ϕ=.(2)由上可知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,即g(x)=f(2x)=cos(4x-).因为x∈[0,],所以4x-∈[-,],有cos(4x-)∈[-,1],所以函数g(x)在区间[0,]上的最大值和最小值分别为和-.第5节三角函数的化简与求值一、选择题1.计算等于( D )(A)-(B)- (C) (D)解析:原式====,故选D.2.式子tan 11°+tan 19°+tan 11°tan 19°的值是( D )(A) (B) (C)0 (D)1解析:因为tan(11°+19°)==,所以tan 11°+tan 19°=(1-tan 11°tan 19°),即tan 11°+tan 19°=1-tan 11°tan 19°,从而有tan 11°+tan 19°+tan 11°tan 19°=1,故选D.3.若sin(-α)=,则cos(+2α)等于( A )(A)- (B)- (C)(D)解析:观察发现+2α=2(+α),而(+α)+(-α)=,则有cos(+α)=sin(-α)=,所以cos(+2α)=2cos2(+α)-1=2³-1=-,故选A.4.设M=sin 100°-cos 100°,N=(cos 46°cos 78°+cos 44°²cos 12°),P=,Q=,则M,N,P,Q的大小关系是( C )(A)M>N>P>Q (B)P>M>N>Q(C)N>M>Q>P (D)Q>P>M>N解析:因为M=sin(100°-45°)=sin 55°,N=(cos 46°sin 12°+sin 46°cos 12°)=sin 58°,P==tan(45°-10°)=tan 35°,Q==tan 45°=1,所以N=sin 58°>sin 55°=M>sin 45°=1=Q.=tan 45°>tan 35°=P,即有N>M>Q>P,故选C.5.设△ABC的三内角为A,B,C,向量m=(sin A,sin B),n=(cos B, cos A),若m²n=1+cos(A+B),则角C等于( C )(A) (B) (C) (D)解析:因为m²n=1+cos(A+B),所以sin Acos B+cos Asin B=1+cos(A+B),即sin(A+B)=1+cos(A+B).又因为A+B+C=π,得sin(A+B)=sin C,cos(A+B)=-cos C,因此有sin C=1-cos C,即sin C+cos C=1,从而有sin(C+)=.考虑到0<C<π,得C+=,所以C=,故选C.6.若0≤A,B≤,且A+B=,则cos2A+cos2B的最小值和最大值分别为( C )(A), (B),(C), (D),解析:因为A+B=,所以cos2A+cos2B=+=1+(cos 2A+cos 2B)=1+[cos 2A+cos(-2A)]=1+(cos 2A+coscos 2A+sin sin 2A)=1+(cos 2A-sin 2A)=1+cos(2A+).又因为0≤A,B≤,且A+B=,得≤A≤,≤2A+≤,则-1≤cos(2A+)≤-,从而有≤cos2A+cos2B≤,故有最大值为,最小值为,故选C.二、填空题7.定义运算a⊕b=ab2+a2b,则sin 15°⊕cos 15°= .解析:依题意得sin 15°⊕cos 15°=sin15°cos215°+sin215°²cos 15°=sin 15°cos 15°(sin 15°+cos 15°)=sin30°²sin(15°+45°)=.答案:8.已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin 2α的值是.解析:由已知<β<α<,可知π<α+β<,0<α-β<.又因为cos(α-β)=,sin(α+β)=-,得sin(α-β)=,cos(α+β)=-,所以sin 2α=sin [(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-³+(-)³=-.答案:-9.已知sin(x+20°)=cos(x+10°)+cos(x-10°),则tan x的值是.解析:由条件可化为sin xcos 20°+cos xsin 20°=2cos xcos 10°,两边同除以cos x,得tan x=====.答案:10.已知α=,则+++的值是.解析:法一因为===tan 4α-tan 3α,同理可得=tan 3α-tan 2α,=tan 2α-tan α,所以原式=tan 4α=tan =.法二原式=sin α²+sinα²=+=sin 2α²=sin 2α²=tan 4α=tan =.答案:11.如果cos5θ-sin5θ<7(sin3θ-cos3θ),θ∈[0,2π),那么θ的取值范围是.解析:原不等式等价于sin3θ+sin5θ>cos3θ+cos5θ.又因为f(x)=x3+x5是(-∞,+∞)上的增函数,所以sin θ>cos θ.又因为θ∈[0,2π),所以θ的取值范围是(,).答案:(,)12.函数f(x)=4cos2cos(-x)-2sin x-|ln(x+1)|的零点个数为.解析:因为f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,所以函数f(x)的零点个数转化为函数y=sin 2x与y=|ln(x+1)|图象的交点的个数.由图象可得交点有2个,故f(x)的零点也有2个.答案:2三、解答题13.已知函数f(x)=sin xsin(x+).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求f(x)的取值范围.解:(1)由题意得f(x)=sin2x+sin xcos x=²+sin 2x=sin 2x-cos 2x+=sin(2x-)+,所以最小正周期为T=π.(2)由0≤x≤,得-≤sin(2x-)≤1,所以f(x)的取值范围是[0,].14.已知tan(π+α)=-,tan(α+β)=.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-,所以tan α=-,从而有tan(α+β)====.(2)tan β=tan [(α+β)-α]===.15.如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan =;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan的值.(1)证明:tan ===.(2)解:由A+C=180°,得C=180°-A,D=180°-B.由(1),有tan +tan +tan +tan=+++=+.连接BD(图略),在△ABD中,有BD2=AB2+AD2-2AB²ADcos A,在△BCD中,有BD2=BC2+CD2-2BC²CDcos C,所以AB2+AD2-2AB²ADcos A=BC2+CD2+2BC²CDcos A. 则cos A===.于是sin A===.连接AC,同理可得cos B===,于是sin B===.所以tan +tan +tan +tan=+=+=.第6节三角函数的图象与性质一、选择题1.函数y=tan(-x)的定义域为( A )(A){x|x≠kπ-,k∈Z} (B){x|x≠2kπ-,k∈Z}(C){x|x≠kπ+,k∈Z} (D){x|x≠2kπ+,k∈Z}解析:令-x≠kπ+,k∈Z,所以x≠--kπ,即x≠kπ-,k∈Z.2.(2016²山东卷)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( B )(A)(B)π (C) (D)2π解析:f(x)=3sin xcos x-sin2x+cos2x-sin xcos x=sin 2x+cos 2x=2sin(2x+).最小正周期T==π,故选B.3.(2017²全国Ⅲ卷)设函数f(x)=cos(x+),则下列结论错误的是( D )(A)f(x)的一个周期为-2π(B)y=f(x)的图象关于直线x=对称(C)f(x+π)的一个零点为x=(D)f(x)在(,π)单调递减解析:f(x)=cos(x+)中,x∈(,π),x+∈(,),则f(x)=cos(x+)不是单调函数.故选D.4.如果函数y=3cos(2x+ϕ)的图象关于点(,0)对称,那么|ϕ|的最小值为( A )(A) (B) (C) (D)解析:由题意得3cos(2³+ϕ)=3cos(+ϕ+2π)=3cos(+ϕ)=0,所以+ϕ=kπ+,k∈Z,所以ϕ=kπ-,k∈Z,取k=0,得|ϕ|的最小值为.5.(2016²浙江卷)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( B )(A)与b有关,且与c有关(B)与b有关,但与c无关(C)与b无关,且与c无关(D)与b无关,但与c有关解析:f(x)=sin2x+bsin x+c=+bsin x+c=-+bsin x+c+,其中当b=0时,f(x)=-+c+,此时周期是π;当b≠0时,周期为2π,而c不影响周期.故选B.6.(2016²全国Ⅰ卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:f′(x)=1-cos 2x+acos x=1-²(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.二、填空题7.已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1,则常数a= ;设g(x)=f(x+),则g(x)的单调增区间为 .解析:因为x∈[0,],所以2x+∈[,],所以sin(2x+)∈[-,1],所以-2asin(2x+)∈[-2a,a].所以f(x)∈[b,3a+b].又因为—5≤f(x)≤1,所以b=-5,3a+b=1,解得a=2,b=-5.所以f(x)=-4sin(2x+)-1,g(x)=f(x+)=-4sin(2x+)-1=4sin(2x+)-1,当-+2kπ≤2x+≤+2kπ,k∈Z时,g(x)单调递增,即-+kπ≤x≤+kπ,k∈Z.所以g(x)的单调增区间为[-+kπ,+kπ],k∈Z.答案:2 [-+kπ,+kπ](k∈Z)8.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.解析:f(x)=sin ωx+cos ωx=sin(ωx+),因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω²ω+=2kπ+,k ∈Z,所以ω2=2kπ+,k∈Z.又2[ω-(-ω)]≤,即ω2≤,所以ω2=,所以ω=.答案:9.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x+ )+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是. 解析:因为f(x)与g(x)的图象的对称轴完全相同,所以f(x)与g(x)的最小正周期相等,因为ω>0,所以ω=2,所以f(x)=3sin(2x-),因为0≤x≤,所以-≤2x-≤,所以-≤sin(2x-)≤1,所以-≤3sin(2x-)≤3,即f(x)的取值范围是[-,3].答案:[-,3]10.(2017²嘉兴模拟)已知函数f(x)=3sin(3x+ϕ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有个.解析:令f(x)=3sin(3x+ϕ)=2,得sin(3x+ϕ)=∈[-1,1],又x∈[0,π],所以3x+ϕ∈[ϕ,3π+ϕ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.答案:411.下列四个函数:①y=sin |x|,②y=cos |x|,③y=|tan x|,④y=-ln|sin x|,以π为周期,在(0,)上单调递减且为偶函数的是___ .(只填序号)解析:①y=sin |x|在(0,)上单调递增,故①错误;②y=cos |x|=cos x 周期为T=2π,故②错误;③y=|tan x|在(0,)上单调递增,故③错误;④ln|sin(x+π)|=ln|sin x|,周期为π,当x∈(0,)时,y=-ln|sin x|=-ln(sin x)在(0,)上单调递减,y=-ln|sin x|为偶函数,故④正确.答案:④12.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是.解析:T=≥2(π-)=π,所以0<ω≤2,由<x<π得ω+<ωx+<πω+,由题意知(ω+,πω+)⊆[+2kπ,+2kπ],k∈Z,所以即所以≤ω≤.答案:[,]三、解答题13.(2017²北京卷)已知函数f(x)=cos(2x-)-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x∈[-,]时,f(x)≥-.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin(2x+),所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤,所以sin(2x+)≥sin(-)=-,所以当x∈[-,]时,f(x)≥-.14.求函数y=cos2x+sin x(|x|≤)的最大值与最小值.解:令t=sin x,因为|x|≤,所以t∈[-,].所以y=-t2+t+1=-(t-)2+,所以当t=时,y max=,当t=-时,y min=.所以函数y=cos2x+sin x(|x|≤)的最大值为,最小值为. 15.(2017²浙江协作体)已知0≤ϕ<π,函数f(x)=cos(2x+ϕ)+sin2x.(1)若ϕ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求ϕ的值.解:(1)由题意f(x)=cos 2x-sin 2x+=cos(2x+)+,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为[kπ-,kπ-],k∈Z.(2)由题意f(x)=(cos ϕ-)cos 2x-sin ϕsin 2x+,由于函数f(x)的最大值为,即+=1,从而cos ϕ=0,又0≤ϕ<π,故ϕ=.第7节函数y=Asin(ωx+φ)+b的图象与性质一、选择题1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )(A)向左平行移动1个单位长度(B)向右平行移动1个单位长度(C)向左平行移动π个单位长度(D)向右平行移动π个单位长度2.(2016²全国Ⅰ卷)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.3.函数y=sin 2x的图象向右平移φ(φ>0)个单位,得到的图象恰好关于x=对称,则φ的最小值为( A )(A)π(B)π(C)π(D)以上都不对解析:y=sin 2x的图象向右平移φ个单位得到y=sin 2(x-φ)的图象,又关于x=对称,则2(-φ)=kπ+(k∈Z),2φ=-kπ-(k∈Z),即φ=--,取k=-1,得φ=π.4.设a∈R,b∈[0,2π],若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( B )(A)1 (B)2 (C)3 (D)4解析:由已知,3x-=ax+b+2kπ或3x-+ax+b=π+2kπ,k∈Z,所以或k∈Z,所以或满足条件的有序实数对(a,b)的对数为2.5.将函数f(x)=sin 2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有=.则φ等于( D )(A) (B)(C)(D)解析:由已知得g(x)=sin(2x-2φ),满足|f(x1)-g(x2)|=2,不妨设此时y=f(x)和y=g(x)分别取得最大值与最小值,又|x1-x2|min=,令2x1=,2x2-2φ=-,此时|x1-x2|=-φ=,又0<φ<,故φ=.故选D.6.已知函数f(x)=Asin(x-),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为( A )(A)15 (B)12(C)9 (D)与k的取值有关解析:如图,函数y=f(x)与y=g(x)图象均过的点(3,0),且均关于点(3,0)对称.所以h(x)零点关于x=3“对称”,因为当A=1时,h(x)所有零点和为9,所以此时,函数y=f(x)与y=g(x)图象有三个公共点,此时,f(6)<g(6),得k>.当A=2时,f(6)>g(6)且g(9)=6k>2=f max(x),所以h(x)有5个零点x1,x2,x3,x4,x5,且x1+x5=x2+x4=6,x3=3.所以x1+x2+x3+x4+x5=15.故选A.7.(2016²全国Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( B )(A)11 (B)9 (C)7 (D)5解析:因为f(x)=sin(ωx+φ)的一个零点为x=-,x=为y=f(x)图象的对称轴,所以²k=(k为奇数).又T=,所以ω=k(k为奇数).又函数f(x)在(,)上单调,所以≤³,即ω≤12.若ω=11,又|φ|≤,则φ=-,此时,f(x)=sin(11-x-),f(x)在(,)上单调递增,在(,)上单调递减,不满足条件.若ω=9,又|φ|≤,则φ=,此时f(x)=sin(9x+),满足f(x)在(,)上单调的条件.故选B.二、填空题8.(2017²温州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移个单位,得到g(x)的图象,则函数g(x)的解析式为 .解析:由题意得=-=,所以T=π,所以ω=2,又因为2³+φ=π,所以φ=,所以f(x)=sin(2x+).因为g(x)的图象是由f(x)的图象向左平移个单位得到,所以g(x)=sin [2(x+)+]=sin(2x+).答案:g(x)=sin(2x+)9.(2016²全国Ⅲ卷)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.解析:y=sin x-cos x=2sin(x-),y=sin x+cos x=2sin(x+),y=2sin(x+)的图象至少向右平移个单位长度得到y=2sin(x+-)=2sin(x-)的图象.答案:10.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.解析:将函数y=2sin 2x的图象向左平移个单位长度,得到函数y=2sin [2(x+)]=2sin(2x+)的图象.由2x+=kπ+(k∈Z),得x=+(k∈Z),即平移后图象的对称轴为x=+(k∈Z).答案:x=+(k∈Z)11.(2016²浙江卷)已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A= ,b= .解析:2cos2x+sin 2x=sin(2x+)+1,所以A=,b=1.答案: 112.(2016²江苏卷)定义在区间[0,3π]上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.解析:联立两曲线方程,得两曲线交点个数即为方程组解的个数,也就是方程sin 2x=cos x解的个数.方程可化为2sin xcos x=cos x,即cos x(2sin x-1)=0,所以cos x=0或sin x=.①当cos x=0时,x=kπ+,k∈Z,因为x∈[0,3π],所以x=,π,π,共3个;②当sin x=时,因为x∈[0,3π],所以x=,π,π,π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点.答案:7三、解答题13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC 的面积为π.(1)求函数f(x)的解析式;(2)若f(α-)=,求cos 2α的值.解:(1)因为S△MBC=³2³BC=BC=π,所以周期T=2π=,ω=1,由f(0)=2sin φ=,得sin φ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+).(2)由f(α-)=2sin α=,得sin α=,所以cos 2α=1-2sin2α=.14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x-),求g(x)的单调递减区间.解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π, 所以T==π,ω=2,又x=为f(x)图象的一条对称轴,所以2³+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,又|φ|≤,所以φ=.(2)由(1)知,f(x)=sin(2x+),所以g(x)=f(x)+f(x-)=sin(2x+)+sin 2x=sin 2x+cos 2x+sin 2x =sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以g(x)的单调递减区间是[+kπ,+kπ],k∈Z.15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(1)求φ及图中x0的值;(2)设g(x)=f(x)+f(x+),求函数g(x)在区间[-,]上的最大值和最小值.解:(1)由题图得f(0)=,所以cos φ=,因为0<φ<,故φ=.法一由于f(x)的最小正周期T==2,由题图可知1<x0<2,故<πx0+<,由f(x0)=得cos(πx0+)=,所以πx0+=,x0=.法二求离原点最近的正的最小值点,令πx+=π+2kπ,得x=+2k,k∈Z,令k=0得x=,所以=,x0=.(2)因为f(x+)=cos [π(x+)+]=cos(πx+)=-sin πx,所以g(x)=f(x)+f(x+)=cos(πx+)-sin πx=cos πxcos -sin πxsin -sin πx=cos πx-sin πx=sin(-πx)=-sin(πx-).当x∈[-,]时,πx∈[-,],(πx-)∈[-,], 所以sin(πx-)∈[-1,],-sin (πx-)∈[-,],当πx-=-,即x=-时,g(x)取得最大值;当πx-=,即x=时,g(x)取得最小值-.易错点训练:忽视函数值造成范围扩大一、选择题1.的值是( A )(A)sin 40° (B)cos 40° (C)cos 130°(D)±cos 50°解析:因为==-cos 130°=sin 40°,故选A.2.已知sin α=2sin β,tan α=3tan β,则cos α的值是( D )(A) (B)-(C)± (D)±或±1解析:由条件tan α=3tan β,得=.又因为sin α=2sin β,所以=.当sin β=0时,sin α=0,显然成立,故有cos α=±1;当sin β≠0时,3cos α=2cos β,从而有(sin α)2+(3cos α)2=4,解得cos2α=,所以cos α=±,故选D.3.在△ABC中,若sin A=,cos B=,则cos C的值是( B )(A) (B)(C)或 (D)以上都不对解析:因为cos B=,所以sin B=.又因为sin A=<=sin B,若A 为钝角,则sin(π-A)<sin B,得π-A<B,π<A+B矛盾.因此A肯定是锐角,所以cos A=,从而有cos C=-cos(A+B)=sin Asin B-cos Acos B=,故选B.4.已知3sin2x+2sin2y=2sin x,则sin2x+sin2y的最值情况是( D )(A)最大值为,最小值为-(B)最大值为,最小值为0(C)最大值为,最小值为-(D)最大值为,最小值为0解析:由0≤sin2y=(2sin x-3sin2x)≤1,可解得0≤sin x≤,则sin2x+sin2y=sin2x+(2sin x-3sin2x)=-sin2x+sin x=-(sin x-1)2+,所以sin2x+sin2y的最大值为,最小值为0.5.已知方程x2+4ax+3a+1=0(a>1)的两根为tan α,tan β,且α,β∈(-,),则tan 的值是( A )(A)-2 (B)(C)-2或(D)2或-解析:由韦达定理可知tan α,tan β同为负值,可得α,β∈(-,0),所以∈(-,0).又因为所以tan(α+β)===.又因为tan(α+β)==,解得tan =-2或,取tan =-2.二、填空题6.已知sin θ+cos θ=,其中θ∈(0,π),则tan θ的值是.。
高中数学三角函数知识点总结实用版
到原来的 |A|倍,得到 y= Asinx 的图象, 叫做振幅变换或叫沿 y 轴的伸缩变换. (用 y/A 替换
y) 由 y= sinx 的图象上的点的纵坐标保持不变,横坐标伸长( 原来的 |1|倍,得到 y=sin ω x的图象,叫做周期变换或叫做沿
0< | ω<|1)或缩短( | ω>|1)到 x 轴的伸缩变换. (用 ωx
替换 x)
由 y= sinx 的图象上所有的点向左(当 φ> 0)或向右(当 φ< 0)平行移动| φ|个单位,得
到 y= sin( x+ φ)的图象,叫做相位变换或叫做沿 x 轴方向的平移. (用 x+ φ替换 x)
由 y= sinx 的图象上所有的点向上(当 b>0)或向下(当 b< 0)平行移动| b|个单位,得
y tanx 为增函数,同样也是错误的 ].
⑧定义域关于原点对称是 f(x) 具有奇偶性的必要不充分条件 .( 奇偶性的两个条件: 一是定义
域关于原点对称(奇偶都要) ,二是满足奇偶性条件,偶函数:
f( x) f(x) ,奇函数:
f( x) f(x) ) 1 奇偶性的单调性:奇同偶反
. 例如: y tanx 是奇函数, y tan(x
到 y= sinx+ b 的图象叫做沿 y 轴方向的平移. (用 y+(-b) 替换 y)
由 y= sinx 的图象利用图象变换作函数 y= Asin ( ωx+ φ)( A> 0, ω> 0)(x∈ R)的图象,
要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延
x 轴量伸缩量的区别。
4、反三角函数: 函数 y= sinx,
cos cos cot sin 8、同角三角函数的基本关系式: sin tan
cos 1 tan cot 1 csc sin 1 sec
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
1
2
0
-1
y=sinx
2
3 2 5 x
2
2
定义域 值域 最值
单调性 奇偶性
周期 对称性
xR
y [1,1]
xx2222kk(时k时,,Zy)ymmaxin
1 1
x[-
2
2k
x[2 2k ,
,
2
3
2k ] 增函数
(k Z)
2k ] 减函数
奇函数
2
对称轴: x
2
k
,k
Z
对称中心: (k , 0) k Z
0,
4
5
4
,2
典型例题与解题方法
例1、函数 f (x) Asin(x )( A 0, 0, 0,2
的图象如图所示.
(1)写出函数f(x)的解析式;
(2)求函数的单调递增区间; (3)求使 f (x) 3 的x的集合
2
y
你能求阴影部分的
3
面积吗?
1 0
3
x
-3
例2、
(1)求函数 y
sin 3 , , , 2 ,
2
33
tan 1,则 k (k Z )
4
二、易用错的公式
1、y tan(2x )的周期为
3
2
2、cos( ) sin
cos(2) sin 2
sin( ) cos
2
cos( ) cos
sin( ) sin
函数 图形
4 满足条件的x的值 (1)存在;(2)有且只有一个; (3)有两个不同的值;(4)有三个不同的值, 分别求m的取值范围。
练习:
(1)已知函数f (x)满足下列条件
①f (x 2) f (x);②f (x 1) f (x 1); ③f (x 1) f (x);④f (x 2) 1 .
第一章 三角函数复习
本章知识体系
周期现象
任意角
弧度
三角函数
三角函数线
同角三角函数关系 诱导公式 三角函数图象和性质 综合应用
解题思想与工具
单位圆中的三角函数线
数形结合思想
三角函数的图象
整体化归思想 化归为基本三角函数的图象和性质
易错点关注
一、易混淆的数值
填空: cos6000
1 2
cos 1,则 2k (k Z )
y=cosx
y 1
0
2
3 2
2
5 2
x
-1
xR
y [1,1]
x 2k 时, ymax 1
(k Z)
x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
(k Z)
x[2k , 2k ] 减函数
偶函数
2
对称轴: x k , k Z 对称中心:(2 k , 0) k Z
三、易错写的形式 1、函数y cos 2x图象的对称轴方程是 x k (k Z )
f (x)
其中,使f (x)为周期函数的条件有序①号②③④
(2)已知定义在 R上的奇函数 f (x)也是周期为 的周期
函数,若 x (1,0)时,f (x) cos x,则f (13 ) 3
6
2
练习:
函数y
sin
x在
3
,
4
上单调递增,求
的取值范围。
2 对称中心为 (k ,0)(k Z )
24
2、角的终边与1200的终边关于y轴对称,
则 k 3600 600 (k Z )
(k Z)
3、函数y
sin( 3
x)的单调递增区间为2k
5 6
,2k
11 6
4、使 tan
x
1的x的集合为x
k
4
x
k
2
,k
Z
5、在0,2 中,使 sin x cos x成立的x的取值范围是
cos
x(x
3
,
2
3
)的值域
(2)求函数
y
cos(2x
6
)(
x
3
,
2
3
)的值域。
例3、已知函数f (x) a sin(2x ) 1的定义域为R,
若当
7
x
时,f
3 (x)的最大值为2.
12
12
(1)求a的值;
(2)求出该图像对称中心的坐标和对称轴方程。
例4、若x满足 2cos(3 x) m( x ),为使