浙教版2018年 数学中考专题复习全集(含答案)

合集下载

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

浙江省舟山市2018年中考数学试题卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是( )A .B .C .D .2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日2L 点,它距离地球约.数1500000用科学记数法表示为( )A .B .C .D . 3.2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A .1月份销售为2.2万辆B .从2月到3月的月销售增长最快C .4月份销售比3月份增加了1万辆D .1~4月新能源乘用车销售逐月增加4.不等式的解在数轴上表示正确的是( )A .B .C .D .1500000km 51510⨯61.510⨯70.1510⨯51.510⨯12x -≥5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内 B .点在圆上 C .点在圆心上 D .点在圆上或圆内7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A .的长B .的长C .的长D .的长 8.用尺规在一个平行四边形内作菱形,下列作法中错误..的是( )22x ax b +=Rt ABC ∆90ACB ∠=2a BC =AC b =AB 2aBD=AC AD BC CDABCDA .B .C .D . 9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为( )A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙 D .丙与丁卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分)11.分解因式: .12.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则 .13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).14.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量C (0)ky x x=>C x y A B AB BC =AOB ∆k 23m m -=123////l l l AC 1l 2l 3l A B C DF 1l 2l 3l D E F 13AB AC =EFDE=AB角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程: . 16.如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:;(2)化简并求值:,其中,. 18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.C AD 10AD cm =D 60cm 10%x ABCD 4AB =2AD =E CD 1DE =F AB EF Rt EFP ∆P ABCDAF 01)31)+--a b abb a a b ⎛⎫-⋅⎪+⎝⎭1a =2b =35,43 2.x y x y -=⎧⎨-=⎩①②19.如图,等边的顶点,在矩形的边,上,且. 求证:矩形是正方形.20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下: 收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183. 整理数据:甲车间 245621乙车间 122 0分析数据: 车间 平均数 众数 中位数 方差 甲车间 180 185 180 43.1 乙车间18018018022.6AEF ∆E F ABCD BC CD 45CEF ∠=ABCD 176185mm mm mm 165.5170.5170.5175.5175.5180.5180.5185.5185.5190.5190.5195.5a b 组别频 数应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.(1)根据函数的定义,请判断变量是否为关于的函数? (2)结合图象回答:①当时,的值是多少?并说明它的实际意义. ②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从()h m ()ts h t 0.7t s =h AC AB P PDE ∆F PD 2.8AC m =2PD m =1CF m =20DPE ∠=P 0P D CPE 65P 0P上调多少距离?(结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:,,) 23.已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.(1)判断顶点是否在直线上,并说明理由.(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.24.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.0.1m P 0.1m sin 700.94≈cos700.34≈tan 70 2.75≈ 1.41≈ 1.73≈M 2()41y x b b =--++5y mx =+x y A B M 41y x =+A B 25()41mx x b b +>--++x A (5,0)M AOB ∆11(,)4C y 23(,)4D y 1y 2y ABC ∆B C ∠=∠P BC CPE BPF ∠=∠AC AB E F CPE C ∠=∠PE PF AB +=CPE C ∠≠∠B CBD CPE ∠=∠CA CA D PE PF BD CPE C ∠>∠(3)若点与重合(如图3),,且. ①求的度数;②设,,,试证明:.数学参考答案一、选择题1-5: CBDAA 6-10: DBCDB二、填空题11. 12. 2 13.;不公平 14.15. 16. 0或或4 三、解答题17.(1)原式(2)原式. 当,时,原式. 18.(1)解法一中的计算有误(标记略). (2)由①-②,得,解得, 把代入①,得,解得,所以原方程组的解是.18.用消元法解方程组时,两位同学的解法如下:19.(方法一)∵四边形是矩形, ∴,F A 27C ∠=PA AE =CPE ∠PB a =PA b =AB c =22a c b c-=(3)m m -14300200(110%)20x x =⨯--1113AF <<231=+-=22a b aba b ab a b-=⋅=-+1a =2b =121=-=-33x -=1x =-1x =-135y --=2y =-12x y =-⎧⎨=-⎩35,43 2.x y x y -=⎧⎨-=⎩①②ABCD 90B D C ∠=∠=∠=∵是等边三角形,∴,, 又,∴,∴, ∴, ∴, ∴矩形是正方形.(方法二)(连结,利用轴对称证明,表述正确也可)20.(1)甲车间样品的合格率为. (2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为. ∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.21.(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应, ∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为. ②.AEF ∆AE AF =60AEF AFE ∠=∠=45CEF ∠=45CFE CEF ∠=∠=180456075AFD AEB ∠=∠=--=()AEB AFD AAS ∆≅∆AB AD =ABCDAC 56100%55%20+⨯=20(122)15-++=15100%75%20⨯=100075%750⨯=t h h t 0.5h m =0.7s 0.5m 2.8s22.(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴, ∴. ∵,∴. ∵,∴, ∴为等腰直角三角形,∴, ∴, 即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处, ∴.∵,∴. ∵,∴.∵,得为等腰三角形, ∴. 过点作于点,P 0P 02CP m =65P 1P 190∠=90CAB ∠=1115APE ∠=165CPE ∠=120DPE ∠=145CPF ∠=11CF PF m ==145C CPF ∠=∠=1CP F∆1CP=010120.6P P CP CP m =-=≈P 0P 0.6m PE P 2P 2//P E AB 90CAB ∠=290CP E ∠=220DP E ∠=22270CP F CP E DP E ∠=∠-∠=21CF P F m ==2CP F ∆270C CP F ∠=∠=F 2FG CP ⊥G∴,∴,∴,即点在(1)的基础上还需上调.23.(1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时, 的取值范围为或.22cos 7010.340.34CP P F m =⋅=⨯=2220.68CP GP m ==12120.680.7PP CP CP m =-≈P 0.7m M (,41)b b +x b =41y x =+41y b =+M 41y x =+5y mx =+y B B (0,5)(0,5)B 25(0)41b b =--++2b =2(2)9y x =--+0y =15x =21x =-(5,0)A 25()41mx x b b +>--++x 0x <5x>(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,. ∵点在内,∴. 当点,关于抛物线对称轴(直线)对称时,,∴. 且二次函数图象的开口向下,顶点在直线上,综上:①当时,; ②当时,; ③当时,.24.(1)∵,,,∴,,∴,,,∴.41y x =+AB E y F AB 5y x =-+415y x y x =+⎧⎨=-+⎩45215x y ⎧=⎪⎪⎨⎪=⎪⎩421(,)55E (0,1)F M AOB ∆405b <<C D x b =1344b b -=-12b =M 41y x =+102b <<12y y >12b =12y y =1425b <<12y y<B C ∠=∠CPE BPF ∠=∠CPE C ∠=∠B BPF CPE ∠=∠=∠BPF C ∠=∠PF BF =//PE AF //PF AE PE AF =∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴,∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.PE PF AF BF AB +=+=BD PE PF =+B DC EP G ABC C CBG ∠=∠=∠CPE BPF ∠=∠BPF CPE BPG ∠=∠=∠BP BP =()FBP GBP ASA ∆≅∆PF PG =CBD CPE ∠=∠//PE BD BGED BD EG PG PE PE PF ==+=+CPE BPF x ∠=∠=27C ∠=PA AE =27APE PEA C CPE x ∠=∠=∠+∠=+180BPA APE CPE ∠+∠+∠=27180x x x +++=51x =51CPE ∠=②延长至,使,连结,∵,.∴,∵,∴, ∴,而,∴. ∴, ∴.∵,,,∴, ∴.BA M AM AP =MP 27C ∠=51BPA CPE ∠=∠=180BAP B BPA ∠=-∠-∠102M MPA ==∠+∠AM AP =1512M MPA BAP ∠=∠=∠=M BPA ∠=∠B B ∠=∠ABPPBM ∆∆BP BM AB BP=2BP AB BM =⋅PB a =PA AM b ==AB c =2()a c b c =+22a cb c-=2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 60122)()3--+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =,11x =,21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin 6010CG ==∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+.④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <,510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <,515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。

【浙教版】2018年中考数学难题突破专题十基于PISA理念测试题含答案

【浙教版】2018年中考数学难题突破专题十基于PISA理念测试题含答案

难题突破专题十基于PISA理念测试题PISA是国际学生评估项目的缩写,是一项由经济合作与发展组织统筹的学生能力测试项目.PISA类测试可强化对考生知识面,综合分析,创新素养等方面的考查,测试的重点是考生全面参与社会的知识与技能,发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本数学思想进行独立思考.PISA测试题是中考命题的最新方向.1 [2015·嘉兴] 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图Z10-1①),侧面示意图为图②.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图③),侧面示意图为图④.已知OA=OB=24 cm,O′C⊥CA于点C,O′C=12 cm.图Z10-1(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?(3)如图④,垫入散热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?例题分层分析(1)根据题意可得:O′C=12 cm,AO′=AO=24 cm,O′C⊥CA于C,所以sin∠CAO′=________,从而可求得∠CAO′=________.(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=________cm,由C,O′,B′三点共线可得CB′=________cm,所以显示屏的顶部B′比原来升高了________cm.(3)没有旋转之前O′B′与水平线的夹角为________度,要使显示屏O′B′与水平线的夹角保持120°,则还需按顺时针方向旋转________度.2 [2015·丽水] 某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运动时间为t(秒),经过多次测试后,得到如下部分数据:(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起,y与x满足y=a(x-3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长×2米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.图Z10-2例题分层分析(1)根据表格中数据直接可知当t=________秒时乒乓球达到最大高度.(2)以点A为原点,以桌面中线为x轴,乒乓球运动方向为正方向,建立平面直角坐标系,根据表格中数据先画出大致图象,根据图象的形状,可判断y是x的________函数.可设函数表达式为____________.选一个点代入即可求得函数表达式为________________,然后将y=0代入即可求得乒乓球落在桌面上时,与端点A的水平距离.(3)①由(2)得乒乓球落在桌面上时,得出对应点坐标,只要利用待定系数法求出函数解析式即可;②由题意可得,扣杀路线在直线y=110x上,由①得y=a(x-3)2-14a,进而利用根的判别式求出a的值,进而求出x的值.专题训练1.[2016·金华] 一座楼梯的示意图如图Z 10-3所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ,现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度为1米,则地毯的面积至少需要( )米2米2C .(4+4tan θ)米2D .(4+4tan θ)米2图Z 10-3 图Z 10-42.[2015·绍兴] 如图Z 10-4,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE =∠PAE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS3.[2015·绍兴] 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z 10-5中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )A .②号棒B .⑦号棒C .⑧号棒D .⑩号棒图Z 10-5 图Z 10-64.[2015·绍兴] 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图Z 10-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图②,则此时A ,B 两点之间的距离是________cm .5.[2016·江西]已知不等臂跷跷板AB 长为3 m ,当AB 的一端点A 碰到地面时(如图Z 10-7①),AB 与地面的夹角为30°,当AB 的另一端点B 碰到地面时(如图②),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH=________m.图Z10-76.[2016·绍兴] 如图Z10-8①,小敏利用课余时间制作了一个脸盆架,图②是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10 cm,则该脸盆的半径为________cm.图Z10-87.[2016·余干二模] 如图Z10-9是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横截面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°,则垂直支架CD的长度为________厘米.(结果保留根号)图Z10-98.[2015·金华] 图Z10-10①是一张可以折叠的小床展开后支撑起来放在地面上的实物图,此时点A,B,C在同一直线上,且∠ACD=90°.图②是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是________;(2)若AB∶BC=1∶4,则tan∠CAD的值是________.图Z10-109.[2016·舟山] 太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图Z10-11②所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈,cos18°≈,tan18°≈,sin36°≈,cos36°≈,tan36°≈图Z10-1110.[2017·赤峰]王浩同学用木板制作一个带有卡槽的三角形手机架,如图Z10-12①所示.已知AC=20 cm,BC =18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°=,cos50°=,tan50°=图Z10-1211.[2016·临夏州] 图Z10-13①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈,cos20°≈,tan20°≈(1)求AB的长(精确到0.01米);(2)若测得ON =0.8米,试计算小明头顶由N 点运动到M 点的路径MN ︵的长度.(结果保留π)图Z 10-1312.[2017·威海] 图Z 10-14①是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能.玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好.假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算.如图②,AB ⊥BC ,垂足为点B ,EA ⊥AB ,垂足为点A ,CD ∥AB ,CD =10 cm ,DE =120 cm ,FG ⊥DE ,垂足为点G . (1)若∠θ=37°50′,则AB 的长约为________cm ; (参考数据:sin37°50′≈,cos37°50′≈,tan37°50′≈ (2)若FG =30 cm ,∠θ=60°,求CF 的长.图Z 10-1413.[2017·常德] 图Z 10-15①和②分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC 与支架AC 所形成的的角∠ACB =75°,支架AF 的长为2.50米,篮板顶端F 点到篮筐D 的距离FD =1.35米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮筐D 到地面的距离(精确到0.01米).(参考数据:cos75°≈,sin75°≈,tan75°≈,3≈图Z 10-15参考答案例1 【例题分层分析】(1)12 30° (2)123 36 (36-12 3) (3)90 30解:(1)∵O ′C ⊥CA 于C ,OA =OB =24 cm ,∴sin ∠CAO ′=O′C O′A =O′C OA =1224=12,∴∠CAO ′=30°.(2)过点B 作BD ⊥AO 交AO 的延长线于D , ∵sin ∠BOD =BDOB ,∴BD =OB ·sin ∠BOD ,∵∠AOB =120°,∴∠BOD =60°, ∴BD =OB ·sin ∠BOD =24×32=12 3. ∵O ′C ⊥OA ,∠CAO ′=30°,∴∠AO ′C =60°, ∵∠AO ′B ′=120°,∴∠AO ′B ′+∠AO ′C =180°, ∴B ′,O ′,C 三点共线,∴O ′B ′+O ′C -BD =24+12-12 3=36-12 3, ∴显示屏的顶部B ′比原来升高了(36-12 3)cm.(3)显示屏O ′B ′应绕点O ′按顺时针方向旋转30°. 理由:∵显示屏O ′B ′与水平线的夹角仍保持120°, ∴∠EO ′F =120°, ∴∠FO ′A =∠CAO ′=30°, ∵∠AO ′B ′=120°, ∴∠EO ′B ′=∠FO ′A =30°,∴显示屏O ′B ′应绕点O ′按顺时针方向旋转30°. 例2 【例题分层分析】 (1) (2)二次 y =m (x -1)2+y =-15(x -1)2+解:以点A 为原点,以桌面中线为x 轴,乒乓球运动方向为正方向,建立平面直角坐标系. (1)由表格中的数据,可得t =(秒). 答:当t 为秒时,乒乓球达到最大高度.(2)由表格中数据,可画出y 关于x 的图象,根据图象的形状,可判断y 是x 的二次函数.可设y =m (x -1)2+.将(0,代入,可得m =-15.∴y =-15(x -1)2+.当y =0时,x 1=52,x 2=-12(舍去),即乒乓球与端点A 的水平距离是52米.(3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0),代入y =a (x -3)2+k ,得a ×(52-3)2+k =0,化简整理,得k =-14a .②由题意可知,扣杀路线在直线y =110x 上.由①,得y =a (x -3)2-14a .令a (x -3)2-14a =110x ,整理,得20ax 2-(120a +2)x +175a =0.当Δ=(120a +2)2-4×20a ×175a =0时符合题意. 解方程,得a 1=-6+3510,a 2=-6-3510.当a 1=-6+3510时,求得x =-352,不符合题意,舍去. 当a 2=-6-3510时,求得x =352,符合题意. 答:当a =-6-3510时,能恰好将球沿直线扣杀到点A .专题训练 1.D3.D [解析] 按照条件中的游戏规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,第7次应拿走⑦号棒,第8次应拿走③号棒,第9次应拿走④号棒,第10次应拿走①号棒,因此,本题应该选D .4.18[解析] 设OH =x m ,∵当AB 的一端点A 碰到地面时,AB 与地面的夹角为30°,∴AO =2x m .∵当AB 的另一端点B 碰到地面时,AB 与地面的夹角的正弦值为13,∴BO =3x m .则AO +BO =2x +3x =3,解得x =35.故答案为:35.6.25 [解析] 如图,设圆的圆心为O ,连结OA ,OC ,OC 与AB 交于点D ,设⊙O 的半径为R cm.易知OC ⊥AB ,∴AD =DB =12AB =20 cm ,∠ADO =90°,在Rt △AOD 中, ∵OA 2=OD 2+AD 2, ∴R 2=202+(R -10)2, ∴R =25.故答案为25.7.38 3 [解析] ∵支架CD 与水平面AE 垂直,∴∠DCE =90°.在Rt △CDE 中,∠DCE =90°,∠CED =60°,DE =76厘米,∴CD =DE ·sin ∠CED =76×sin60°=38 3(厘米).故答案为38 3.8.(1)三角形的稳定性和四边形的不稳定性 (2)8159.解:∵∠BDC =90°,BC =10米,sin B =CDBC ,∴CD =BC ·sin B ≈10×=(米). ∵在Rt △BCD 中,∠BCD =90°-∠B =90°-36°=54°, ∴∠ACD =∠BCD -∠ACB =54°-36°=18°, ∴在Rt △ACD 中,tan ∠ACD =ADCD ,∴AD =CD ·tan ∠ACD ≈×=≈(米).故改建后南屋面边沿增加部分AD 的长约为1.9米. 10.解:过点A 作AD ⊥BC 于D ,得AD =AC sin50°=20×=16,CD =AC cos50°=20×=12.∵BC =18,∴BD =BC -CD =6.∵AB 2=AD 2+DB 2=162+62=292,172=289<292,∴王浩同学能将手机放入卡槽AB 内.11.解:(1)过B 作BE ⊥AC 于E ,则AE =AC -BD =-=(米),∠AEB =90°,所以AB =AE sin ∠ABE=错误!≈(米). (2)∠MON =90°+20°=110°,所以MN ︵的长度是110π×180=2245π(米). 12.解:(1).(2)如图,过M 点作MN ∥AB ,过点E 作EP ∥AB ,交CB 于点P ,分别延长ED ,BC ,两线交于点K , ∴MN ∥EP ,∴∠1=∠2.∵AB ⊥BK ,EP ∥AB ,∴KP ⊥EP ,∴∠2+∠K =90°.∵∠θ+∠1=90°,∴∠K =∠θ=60°.在Rt △FGK 中,∠KGF =90°,sin K =GF KF, ∴KF =GF sin 60°=20 3(cm). 又∵CD ∥AB ,AB ⊥BK ,∴CD ⊥CK .在Rt △CDK 中,∠KCD =90°,tan K =CD CK, ∴CK =CD tan 60°=10 33(cm). ∴CF =KF -CK =50 33(cm). 13.解:如图,过点A 作AM ⊥FE 交FE 的延长线于M ,∵∠FHE =60°,∴∠F =30°.在Rt △AFM 中,FM =AF ·cos F =AF ·cos30°=×32≈(米). 在Rt △ABC 中,AB =BC ·tan ∠ACB =BC ·tan75°≈×=(米). ∴篮板顶端F 点到地面的距离为FM +AB =+=(米),∴篮筐D 到地面的距离为-FD =-=≈(米).。

2018年浙江中考数学复习方法技巧专题一:数形结合思想训练(含答案)

2018年浙江中考数学复习方法技巧专题一:数形结合思想训练(含答案)

方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2018•嘉兴)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D 错误,故选:D.8.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2018•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2018•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2018•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2018•衢州)数据5,5,4,2,3,7,6的中位数是5.解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于 4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2016年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2018•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.21.(2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).。

完整word版,2018中杭州中考数学(含答案)

完整word版,2018中杭州中考数学(含答案)

2018 年浙江省杭州市中考数学试卷一、选择题:本大题有10 个小题,每题 3 分,共 30 分。

在每题给出的四个选项中,只有一项为哪一项切合题日要求的。

1. |-3|=()A. 3B.-3C. 1/3D.-1/32.数据 1800000用科学记数法表示为()A . 1.86B . 1.8 ×106C . 18 ×105D . 18 ×1063.以下计算正确的选项是()A. √(22 ) =2B. √(22 ) = ±2C.. √(42 ) =2D. √(42 ) = ±24.测试五位学生的“一分钟跳绳”成绩,获得五个各不同样的数据、在统计)时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是(方差B.标准差C.中位数D.均匀数5.若线段 AM ,AN分别是△ABC的BC边上的高线和中线,则()A. AM >AN B. AM ≥AN C. AM <AN D.AM ≤AN6.某次知识比赛共有 20 道题,现定:每答对一道题得+5分,每答错一道题得-2 分,不答的题得 0 分,已知圆圆这次竞赛得了 60 分,设圆圆答对了 x 道题,答错了 y 道题,则()A . x-y=20 B.x+y=20C. 5x-2y=60 D . 5x+2y=607.一个两位数,它的十位数字是 3,个位数字是投掷一枚质地均匀的骰子(六个面分别标有数字 1-6 )向上一面的数字,随意投掷这枚骰子一次,获得的两位数是 3 的倍数的概率等于()A. 1/6B. 1/3C. 1/2D.2/38.如图,已知点 P 是矩形 ABCD内一点(不含界限),设∠PAD=1 ,∠PBA=θθ,∠PCB= θ,∠PDC=θ,若∠APB=80 °,∠CPD=50 °,则()234A .(θ1+θ4 ) - (θ2+θ3 ) =30°B .(θ2+ θ4 ) - (θ1+ θ3 ) =40 °C.(θ1+θ2 ) - (θ3+θ4 ) =70° D .(θ1+ θ2 ) + (θ3+θ4 ) =180 °9 .四位同学在研究函数 y=x 2 +bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程 x2 +bx+c=0的一个根;丙发现函数的最小值为 3;丁发现当 x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁10.如图,在△ABC 中,点 D 在 AB 边上,DE∥BC,与边 AC交于点 E,连接BE.记△ADE ,△BCE 的面积分别为 S1,S2()A.若 2AD>AB,则3S 1>2S2B.若 2AD>AB,则 3S1<2S2C.若 2AD<AB,则 3S1>2S2D.若 2AD<AB,则 3S1<2S2二、填空题:本大题有 6 个小题,每题 4 分,共 24 分。

浙江省2018中考数学真题(含答案)(Word精校版)

浙江省2018中考数学真题(含答案)(Word精校版)

2018年杭州市初中毕业升学文化考试数学一、选择题:本大题有10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项最符合题目要求的。

1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()(第8题)A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()(第10题)A. 若,则B. 若,则C. 若,则D. 若,则二、填空题:本大题有6个小题,每小题4分,共24分。

11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法考试内容考试要求等式的性质性质1:等式两边加(或减)同一个数或同一个____________________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是.ab方程的概念含有未知数的叫做方程.方程的解使方程左右两边的值的未知数的值叫做方程的解.3.列方程解应用题的一般步骤考试内容考试要求列方程解应用题的一般步骤c 1.审审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设设未知数(可设直接或____________________未知数).3.列根据题意寻找列方程.4.解解方程.5.答检验所求的未知数的值是否符合题意(分式方程既要检验求出来的解是否为原方程的根,又要检验是否符合题意),写出答案.考试内容考试要求基本思想解分式方程的基本思想:把分式方程转化为整式方程,即分式方程――→去分母转化整式方程.c 基本方法1.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.2.列方程的关键是寻找等量关系,寻找等量关系常用的方法有:①抓住不变量;②找关键词;③画线段图或列表格;④运用数学公式.1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( ) A.518=2(106+x) B.518-x=2×106C.518-x=2(106+x) D.518+x=2(106-x)2.(2017·宁波)分式方程2x+13-x=32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x+1=1x-1.【问题】给出以下五个代数式:2x-4,x-2,x,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一等式性质和方程的解的含义例1(1)(2017·杭州)设x,y,c是实数,( )A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则xc=ycD.若x2c=y3c,则2x=3y(2)已知关于x的方程2x+a-9=0的解是x=2,则a=________.(3)已知关于x的方程3x+n2x+1=2的解是负数,则n的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a的一元一次方程,求出a值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n-2<0和n-2≠-12,注意题目中的隐含条件2x+1≠0不要忽略.1.(1)已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+53(2)如果方程x+2=0与方程2x-a=0的解相同,那么a=____________________.(3)(2017·成都)已知x=3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x-12⎣⎢⎡⎦⎥⎤x-12(x-1)=23(x-1).类型三分式方程的解法例3(2015·营口)若关于x的分式方程2 x-3+x+m3-x=2有增根,则m的值是( )A.m=-1B.m=0C.m=3 D.m=0或m=3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4(1)(2017·湖州)解方程:2x-1=1 x-1+1;(2)(2017·陕西模拟)解方程:2-xx-3=13-x-2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)xx-3=x-63-x+3;(2)xx+1-4x2-1=1.类型四一元一次方程和分式方程的应用例5(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x2-4xx2-1+1=2xx+1. 参考答案第6讲一元一次方程与分式方程及其应用【考点概要】1.整式等式等式相等一 1 括号同类项 2.未知数整式最简公分母不为0 3.间接等量关系【考题体验】1.C 2.x=1 3.160x=200x+54.x=3【知识引擎】【解析】(1)答案不唯一,2x-4=3和2x-4 x-2=12;(2)2x-4=3,解得x=3.5;2x-4x-2=12,解得x=2,代入方程x=2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B;(2)5;(3)解方程3x+n2x+1=2得x=n-2.∵关于x的方程3x+n2x+1=2的解是负数,∴n-2<0.解得:n<2.又∵原方程有意义的条件为:x≠-12,∴n-2≠-12,即n≠32.∴n<2且n≠32. 例2 6x-3(x-1)=12-2(x+2),6x-3x+3=12-2x-4,3x+3=8-2x,3x+2x =8-3,5x=5,∴x=1. 例3 方程两边都乘以(x-3)得,2-x-m=2(x-3),∵分式方程有增根,∴x-3=0,解得x=3,∴2-3-m=2(3-3),解得m=-1.故选A. 例4 (1)方程两边都乘以x-1得:2=1+x-1,解得:x=2,检验:∵当x=2时,x-1≠0,∴x=2是原方程的解,即原方程的解为x=2. (2)方程的两边同乘(x-3),得:2-x=-1-2(x-3),解得:x=3,检验:把x=3代入(x-3)=0,即x=3不是原分式方程的解.则原方程无解.例5 (1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n张这样的餐桌拼接起来四周可坐6+4(n-1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n张这样的餐桌拼接起来四周可坐6+4(n-1)人,∴若用餐的人数有90人,则6+4(n-1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x(x+1)(x-1)+1=2xx+1.方程两边同乘(x+1)(x-1),得x2-4x+(x+1)(x-1)=2x(x-1).整理得x2-4x+x2-1=2x2-2x,即2x=-1,x=-12.检验:当x=-12时,(x+1)(x-1)≠0,所以x=-12是原方程的根.。

浙江省2018届初三数学中考总复习讲练含答案

浙江省2018届初三数学中考总复习讲练含答案

浙江省2018届初三数学中考总复习目录第1讲实数及其运算 (1)第2讲整式及其运算 (11)第3讲因式分解 (20)第4讲分式及其运算 (25)第5讲二次根式及其运算 (34)第6讲一元一次方程与分式方程及其应用 (43)第7讲二元一次方程组及其应用 (52)第8讲一元二次方程及其应用 (63)第9讲方程(组)的应用 (72)第10讲不等式与不等式组 (82)第12讲函数概念与平面直角坐标系 (99)第13讲一次函数及其图象 (112)第14讲反比例函数及其图象 (126)第15讲二次函数的图象与性质 (141)第16讲函数的应用 (154)第17讲线段、角、相交线和平行线 (168)第18讲三角形与全等三角形 (182)第19讲特殊三角形 (196)第20讲多边形与平行四边形 (222)第21讲矩形、菱形与正方形 (234)第23讲直线与圆的位置关系 (261)第24讲圆的有关计算 (272)第25讲几何作图 (280)第26讲三视图与展开图 (294)第27讲图形与变换 (303)第28讲图形的相似 (326)第29讲锐角三角函数与解直角三角形 (349)第30讲数据的收集与整理 (366)第31讲数据的分析及其应用 (380)第32讲简单事件的概率及其应用 (393)第33讲选择、填空题常用解法问题 (405)第34讲归纳、猜想与说理型问题 (414)第35讲方程、函数思想型问题 (422)第36讲分类讨论型问题 (434)第37讲方案设计型问题 (446)第38讲阅读理解型问题 (457)第39讲开放与探索型问题 (468)第40讲实验与动态型问题 (478)第41讲课本题改编型问题 (489)第1讲 实数及其运算1.实数的分类实数⎩⎪⎪⎨⎪⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎨⎧⎭⎪⎬⎪⎫正整数 自然数负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数 有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数 无限不循环小数 2.实数的有关概念3.科学记数法和近似数4.平方根、算术平方根、立方根5.实数的大小比较6.实数的运算1.(2016·金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )A .∅45.02B .∅44.9C .∅44.98D .∅45.01 2.(2017·金华)下列各组数中,把两数相乘,积为1的是( )A .2和-2B .-2和12C.3和33 D.3和- 33.(2016·丽水)下列四个数中,与-2的和为0的数是( )A .-2B .2C .0D .-124.(2017·杭州)|1+3|+|1-3|=( )A .1 B. 3 C .2 D .2 3 5.计算:(1)(2016·衢州)计算:|-3|+9-(-1)2+⎝⎛⎭⎫-120;(2)(2017·金华)计算:2cos60°+(-1)2017+|-3|-(2-1)0;(3)(2015·台州)6÷(-3)+|-1|-20150.【问题】在下图的集合圈中,有5个实数.(1)其中最大的数是________;(2)计算其中的有理数的和与无理数的积的差; (3)请你再提出有关实数的几个问题.【归纳】通过开放式问题,归纳、疏理有理数、无理数有关的概念,以及实数的分类;实数的运算法则.类型一 与实数相关的概念例1 数字2,13,π,38,cos 45°,0.32中是无理数的有( )A .1个B .2个C .3个D .4个【解后感悟】对无理数的判定,不能只被表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的数不一定就是无理数,如38=2是有理数,用三角函数符号表示的数也不一定就是无理数,如sin 30°、tan 45°就是有理数,一个数是不是无理数关键在于不同形式表示的数的最终结果是不是无限不循环小数.1.(1)(2015·上海)下列实数中,是有理数的为( ) A.2B.34C .πD .0(2)(2017·河北)如图为张小亮的答卷,他的得分应是( )姓名__张小亮__ 得分__?__填空(每小题20分,共100分)①-1的绝对值是____.②2的倒数是____.③-2的相反数是____.④1的立方根是____.⑤-1和7的平均数是___.A.100分B.80分C.60分D.40分(3)数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点CC.点B与点C D.点B与点D类型二科学记数法与近似值例2(2017·绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15³1010B.0.15³1012C.1.5³1011D.1.5³1012【解后感悟】科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.(1)(2017·益阳)目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A.4³108B.4³10-8C.0.4³108D.-4³108(2)(2017·温州)下列选项中的整数,与17最接近的是()A.3 B.4 C.5 D.6类型三实数的运算例3(2015·绍兴)计算:2cos45°-(π+1)0+14+(12)-1.【解后感悟】实数运算的一般步骤:(1)观察运算种类;(2)确定运算顺序;(3)把握每步运算法则和符号;(4)灵活运用运算律.3.(2016·舟山)13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .76D .77 4.计算:(1)(2015·菏泽)(-1)2015+sin 30°-(π-3.14)0+⎝⎛⎭⎫12-1;(2)(2017·衢州)计算:12+(π-1)0³|-2|-tan 60°;(3)(2015·温州)20150+12+2³⎝⎛⎭⎫-12.类型四 实数的大小比较例4 (2015·丽水)在数-3,-2,0,3中,大小在-1和2之间的数是( ) A .-3 B .-2 C .0 D .3 【解后感悟】实数的大小比较常用以下方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数表示法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a 、b 是两个任意实数,则:a -b>0,a>b ;a -b =0,a =b ;a -b<0,a<b.5.(1)(2016·衢州)在2,-1,-3,0这四个实数中,最小的是()A.2B.-1 C.-3 D.0(2)设a=20,b=(-3)2,c=3-27,d=⎝⎛⎭⎫12-1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d【新定义题】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2³(2-5)+1=2³(-3)+1=-6+1=-5(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.【方法与对策】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果;同时利用所学知识解答综合问题是我们应具备的能力,是中考命题方式.【对科学记数法的精确的位数混淆不清;实数运算的顺序、符号处理不当】1.(2017·台州)人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978³103B.97.8³104 C.9.78³105D.0.978³1062.(2015·遂宁)计算:-13-27+6sin 60°+(π-3.14)0+|-5|.参考答案第1讲 实数及其运算【考点概要】1.零 负分数 负无理数 2.原点 正方向 单位长度 符号 两侧 距离 乘积为1 1a 3.a ³10n 4.相反数 负数 0 0 正的 负的 5.大于 小于小 小于 6.1 1a p 乘除 加减 括号内【考题体验】1.B 2.C 3.B 4.D 5.(1)6;(2)2;(3)-2. 【知识引擎】【解析】(1)32;(2)首先要弄清有理数和无理数的概念;有理数包括整数和分数;无理数指的是无限不循环小数.正确找到有理数和无理数后,再进行计算即可.有理数是32,-23,它们的和为32+(-23)=9-8=1;无理数是12,π,8,它们的积为12³π³8=2π.∴有理数的和与无理数的积的差等于1-2π.(3)写出其中的负整数;绝对值最小的数等.【例题精析】例1 C 例2 C 例3 原式=2³22-1+12+2=2+32.例4 C 【变式拓展】 1.(1)D (2)B (3)C 2. (1)B (2)B 3.C4.(1)12; (2)2+3; (3)2 3.5.(1)C (2)A 【热点题型】【分析与解】(1)按照定义新运算a ⊕b =a(a -b)+1,求解即可.(-2)⊕3=-2³(-2-3)+1=-2³(-5)+1=10+1=11. (2)先按照定义新运算a ⊕b =a(a -b)+1,得出3⊕x ,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.∵3⊕x<13,∴3(3-x)+1<13,9-3x +1<13,-3x<3,x>-1,数轴表示如图所示【错误警示】1.C2.原式=-1-33+6³32+1+5= 5.第2讲整式及其运算1.整式的相关概念2.整式的运算1.(2017·衢州)下列计算正确的是(A .2a +b =2abB .(-a)2=a 2C .a 6÷a 2=a 3D .a 3²a 2=a 62.(2017·台州)下列计算正确的是( ) A .(a +2)(a -2)=a 2-2 B .(a +1)(a -2)=a 2+a-2 C .(a +b)2=a 2+b 2 D .(a -b)2=a 2-2ab +b 23.(2016·宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需____________________根火柴棒.4.(2015·嘉兴)化简:a(2-a)+(a +1)(a -1).【问题】(1)计算:(a +3)(a -3)+a(3a -2)-(2a -1)2;(2)完成(1)计算后回答:①此计算过程中,用到了哪些乘法公式和法则; ②此计算过程中,要注意哪些问题.【归纳】通过开放式问题,归纳、疏理实数相关概念、运算法则,以及要注意的问题.类型一 幂的运算例1 计算:(1)(a 2b)3=________;(2)(3a)2²a 5=________; (3)x 5÷x 3=________.【解后感悟】(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.1.(2015·益阳)下列运算正确的是( )A .x 2²x 3=x 6B .(x 3)2=x 5C .(xy 2)3=x 3y 6D .x 6÷x 3=x 2 2.若3x =4,9y =7,则3x -2y的值为( )A .47B .74C .-3D .27类型二 整式的加减运算例2 (1)若mn =m +3,则2mn +3m -5mn +10=________.(2)已知(a -2)2+|b +1|=0,则代数式2a 2b -3ab 2-(a 2b -4ab 2)=________.(3)若代数式5a -3b 的值是-2,则代数式2(a -b)+4(2a -b)+3的值等于________. 【解后感悟】整式的加减,实质上就是,有括号的,先去括号.只要算式中没有同类项,就是最后的结果.3.(1)化简:4a -(a -3b)=____________________.(2)已知a ,b 互为相反数,则(4a -3b)-(3a -4b)=____________________.(3)已知2x +y =-1,则代数式(2y +y 2-3)-(y 2-4x)的值为____________________. (4)(2015·巴中)若单项式2x 2y a +b与-13x a -b y 4是同类项,则a =____________________,b =____________________.类型三 整式的混合运算与求值例3 (1)(2x)3²(-2y 3)÷(-16xy 2)=________;(2)已知x 2-4x +3=0,则(x -1)2-2(1+x)=________; (3)已知m +n =-3,mn =5,则(2-m)(2-n)的值为________;(4)长方形的长为a cm ,宽为b cm ,若长增加了2cm ,面积比原来增加了________cm 2. 【解后感悟】(1)对于整式的加、减、乘、除、乘方运算,要充分理解其运算法则,注意运算顺序,正确应用乘法公式以及整体和分类等数学思想.(2)在应用乘法公式时,要充分理解乘法公式的结构特点,分析是否符合乘法公式的条件.4.(1)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b)(2a -b),其中a =2,b =1.(2)化简:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?类型四 乘法公式例4 (1)已知a +b =10,a -b =8,则a 2-b 2=________; (2)若a 2+b 2=2,a +b =3,则ab 的值为________;(3)已知a =1,b =-12,则a(a -3b)+(a +b)2-a(a -b)=________.【解后感悟】对于整式乘法运算,能用乘法公式要充分运用公式;在应用时,要充分理解乘法公式的结构特点,分析是否符合乘法公式的条件.5.(2016·北京)如图中的四边形均为矩形,根据图形,写出一个正确的等式:____________________.6.化简:(1)(2017·舟山)(m +2)(m -2)-m 3³3m ;(2)(2017·温州)(1+a)(1-a)+a(a -2);(3)(2015·益阳)(x +1)2-x(x +1).类型五 整式运算的应用及规律型问题例5 (2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).【解后感悟】解决整式的规律性问题应充分发挥数形结合的作用,从分析图形的结构入手,分析图形结构的形成过程,从简单到复杂,进行归纳猜想,从而获得隐含的数学规律,并用代数式进行描述.7.(1)(2017·衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是____________________.(2)一个大正方形和四个全等的小正方形按图1,2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是____________________(用a、b的代数式表示).【阅读理解题】(2015·舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+12b-1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=________(用含a的代数式表示);(2)设该格点多边形外的格点数为c,则c-a=________.【方法与对策】本题需要先通过阅读掌握新定义方法,再利用类似方法解决问题.关键是观察问题,分析问题,解决问题的能力.该题型是中考命题的一种方式.【幂的运算的常见错误】计算:(1)x 3²x 5; (2)x 4²x 4; (3)(a m +1)2;(4)(-2a 2²b)2; (5)(m -n)6÷(n -m)3.参考答案第2讲 整式及其运算【考点概要】1.乘积 字母 数字 指数的 和 次数最高 多项式 相同 相同 同类 2.系数 不改变 改变 a m +n a mn a n b n a m -n 系数 指数 相加 ma +mb +mc 相加 ma +mb +na +nb 指数 相加 a 2-b 2 a 2±2ab +b 2【考题体验】1.B 2.D 3.50 4.2a -1. 【知识引擎】【解析】(1)2a —10;(2)①完全平方公式、平方差公式,去括号、合并同类项等;②去括号时,要注意变号等.【例题精析】例1 (1)a 6b 3;(2)9a 7;(3)x 2 例2 (1)1;(2)-2;(3)-1. 例3 (1)x 2y (2)-4 (3)15 (4)2b例4 (1)80;(2)72;(3)54.例5 由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5³2-1=9,第3个图案涂有阴影的小正方形的个数为5³3-2=13,…,第n 个图案涂有阴影的小正方形的个数为5n -(n -1)=4n +1.故答案为:4n +1.【变式拓展】1.C 2.A 3.(1)3a +3b (2)0 (3)-5 (4)3 1 4.(1)原式=2a(2a -b),将a =2,b =1代入得12.(2)原式=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘的数.(答案不唯一) 5.m(a +b +c)=am +bm +cm6.(1)-4; (2)1-2a ; (3)x +1. 7.(1)a +6 (2)ab 【热点题型】【分析与解】(1)∵S =a +12b -1,且S =40,∴a +12b -1=40,整理得:b =82-2a ; (2)∵a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,∴边界上的格点数与多边形内的格点数的和为b+a=82-2a+a=82-a,∴多边形外的格点数c=200-(82-a)=118+a,∴c-a=118+a-a=118.【错误警示】(1)x3²x5=x3+5=x8;(2)x4²x4=x4+4=x8;(3)(a m+1)2=a(m+1)³2=a2m+2;(4)(-2a2b)2=(-2)2a4b2=4a4b2;(5)(m-n)6÷(n-m)3=(n-m)6÷(n-m)3=(n-m)3.第3讲 因式分解因式分解1.(2015·台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2(x 2-8) B .2(x -2)2 C .2(x +2)(x -2) D .2x(x -4x )2.(2017·台州)因式分解:x 2+6x =____________________. 3.(2017·金华)分解因式:x 2-4=____________________.4.(2016·绍兴)分解因式:a3-9a=.【问题】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x.(1)请你选择其中两个进行加法运算,并把结果分解因式.(2)结合以上解题的体验,回答因式分解有哪些方法,一般步骤怎样?【归纳】通过开放式问题,归纳、疏理运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.类型一因式分解的意义例1下列式子从左到右变形是因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25【解后感悟】此题主要考查因式分解的意义,正确把握因式分解的意义是解题关键.1.下面的多项式中,能因式分解的是()A.m2+n B.m2-m+1C.m2-n D.m2-2m+12.(2016·滨州)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是() A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3类型二因式分解的几何性例2如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是____________________________.【解后感悟】利用图形的面积来解释代数式的恒等变形,这是数形结合思想的应用,是我们学习过程中,常见的列等量关系的依据.3.利用1个a³a的正方形,1个b³b的正方形和2个a³b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.类型三因式分解的方法例3分解因式:(1)(2017·绍兴)x2y-y=__________.(2)(2017·安徽模拟)ax2-6ax+9a=________.(3)(x-1)2-9=________.(4)(2016·荆门)(m+1)(m-9)+8m=________.【解后感悟】多项式分解因式有公因式首先提取公因式,然后再用公式法或其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.第(4)题利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.4.因式分解:(1)(2017·温州)m2+4m=____________________.(2)(2015·丽水)9-x2=____________________.(3)a3-4a=____________________.(4)(2017·杭州市江干区模拟)a3b-2a2b+ab=____________________.(5)(2015·南京)(a-b)(a-4b)+ab=____________________.类型四因式分解的应用例4(1)已知a+b=2,ab=1,则a2b+ab2的值为________;(2)已知x2-2x-3=0,则2x2-4x的值为________.【解后感悟】此题是因式分解的应用,将所求式子进行适当的变形是解本题的关键.5.(1)(2015·衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为____________________. (2)(2015·盐城)若2m -n 2=4,则代数式10+4m -2n 2的值为____________________. 6.仔细阅读下面例题,解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n),得x 2-4x +m =(x +3)(x +n),则x 2-4x +m =x 2+(n +3)x+3n ,∴⎩⎪⎨⎪⎧n +3=-4m =3n .解得:n =-7,m =-21,∴另一个因式为(x -7),m 的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值.【阅读理解题】 阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法. 例如:(1)am +an +bm +bn =(am +bm)+(an +bn)=m(a +b)+n(a +b)=(a +b)(m +n); (2)x 2-y 2-2y -1=x 2-(y 2+2y +1)=x 2-(y +1)2=(x +y +1)(x -y -1). 试用上述方法分解因式a 2+2ab +ac +bc +b 2=________.【方法与对策】(1)当某项正好为公因式时,提取公因式后,该项应为1,不可漏掉;(2)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(3)公因式也可以是多项式.该题型是中考命题方向.【忽视提系数的最大公约数、分解不彻底】 因式分解:(1)a 3-16a ; (2)4x 2-16y 2.参考答案第3讲 因式分解【考点概要】乘积 m (a +b +c ) (a +b )(a -b ) (a±b )2 提公因式 公式法 【考题体验】1.C 2.x (x +6) 3.(x +2)(x -2) 4.a (a +3)(a -3) 【知识引擎】【解析】(1)(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x (x +4);(12x 2+x -1)+(12x 2-x )=x 2-1=(x +1)(x -1);(12x 2+3x +1)+(12x 2-x )=x 2+2x +1=(x +1)2;(2)因式分解的方法:①提公因式法;②公式法.因式分解的步骤:一提、二套、三查.【例题精析】例1 B 例2 a 2-b 2=(a +b)(a -b). 例3 (1)y(x +1)(x -1);(2)a(x -3)2;(3)(x +2)(x -4);(4)(m +3)(m -3).例4 (1)2;(2)6.【变式拓展】 1.D 2. B3.a 2+2ab +b 2=(a +b)24.(1)m(m +4) (2)(3+x)(3-x) (3)a(a +2)(a -2) (4)ab(a -1)2(5)(a -2b)25.(1)-3 (2)186.设另一个因式为(x +a),得2x 2+3x -k =(2x -5)(x +a),则2x 2+3x -k =2x 2+(2a -5)x -5a ,∴⎩⎪⎨⎪⎧2a -5=3-5a =-k ,解得:a =4,k =20,故另一个因式为(x +4),k 的值为20.【热点题型】【分析与解】原式=(a 2+2ab +b 2)+(ac +bc)=(a +b)2+c(a +b)=(a +b)(a +b +c). 【错误警示】(1)a(a +4)(a -4); (2)4(x +2y)(x -2y).第4讲分式及其运算1.分式的概念2.分式的基本性质3.分式的运算1.(2015·丽水)分式-11-x 可变形为( )A .-1x -1B .11+xC .-11+xD .1x -12.(2016·台州)化简x 2-y 2(y -x )2的结果是( )A .-1B .1C .x +y y -xD .x +yx -y3.(2017·湖州)要使分式1x -2有意义,x 的取值应满足______________________________. 4.(2017·舟山)若分式2x -4x +1的值为0,则x 的值为____________________.5.(2015·湖州)计算:a 2a -b -b 2a -b.【问题】(1)从三个代数式:①a 2-2ab +b 2,②3a -3b ,③a 2-b 2中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.(2)通过对(1)的解答,你能想到与分式相关的哪些信息.【归纳】通过开放式问题,归纳、疏理分式概念,以及分式相关的性质,探究分式化简方法.类型一 分式的概念例1 分式2x +6x 2-9.(1)若分式有意义,则x 的取值范围是________; (2)若分式的值为0,则x 的值为________; (3)把分式化为最简分式________.【解后感悟】分式有意义,首先求出使分母等于0的字母的值,然后让未知数不等于这些值,便可使分式有意义;分式的值为0的条件是:首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值;化为最简分式是分母、分子因式分解,再约分.1.已知分式x 2-4x -2,若分式无意义,则x 的取值范围是____________________;若分式的值为零,则x =____________________.2.(2016·滨州)下列分式中,最简分式是( ) A .x 2-1x 2+1B .x +1x 2-1C .x 2-2xy +y 2x 2-xy D .x 2-362x +12类型二 分式的约分和通分例2 计算:(1)(2016·淄博)1-4a 22a +1=________;(2)2xx -1+x +11-x =________; (3)2x +1-x -2x 2-1=________; (4)1-a -1a -1=________.【解后感悟】分式化简关键是约分,约分的关键是找公因式,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.分式的加减运算关键是通分,通分的关键是找最简公分母.3.(1)(2016·丽水)1a +1b 的运算结果正确的是( )A .1a +bB .2a +b C .a +b abD .a +b (2)(2015·绍兴)化简x 2x -1+11-x 的结果是( )A .x +1B .1x +1C .x -1D .xx -1(3)若a 、b 都是正实数,且1a -1b =2a +b ,则aba 2-b 2=____________________.(4)(2016·荆州)当a =2+1,b =2-1时,代数式a 2-2ab +b 2a 2-b 2的值是 .(5)(2015·台州)先化简,再求值:1a +1-a(a +1)2,其中a =2-1.类型三 分式的运算与求值例3 (1)(2016·内江)化简:⎝⎛⎭⎫a 2a -3+93-a ÷a +3a =________.(2)(2015·黄冈)化简:ba 2-b 2÷⎝⎛⎭⎫1-a a +b =________.(3)(2015·衢州)先化简,再求值:(x 2-9)÷x -3x ,其中x =-1.(4)先化简,再求值:⎝⎛⎭⎫x 2x -1-x +1÷4x 2-4x +11-x ,其中x 满足x 2+x -2=0.【解后感悟】(1)解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.(2)熟知分式混合运算的法则是解答此题的关键.化简求值题要将原式化为最简后再代值,从求出x 的两个数中选一个数代入求值,但要注意分式成立的条件.4.(2015·成都)化简:(a a +2+1a 2-4)÷a -1a +2.5.先化简,再求值:x 2-4x +42x ÷x 2-2xx 2+1,在0,1,2,三个数中选一个合适的,代入求值.类型四 与分式有关的变形和应用例4 观察下列等式: 第1个等式:a 1=11³3=12³(1-13);第2个等式:a 2=13³5=12³(13-15); 第3个等式:a 3=15³7=12³(15-17); 第4个等式:a 4=17³9=12³(17-19); …请解答下列问题:(1)按以上规律列出第5个等式:a 5=______=______;(2)用含有n 的代数式表示第n 个等式:a n =________=________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.【解后感悟】本题是数字变化规律,要求首先分析题意,通过观察、分类归纳、抽象出数列的规律,并进行推导得出答案.6.(1)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1 D .0<k <12(2)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了____________________%.【注:销售利润率=(售价-进价)÷进价】.【探索规律题】(2015·巴中)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数.a 4是a 3的差倒数,…依此类推,则a 2015=________.【方法与对策】此题是找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键,该题型是中考的热点.【分式的分母不能为零,除数不能为零】 分式x 2-4x 2-x -2的值是0,则x 的值为________.参考答案第4讲 分式及其运算【考点概要】1.字母 2.公因式 基本性质 同分母 【考题体验】1.D 2.D 3.x ≠2 4.2 5.a +b. 【知识引擎】【解析】(1)答案不唯一.选取①、②得a 2-2ab +b 23a -3b =(a -b )23(a -b )=a -b3,当a =6,b=3时,原式=6-33=1(有6种情况). (2)分式概念、运算法则,注意点等.【例题精析】例1 (1)x ≠±3;(2)无解;(3)2x -3. 例2 (1)1-2a ;(2)1;(3)xx 2-1;(4)a 2-2a +21-a 例3 (1)a ;(2)1a -b ;(3)原式=(x +3)(x -3)·xx -3=x(x +3)=x 2+3x ,当x =-1时,原式=(-1)2+3³(-1)=-2;(4)原式=x 2-(x -1)(x -1)x -1²1-x (2x -1)2=2x -1x -1²1-x(2x -1)2=11-2x .由x 2+x -2=0,解得x 1=-2,x 2=1,∵x ≠1,∴当x =-2时,原式=11-2³(-2)=15. 例4 (1)19³11,12³(19-111); (2)1()2n -1³()2n +1,12³(12n -1-12n +1).(3)a 1+a 2+a 3+a 4+…+a 100=12³(1-13)+12³(13-15)+12³(15-17)+…+12³(1199-1201)=12³⎝⎛⎭⎫1-13+13-15+15-17+…+1199-1201=12³⎝⎛⎭⎫1-1201=12³200201=100201.【变式拓展】 1.x =2 -2 2. A3. (1)C (2)A (3)-12(4)22 (5)1(a +1)2,12. 4. a -1a -2. 5.x 2.当x =1时,原式=12. 6.(1)B (2)40 【热点题型】【分析与解】a 1=-12,a 2是a 1的差倒数,即a 2=11-(-12)=23,a 3是a 2的差倒数,即a 3=11-23=3,a 4是a 3的差倒数,即a 4=11-3=-12,…依此类推,∵2015÷3=671……2,∴a 2015=a 2=23.故答案为:23.【错误警示】当x 2-4x 2-x -2=0时,x 2-4=0且x 2-x -2≠0,∴x =-2.故答案为-2.第5讲二次根式及其运算1.二次根式的有关概念2.二次根式的性质3.二次根式的运算1.(2015·湖州)4的算术平方根是( )A .±2B .2C .-2D . 22.(2017·宁波)要使二次根式x -3有意义,则x 的取值范围是( ) A .x ≠3 B .x >3 C .x ≤3 D .x ≥3 3.(2016·杭州)下列各式变形中,正确的是( ) A .x 2²x 3=x 6 B .x 2=|x|C .⎝⎛⎭⎫x 2-1x ÷x =x -1 D .x 2-x +1=⎝⎛⎭⎫x -122+144.(2017·宁波)实数-8的立方根是____________________.5.(2017·湖州)计算:2³(1-2)+8.【问题】下列各式已给出计算结果:①8-2=6; ②(-3)2=-3;③2³3=6; ④8÷2=4 (1)其中正确的是____________; (2)对于错误的结果,请给出正确答案;(3)通过以上的解答,联想二次根式有哪些性质、运算法则?【归纳】通过开放式问题,归纳、疏理二次根式的性质和运算法则,以及注意的问题.类型一 平方根、算术平方根、立方根例1 (1)(2015·黄冈)9的平方根是( ) A .±3 B .±13C .3 D .-3(2)(2017·黄冈)16的算术平方根是________. (3)(2016·宁波)实数-27的立方根是________.【解后感悟】一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;注意算术平方根易与平方根的概念混淆而导致错误;开立方和立方互为逆运算是解题的关键.1.(1)(2016·唐山模拟)下列式子中,计算正确的是( ) A .- 3.6=-0.6 B .(-13)2=-13 C .36=±6 D .-9=-3(2)如果一个正数的两个平方根为a +1和2a -7,则这个数为____________________.类型二 二次根式的有关概念与性质例2 (1)式子2x +1x -1有意义的x 的取值范围是________; (2)(2017·邵阳模拟)将45化成最简二次根式是________. (3)计算:(1-2)2=________.【解后感悟】(1)此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零列不等式组,转化为求不等式组的解集.(2)此题根据二次根式的性质化简,是解本题的关键.2.(1)(2017·荆州)下列根式是最简二次根式的是( ) A .13B .0.3C .3D .20 (2)k 、m 、n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列有关于k 、m 、n 的大小关系,何者正确( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n(3)(2016·金华)能够说明“x 2=x 不成立”的x 的值是____________________(写出一个即可).(4)若实数a 、b 满足||a +2+b -4=0,则a 2b=____________________.(5)若整数x 满足|x|≤3,则使7-x 为整数的x 的值是____________________(只需填一个).类型三 二次根式的运算与求值例3 (1)(2017·滨州)下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为( )A .1B .2C .3D .4 (2)计算:8-312+2=______; (3)化简:3(2-3)-24-|6-3|=________.【解后感悟】(1)二次根式的加减运算,关键是掌握二次根式的化简及同类二次根式的合并;(2)二次根式的混合运算,正确化简二次根式是解题关键.3.(1)下列计算正确的是()A.43-33=1 B.2+3= 5C.212=2D.3+22=5 2(2)算式(6+10³15)³3之值为()A.242B.125C.1213D.18 24.(1)计算(10-3)2018²(10+3)2017=____________________;(2)(2016·聊城)计算:27²83÷12=.类型四二次根式的大小比较例4已知甲、乙、丙三数,甲=5+15,乙=3+17,丙=1+19,则甲、乙、丙的大小关系,下列何者正确()A.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙【解后感悟】比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.5.(1)(2015·河北)在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④(2)(2015·杭州)若k<90<k+1(k是整数),则k=()A.6 B.7 C.8 D.9(3)(2017·白银)估计5-12与0.5的大小关系是:5-12____________________0.5.(填“>”、“=”、“<”)类型五二次根式的综合型问题例5(1)已知实数x,y满足||x-4+y-8=0,则以x,y的值为两边长的等腰三角形的周长是________.(2)在日常生活中,取款、上网都需要密码,有的人把自己的出生年月作为密码,有的人把生活中的重要数字或自己认为吉利的数字作为密码,这样很容易被知情人窃用.有一种用二次根式法产生的密码,如:对于二次根式121,计算的结果是11,取被开方数和计算结果,再在中间加一个数字0,于是就得到一个六个数字的密码“121011”.对于二次根式0.81,用上述方法产生的密码是________.【解后感悟】常见的非负数有三种形式:|a|,a,a2;若几个非负数的和等于零,则这几个数都为零.6.(1)矩形相邻两边长分别为2,8,则它的周长是____________________,面积是____________________.(2)观察分析下列数据,寻找规律:0,3,6,3,23,…,那么第10个数据应是____________________.(3)若y=3x-6+6-3x+x3,则10x+2y的平方根为____________________.7.已知x=3+1,y=3-1,求下列各式的值:(1)x2+2xy+y2;(2)x2-y2.【探索规律题】如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是________.【方法与对策】根据O(0,0),A(2,0)为顶点作△OAP1,再以P1和P1A的中点B为顶点作△P1BP2,再以P2和P2B的中点C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.本题由特殊到一般的规律解题是关键,这类题型是中考的热点.【二次根式的化简符号不明确】下列各式中,正确的是()A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±3参考答案第5讲 二次根式及其运算【考点概要】 1.a ≥0 2. ≥0 a -a 3.最简二次根式 相同 abab乘除 【考题体验】 1.B 2. D 3. B 4. -25.原式=2-22+22=2. 【知识引擎】【解析】(1)③; (2)①8-2=2,②(-3)2=3,④8÷2=2; (3)主要从二次根式性质、运算法则方面去思考.【例题精析】例1 (1)A ;(2)4;(3)-3 例2 (1)根据题意得,2x +1≥0且x -1≠0,解得x ≥-12且x ≠1.(2)35;(3)2-1. 例3 (1)D ;(2)原式=22-322+2=322,故答案为:322;(3)3(2-3)-24-|6-3|=6-3-26-(3-6)=-6.故答案为:-6.例4 ∵3=9<15<16=4, ∴8<5+15<9,∴8<甲<9.∵4=16<17<25=5,∴7<3+17<8,∴7<乙<8.∵4=16<19<25=5,∴5<1+19<6,∴5<丙<6.∴丙<乙<甲.故选A . 例5 (1)由||x -4+y -8=0得,x -4=0,y -8=0,即x =4,y =8.若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形.若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20;即等腰三角形的周长是20.(2)0.81=0.9,所以得到一个六个数字的密码081009.【变式拓展】1.(1)D (2)9 2.(1)C (2)D (3)-1 (4)1(5)-2 3. (1)C (2)D 4.(1)10-3 (2)12 5.(1)C (2)D (3)> 6.(1)62 4 (2)33(3)±67.(1)因为x =3+1,y =3-1,所以x +y =23,x -y =2.则(1)x 2+2xy +y 2=(x +y)2=(23)2=12. (2)x 2-y 2=(x +y)(x -y)=4 3.【热点题型】【分析与解】每一个正三角形的边长都是上个三角形的边长的12,第六个正三角形的边长是116,故顶点P 6的横坐标是6332,P 5纵坐标是3-34-38=538,P 6的纵坐标为538+332=21332,故答案为:(6332,21332).【错误警示】(-3)2=9=32=3,选项A 错误;(±3)2=9=32=3,选项C 错误;32=3,选项D 错误.故选B .。

【中考汇编】浙江省2018年中考数学二轮复习:题型研究针对演练 汇编 110页含答案

【中考汇编】浙江省2018年中考数学二轮复习:题型研究针对演练 汇编 110页含答案

浙江省2018年中考二轮复习:题型研究针对演练汇编目录浙江省2018年中考数学复习题型研究题型01数学思想方法类型1分类讨论思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型2数形结合思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型3方程与函数思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型4转化思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型5整体思想针对演练含答案浙江省2018年中考数学复习题型研究题型02二次函数性质综合题类型1二次项系数确定型针对演练含答案浙江省2018年中考数学复习题型研究题型02二次函数性质综合题类型2二次项系数不确定型针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型1图象类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型2最值类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型3几何类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型4抛物线类针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型1新法则运算学习型针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型2新概念学习型针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型3新解题方法型针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型1动点问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型2平移变换问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型3折叠问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型4旋转变换问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型5类比拓展探究问题针对演练含答案题型一 数学思想方法 类型一 分类讨论思想针对演练1. 已知直角三角形两边的长a 、b 满足|a -2|+b 2-3=0,则第三边长为_________.2. 若关于x 的方程kx 2+2(k +1)x +k -1=0有实数根,则k 的取值范围是________. 3. 已知正方形ABCD ,以CD 为边作等边△CDE,则∠AED 的度数是_________.4. A ,B 两地相距450千米,甲、乙两车分别从A ,B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是________.5. 如果四个整数中的三个分别是2,4,6,且它们的中位数也是整数,那么它们的中位数是________.6. (2017襄阳)在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为________.7. 如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,那么满足条件的点P 共有________个.第7题图8. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.9. 在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD·DC,则∠BCA 的度数为________. 10. (2017杭州)已知△ABC 的三个顶点为A(-1,-1),B (-1,3),C(-3,-3),将△ABC 向右平移m(m>0)个单位后,△ABC 某一边的中点恰好落在反比例函数y =3x 的图象上,则m 的值为________.11. 如图,在Rt △ABC 中,∠C =90°,翻折∠C,使点C 落在斜边AB 上某一点D 处,折痕为EF(点E 、F 分别在边AC 、BC 上)当AC =3,BC =4时,AD 的长为________.第11题图12. (2017鄂州)如图,AC ⊥x 轴于点A ,点B 在y 轴的正半轴上,∠ABC =60°,AB =4,BC =23,点D 为AC 与反比例函数y =kx 的图象的交点,若直线BD 将△ABC 的面积分成1∶2的两部分,则k 的值为________.第12题图13. 如图,直线y =3x +3交x 轴于点A ,交y 轴于点B ,过A ,B 两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的点Q 的坐标;若不存在,请说明理由.第13题图答案1. 1或7 【解析】由非负数的性质知,a -2=0且b 2=3,∴a =2,b =3,①当a 为斜边时,则由勾股定理得,第三边为1;②当a 为直角边时,则由勾股定理得,第三边为7.2. k≥-13 【解析】当k =0时,方程为2x -1=0,x =12,方程有实根;当k≠0时,方程为一元二次方程,方程要有实数根,则[2(k +1)]2-4k(k -1)≥0,即k≥-13,综上所述,k 的取值范围是k≥-13.3. 15°或75° 【解析】①当点E 在正方形ABCD 外部时,AD =DE ,则∠AED =180°-(90°+60°)2=15°;②当点E 在正方形ABCD 内部时,AD =DE ,则∠AED =180°-(90°-60°)2=75°.4. 2或2.5 【解析】①相遇前:120t +80t +50=450,解得t =2;②相遇后:120t +80t -50=450,解得t =2.5.5. 3或4或5 【解析】①当数据为2,2,4,6时,中位数为3;②当数据为2,4,4,6时,中位数为4;③当数据为2,4,6,6时,中位数为5.6. 15°或105° 【解析】⊙O 的半径为1,弦AB =1,∴OA =OB =AB ,∴△AOB 是等边三角形,∠OAB =60°,∵弦AC =2,∴∠OAC =45°.如解图①,此时∠BAC=∠BAO-∠CAO=60°-45°=15°;如解图②,∠BAC =∠BAO+∠CAO=60°+45°=105°.第6题解图7. 6 【解析】当以AB 为斜边时,∠APB =90°,与坐标轴有3个交点;当∠PAB=90°时,与y 轴有一个交点;当∠PBA=90°时,与x 轴,y 轴各有1个交点.∴满足条件的点P 共有6个.8. 248或296 【解析】设第一次购书原价为a 元,则第二次购书原价为3a 元,易知第一次购书原价必然不超过100元,否则两次付款必然大于229.4,故分类讨论如下: ①若a≤100且3a≤100,显然a +3a≤200<229.4,舍去;②若a≤100且100<3a≤200,则a +0.9×3a=229.4,解得a =62,所以两次购书原价和为4a =4×62=248元;③若a≤100且3a >200,则a +0.7×3a =229.4,解得a =74, 所以两次购书原价和为4a =4×74=296元.综上所述:两次购书的原价和为248元或296元.9. 65°或115° 【解析】①如解图①,当△ABC 为锐角三角形时,△ABD ∽△CAD ,∠BCA =∠BAD =90°-25°=65°;②如解图②,当△ABC 为钝角三角形时,∠BCA =∠CDA +∠CAD=90°+∠B =90°+25°=115°.图①图②第9题解图10. 0.5或4 【解析】依题可得:有两种可能,即AC 、AB 中点落在反比例函数y =3x 的图象上.①若为AC 中点(-2,-2)向右平移m 个单位后落在y =3x 的图象上,则有点(m -2,-2)在y =3x 的图象上,代入得-2=3m -2,∴-2m +4=3,∴m =0.5;②若为AB 中点(-1,1)向右平移m 个单位后落在y =3x 图象上,则有点(m -1,1)在y =3x 的图象上,代入得1=3m -1,∴m -1=3,∴m =4.所以m为0.5或4. 11. 1.8或2.5 【解析】有两种情况:①若CE∶CF=3∶4,如解图①所示.∵CE ∶CF =AC∶BC,∴EF ∥AB.由折叠性质可知,CD ⊥EF ,∴CD ⊥AB ,即此时CD 为AB 边上的高.在Rt △ABC 中,AC =3,BC =4,∴AB =5,∴cosA =0.6,AD =AC·cosA =3×0.6=1.8;②若CF∶CE=3∶4,如解图②所示.∴△CE F∽△CBA,∴∠CEF =∠B.由折叠性质可知,∠CEF +∠EC D =90°,又∵∠A+∠B=90°,∴∠A =∠ECD,∴AD =CD.同理可得:∠B=∠FCD,CD =BD ,∴此时AD =BD =12×5=2.5.综上所述,AD 的长为1.8或2.5.第11题解图①第11题解图②12. -8或-4 【解析】如解图,过点C 作CM⊥AB 于点M ,在Rt △CBM 中,BC =23,∠ABC=60°,∴BM =3,CM =3,∴S △ABC =12A B ·CM =12AC ·AO =6,∵BD 将S △ABC 分成1∶2的两部分,则AD =13AC 或AD =23AC ,∵点D 在反比例函数y =k x 上,∴k =-13AC ·OA =-4或k =-23AC ·OA =-8.第12题解图 13. 解:(1)设抛物线的表达式为y =ax 2+bx +c , ∵直线y =3x +3交x 轴于点A ,交y 轴于点B , ∴点A 的坐标为(-1,0),点B 的坐标为(0,3), 又∵抛物线经过A ,B ,C 三点,点C 的坐标为(3,0), ∴⎩⎪⎨⎪⎧a -b +c =09a +3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =2c =3, ∴抛物线的表达式为y =-x 2+2x +3;(2)∵y=-x 2+2x +3=-(x -1)2+4, ∴该抛物线的对称轴为直线x =1.设点Q 的坐标为(1,m),则AQ =4+m 2,BQ =1+(3-m )2,AB =10.当AB =AQ 时,10=4+m 2,解得m =±6, ∴点Q 的坐标为(1,6)或(1,-6);当AB =BQ 时,10=1+(3-m )2,解得m 1=0,m 2=6, ∴点Q 的坐标为(1,0)或(1,6),但当点Q 的坐标为(1,6)时,点A ,B ,Q 在同一条直线上,∴舍去; 当AQ =BQ 时,4+m 2=1+(3-m )2,解得m =1, ∴点Q 的坐标为(1,1).∴抛物线的对称轴上存在点Q(1,6),(1,-6),(1,0),(1,1),使△ABQ 是等腰三角形.第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练1. 二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有( )第1题图A. ①②B. ①③C. ②③D. ①②③2. 若m、n(其中n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )A. m<a<b<nB. a<m<n<bC. b<n<m<aD. n<b<a<m3. (2017凉山州)小明和哥哥从家里出去买书,从家出来走了20分钟到一个离家1000米的书店,小明买了书后随即按原速返回;哥哥看了20分钟书后,用15分钟返回家.下面的图形中哪一个表示哥哥离家时间与距离之间的关系( )m<0的图象分别交x轴、y轴于点M,N,线段MN上两点在x轴的垂4. 如图,函数y=mx-4m()足分别为A1,B1,若OA1+OB1>4,则△OAA1的面积S1与△OBB1的面积S2的大小关系是( )第4题图A. S1>S2B. S1=S2C. S1<S2D. 不确定5. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_________.第5题图6. 我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图,在一个边长为1的正方形纸板上,依次贴上面积为12,14,18,…,12n 的矩形彩色纸片(n 为大于1的整数).请你用“数形结合”的思想,依数形变化的规律,计算12+14+18+…+12n =________.第6题图7. 如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.第7题图8. 如图,矩形ABCD 的长AD =5 cm ,宽AB =3 cm ,长和宽都增加 x cm ,那么面积增加y cm 2. (1)写出y 与x 的函数关系式;(2)当增加的面积y =20 cm 2时,求相应的x 是多少?第8题图9. (2017丽水)如图①,在△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a(cm/s)的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ 的面积为y(cm 2),y 关于x 函数图象由C 1,C 2两段组成,如图②所示.(1)求a 的值;(2)求图②中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时,△APQ 的面积大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.第9题图答案1. B 【解析】∵b 2-4ac>0,∴4ac<b 2;当x =-1时,y<0,即a -b +c<0,∴a +c<b ;∵x=-b2a>1,a <0,∴-b<2a ,2a +b>0.故正确的有①③. 2. D 【解析】∵1-()x -a ()x -b =0,∴1=()x -a ()x -b ,设y 1=1,y =()x -a ()x -b ,画出图象得,n<b<a<m.第2题解图3. D 【解析】根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x 轴的线段.4. A 【解析】设A(a ,am -4m),B(b ,bm -4m),结合图象知,S 1=12a(am -4m),S 2=12b(bm -4m),S 1-S 2=12am(a -4)-12bm(b -4)=12m ×(a 2-4a -b 2+4b)=12m[(a +b)×(a-b)-4(a -b)]=12m(a -b)(a +b -4),∵OA 1+OB 1=a +b >4,∴S 1-S 2=12m(a -b)(a +b -4)>0,∴S 1>S 2.5. x>16. 1-12n 【解析】由正方形的边长为1,得正方形的面积为1,正方形减去未贴彩色纸片部分的面积即是已贴彩色纸片部分的面积,12+14+18+…+12n =1-12n .7. 6 【解析】如解图,分别过A ,B 两点作x 轴的垂线,垂足分别为N 、M ,则S △BOM S △AON =19=⎝ ⎛⎭⎪⎫OB OA 2,∴OB OA =13,∵S △AOC =2×S △AON =9,∴S △ABC =23×9=6.第7题解图 8.解:(1)由题意可得:(5+x)(3+x)-3×5=y ,化简得y =x 2+8x.故y 与x 的函数关系式为y =x 2+8x ;(2)把y =20代入解析式y =x 2+8x 中得x 2+8x -20=0, 解得x 1=2,x 2=-10(舍去).∴当边长增加2 cm 时,面积增加20 cm 2.9. 解:(1)如解图①,过点P 作PD⊥AB 于点D.9题解图①∵∠A =30°,PA =2x , ∴PD =PA·sin30°=2x·12=x ,∴y =12AQ ·PD =12ax ·x =12ax 2.由图象得,当x =1时,y =12,则12a ·12=12, ∴a =1;(2)如解图②,当点P 在BC 上时,PB =5×2-2x =10-2x.第9题解图②∴PD =PB·sinB =(10-2x)·sinB , ∴y =12AQ ·PD =12x ·(10-2x)·sinB.由图象得,当x =4时,y =43,∴12×4×(10-8)·sinB =43,∴sinB =13, ∴y =12x ·(10-2x)·13=-13x 2+53x ;(3)令12x 2=-13x 2+53x ,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =12x 2的最大值为y =12×22=2.将y =2代入函数y =-13x 2+53x ,得2=-13x 2+53x ,解得x 1=2,x 2=3.∴由图象得,x 的取值范围是2<x <3.第二部分 题型研究题型一 数学思想方法 类型三 方程与函数思想针对演练1. 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运x kg 货物,则可列方程为( )A.5000x -600=8000xB. 5000x =8000x +600C.5000x +600=8000xD.5000x =8000x -6002. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH.若BE∶EC=2∶1,则线段CH 的长是( )A. 3B. 4C. 5D. 6第2题图3. 如图,在△ABC 中, AB =AC ,∠BAC =120°, AD ⊥BC 于点D ,AE ⊥AB 交BC 于点E.若 S △ABC =m 2+9n 2,S △ADE =mn ,则m 与n 之间的数量关系是( )第3题图A. m =3nB. m =6nC. n =3mD. n =6m4. 已知:M ,N 两点关于y 轴对称,且点M 在双曲线y =12x 上,点N 在直线y =x +3上,设点M的坐标为(a ,b),则二次函数y =-abx 2+(a +b)x( )A .有最大值,最大值为-92B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为-925. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )6. 若3x 2m y m与x 4-n y n -1是同类项,则m +n =________.7. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.8. 设直线y =kx +k -1和直线y =()k +1x +k(k 是正整数)与x 轴围成的三角形面积为S k ,则S 1+S 2+S 3+…+S 2018的值是________.9. 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元? (2)房价定为多少时,宾馆的利润最大? 答案1. B 【解析】甲每小时搬运x kg 货物,则乙每小时搬运(x +600)kg 货物,根据题意得5000x =8000x +600,故选B. 2. B 【解析】由题意设C H =x ,则DH =EH =(9-x),∵BE ∶EC =2∶1,∴CE =13BC =3,∴在Rt △ECH 中,EH 2=EC 2+CH 2,即(9-x )2=32+x 2,解得x =4,即CH =4.3. A 【解析】∵AB=AC ,∠BAC =120°,∴∠B =∠C=30°,∵AD ⊥BC ,AE ⊥AB ,∴∠BEA=∠BAD=60°,∠EAC =∠C=30°,设DE =a ,则AE =CE =2a ,∴BC =6a ,∴S △ABC =6S △ADE ,即m2+9n 2=6mn ,∴()m -3n 2=0,∴m =3n.4. B 【解析】∵M,N 两点关于y 轴对称,点M 的坐标为(a ,b),∴N 点的坐标为(-a ,b).又∵点M 在反比例函数y =12x的图象上,点N 在一次函数y =x +3的图象上,∴⎩⎪⎨⎪⎧b =12a b =-a +3,即⎩⎪⎨⎪⎧ab =12a +b =3,∴二次函数y =-abx 2+(a +b)x =-12x 2+3x =-12(x -3)2+92.∵二次项系数为-12<0,∴函数有最大值,最大值为92.5. B 【解析】根据题意可知,需分两种情况讨论:①当P 在AB 上时,x 的取值范围是0<x≤3,此时点D 到PA 的距离等于AD 的长度4,∴y 关于x 的函数图象是一条平行于x 轴的直线;②当P 在BC 上时,x 的取值范围是3<x≤5,∵∠BAP +∠DAE=∠BAP+∠APB,∴∠DAE =∠APB,又∵∠B=∠DEA=90°,∴△ABP ∽△DEA ,∴DE AB =AD AP ,∴y 3=4x ,∴y =12x,∴y 关于x 的函数图象是双曲线的一部分,由k =12可得函数在第一象限,且y 随x 的增大而减小.综合①②可知B 选项正确.第5题解图6. 3 【解析】根据同类项的概念得,⎩⎪⎨⎪⎧2m +n =4m -n =-1,解得m =1,n =2,∴m +n =3.7. 10 【解析】在函数表达式y =-112(x -4)2+3中令y =0,得-112(x -4)2+3=0,解得x 1=10,x 2=-2(舍去),∴铅球推出的距离是10 m.8. 20184038 【解析】∵方程组⎩⎨⎧y =kx +k -1y =()k +1x +k的解为⎩⎪⎨⎪⎧x =-1y =-1,∴两条直线的交点为()-1,-1,两直线与x 轴的交点分别为⎝⎛⎭⎪⎫1-k k ,0,⎝ ⎛⎭⎪⎫-k k +1,0,∴S k =12×1×⎝⎛⎭⎪⎫1-k k --k k +1=12⎝ ⎛⎭⎪⎫1k -1k +1,则S1+S 2+S 3+…+S 2018=12×(1-12+12-13+13-14+…+12017-12018+12018-12019)=12×⎝ ⎛⎭⎪⎫1-12019=20184038. 9. 解:(1)若每个房间定价增加40元,则这个宾馆这一天的利润为(180+40-20)×(50-4010)=9200(元);(2)设房价增加x 元时,利润为w ,则w =(180-20+x)(50-x10)=-110x 2+34x +8000=-110(x -170)2+10890,当x =170时,房价为170+180=350(元),w 最大为10890. 即当房价定为350元时,宾馆的利润最大.第二部分 题型研究题型一 数学思想方法 类型四 转化思想针对演练1. 我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为 3x(x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A. 转化思想B. 函数思想C. 数形结合思想D. 公理化思想2. 已知a 2-b 2=-16,a -b =12,则a +b a -b 的值为( )A. -12B. 13C. -23D. -323. (2017温州)我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0.它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-34. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14a 2C. 59a 2D. 49a 2第4题图5. 如图,在大长方形ABCD 中,放入六个相同的小长方形,则图中阴影部分面积(单位:cm 2)为( )第5题图A. 16B. 44C. 96D. 1406. 设m 2+m -1=0,则代数式m 3+2m 2+2017的值为( ) A. 2016 B. 2017 C. 2018 D. 20207. 如图, △ABC 经过平移得到△A′B′C′, 若四边形ACDA′的面积为6 cm 2,则阴影部分的面积为________cm 2.第7题图8. 如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是_________寸.第8题图9. 三个同学对问题“若方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,求方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.10. 如图,△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN=45°.若BM =1,CN =3,求MN 的长.第10题图 答案1. A2. C 【解析】∵()a +b ()a -b =-16,a -b =12,∴a +b =-13,∴a +b a -b =-23.3.D 【解析】令y =2x +3,则原方程变形为y 2+2y -3=0,解得y 1=1,y 2=-3,所以2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3.4. D 【解析】如解图,过E 作BC 和CD 的垂线,垂足分别为G ,H ,则△EGM≌△EHN,∴重叠部分四边形EMCN 的面积等于正方形EGCH 的面积,∵EC =2AE ,∴CE =23AC ,EG =23AB =23a ,∴正方形EGCH 的面积为49a 2.第4题解图5. B 【解析】设小长方形的长和宽分别为x ,y ,则由图形得⎩⎪⎨⎪⎧y +3x =14y +x -2x =6,解得⎩⎪⎨⎪⎧x =2y =8,则阴影部分面积为14×10-6×2×8=140-96=44.6. C 【解析】∵m 2+m -1=0,∴m 2+m =1,则m 3+2m 2+2017=m(m 2+m)+m 2+2017=m 2+m +2017=1+2017=2018.7. 6 【解析】∵由平移性质得,△ABC 的面积等于△A′B′C′的面积, ∴阴影部分的面积等于四边形ACDA′的面积等于6 cm 2.第7题解图8. 73 【解析】立体图形转化为平面图形,展开后变为长方形,根据题意得,∠C =90°,BC =3×()10+6=48,∴AB =AC 2+BC 2=552+482=73.第8题解图9. ⎩⎪⎨⎪⎧x =5y =10 【解析】将方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2变为 ⎩⎪⎨⎪⎧35a 1x +25b 1y =c 135a 2x +25b 2y =c 2,设35x =m ,25y =n ,则原方程组转化为⎩⎪⎨⎪⎧a 1m +b 1n =c 1a 2m +b 2n =c 2,再根据方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,所以得出⎩⎪⎨⎪⎧m =3n =4,即⎩⎪⎨⎪⎧35x =325y =4,解得,⎩⎪⎨⎪⎧x =5y =10.10. 解:把△ABM 绕点A 逆时针旋转90°得到的△ACG,连接NG ,如解图,第10题解图∴∠BAM =∠GAC,AM =AG , ∴△ABM ≌△ACG.∵∠MAN =45°, ∠BAC =90°, ∴∠GAN =∠MAN =45°, ∴△MAN ≌△GAN. ∴MN =NG ,∴∠BCA+∠ACG=90°.在Rt△GCN中,NG=CN2+CG2=10,∴ MN=NG=10.第二部分 题型研究题型一 数学思想方法 类型五 整体思想针对演练1. 已知:a -b =35,b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于________.2. 如图,已知△ABC 的周长为20,一半径为1的圆紧贴三角形外侧旋转一周所经过的路程为________.第2题图3. 已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,则阴影部分的面积为________.第3题图4. 角α、β、γ中有两个锐角和一个钝角,其数值已给出,在计算115(α+β+γ)的值时,全班得出23.5°、24.5°、25.5°这样三种不同结果,其中确定有正确的答案,那么α+β+γ=________.5. 已知方程组⎩⎪⎨⎪⎧4x +5y =55x +4y =7,求代数式x +y 的值等于________.6. 已知1x +1y =2,则2x -3xy +2yx +xy +y的值为________.7. 计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________.8. 如图,已知Rt △ABC 的周长为2+6,其中AB =2,则这个三角形的面积是________.第8题图9. 如图,△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为________.第9题图10. 分解因式:(x 2-3x +2)(x 2-3x -4)-72.11. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?12. 如图,矩形ABCD 中,AB =6,AD =8,P 是BC 上一点,PE ⊥BD 于E ,PF ⊥AC 于F ,求PE +PF 的长.第12题图 答案1. -225 【解析】可将ab +bc +ca 当作整体去求解,不用分别求出a 、b 、c 的值.∵a-b =35,b -c =35,∴a -c =65,则有(a -b)2+(b -c)2+(c -a)2=5425,即a 2+b 2+c 2-ab -bc -ac =2725,又∵a2+b 2+c 2=1,∴ab +bc +ac =-225.2. 20+2π 【解析】⊙O 在△ABC 的三个顶点处所转过的圆心角度数和为360°×3-90°×2×3-180°=360°.所以总长度为L =20+2π.3.3π2【解析】将五个扇形的圆心角度和作为整体,∵五个扇形的圆心角的和=(5-2)×180°=540°,r =1,∴S 阴影部分=540×π×12360=3π2.4. 352.5° 【解析】将a +β+r 看作整体.设0°<α<90°,0°<β<90°,90°<γ<180°,∴90°<α+β+γ<360°,∴6°<115(α+β+γ)<24°.∵23.5°、24.5°、25.5°中有正确答案,∴115(α+β+γ)=23.5°,∴α+β+γ=352.5°.5. 43 【解析】将(x +y)作为整体,方程组中的两个方程相加得:9x +9y =12,∴9(x +y)=12,即x +y =43.6. 13 【解析】∵1x +1y =2,∴x +y =2xy ,∴2x -3xy +2y x +xy +y =2(x +y )-3xy (x +y )+xy =xy 3xy =13.7. 16 【解析】设12+13+14+15=a ,则原式=(1-a)·(a+16)-(1-a -16)a =16+56a -a 2-56a +a 2=16.8. 12 【解析】在Rt △ABC 中,根据勾股定理,得a 2+b 2=22,即(a +b)2-2ab =4,又∵a+b=6,∴(6)2-2ab =4,∴ab =1,∴S =12ab =12.9. 13 【解析】∵DE 是AB 的垂直平分线,∴EA =EB ,则△BCE 的周长=BC +EC +EB =BC +EC+EA =B C +AC =13.10. 解:设x 2-3x =a , 则原式=(a +2)(a -4)-72 =a 2-2a -80 =(a -10)(a +8)=(x 2-3x -10)(x 2-3x +8)=(x -5)(x +2)(x 2-3x +8).11.解:设甲、乙、丙三种货物的单价各为x 、y 、z 元, 由题意可得:3x +7y +z =3.15 ①, 4x +10y +z =4.20 ②,三个未知数,2个方程,故考虑将x +y +z 当作整体来解答. ②-①得x +3y =1.05 ③, ③×3得3x +9y =3.15 ④, ②-④得x +y +z =1.05,答:购甲、乙、丙各1件,共需1.05元.12. 解:由已知条件并不能求得PE 、PF 的长,我们把PE +PF 的值看成一个整体.由题设条件可知:△BPE∽△BDC,∴PE DC =BP BD , ∵△CPF ∽△CAB , ∴PF AB =CP CA, 又∵四边形ABCD 为矩形,∴AB =DC =6,AC =BD =AB 2+AD 2=62+82=10, ∴PE +PF AB =BP +CP AC =810,∴PE +PF =4.8.第二部分 题型研究题型二 二次函数性质综合题 类型一 二次项系数确定型针对演练1. 已知抛物线y =x 2+px +q 的顶点M 为直线y =12x +12与y =-x +m -1的交点.(1)用含m 的代数式来表示顶点M 的坐标;(2)若m =6,当x 取值为t -1≤x≤t+3时,二次函数y 最小值=2,求t 的取值范围;(3)将抛物线y =x 2+px +q 向右平移1个单位,再向下平移2个单位后,与抛物线y =(x -3)2+2重合,求p 、q 的值.2. 已知抛物线y =x 2-2bx +c.(1)若抛物线的顶点坐标为(2,-3),求b ,c 的值;(2)若b +c =0,是否存在实数x ,使得相应的y 的值为1,请说明理由; (3)若c =b +2且抛物线在-2≤x≤2上的最小值是-3,求b 的值.3. 已知抛物线y =x 2-(m +1)x +12(m 2+1).(1)若抛物线与x 轴有交点,求m 的值;(2)在(1)的条件下,先作y =x 2-(m +1)x +12(m 2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y =2x +n(n≥m)与变化后的图象有公共点时,求n 2-4n 的最大值和最小值.4. 如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线y =x 2-2mx +m 2-2与直线x =-2交于点P.(1)当抛物线经过点C 时,求它的表达式;(2)抛物线上有两点M(x 1,y 1)、N(x 2,y 2),若-2≤x 1<x 2,y 1<y 2,求m 的取值范围;(3)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线上有两点M(x 1,y 1)、N(x 2,y 2),若x 1<x 2≤-2,比较y 1与y 2的大小;(4)当抛物线与线段AB 有公共点时,直接写出m 的取值范围.第4题图答案1. 解:(1)由⎩⎪⎨⎪⎧y =12x +12y =-x +m -1,解得⎩⎪⎨⎪⎧x =2m -33y =m 3;即顶点M 坐标为(2m -33,m 3);(2)∵m=6,∴二次函数图象的顶点为(3,2),∴抛物线为y =(x -3)2+2, ∴函数y 有最小值为2,∵当x 取值为t -1≤x≤t+3时,二次函数y 最小值=2, ∴t -1≤3,t +3≥3, 解得0≤t≤4;(3)平移后的抛物线为y =(x -3)2+2,其顶点坐标为(3,2), 平移前的抛物线为y =x 2+px +q ,其顶点坐标为(-p 2,4q -p24)由题意可知:将(-p 2,4q -p24)向右平移1个单位,再向下平移2个单位后与(3,2)重合,∴⎩⎪⎨⎪⎧-p2+1=34q -p 24-2=2,解得⎩⎪⎨⎪⎧p =-4q =8,故p 、q 的值分别为-4,8.2. 解:(1)∵抛物线y =x 2-2bx +c ∴a =1,∵抛物线的顶点坐标为 (2,-3),∴y =(x -2)2-3,∵y =(x -2)2-3=x 2-4x +1, ∴b =2,c =1;(2)由y =1得x 2-2bx +c =1,∴x 2-2bx +c -1=0, ∵b +c =0, ∴c =-b ,∵Δ=4b 2-4(c -1)=4b 2+4b +4=(2b +1)2+3>0, ∴存在两个实数,使得相应的y =1;(3)由c =b +2,则抛物线可化为y =x 2-2bx +b +2,其对称轴为x =b ,①当x =b≤-2时,则有抛物线在x =-2时取最小值为-3,此时-3=(-2)2-2×(-2)b +b +2,解得b =-95,不合题意;②当x =b≥2时,则有抛物线在x =2时取最小值为-3,此时-3=22-2×2b+b +2,解得b =3,符合题意.③当-2<b <2时,则4(b +2)-4b 24=-3,化简得:b 2-b -5=0,解得:b 1=1+212(不合题意,舍去),b 2=1-212.综上:b =3或1-212.3. 解:(1)抛物线与x 轴有交点,则一元二次方程x 2-(m +1)x +12(m 2+1)=0,Δ=(m +1)2-2(m 2+1)=-m 2+2m -1=-(m -1)2,∵方程有实数根,∴-(m -1)2≥0, ∴m =1;(2)由(1)可知y =x 2-2x +1=(x -1)2, 图象如解图所示:第3题解图平移后的解析式为y =-(x +2)2+2=-x 2-4x -2.(3)由⎩⎪⎨⎪⎧y =2x +n y =-x 2-4x -2消去y 得到x 2+6x +n +2=0, 由题意Δ≥0, ∴36-4n -8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7,令y′=n 2-4n =(n -2)2-4,∴n =2时,y ′的值最小,最小值为-4, n =7时,y ′的值最大,最大值为21, ∴n 2-4n 的最大值为21,最小值为-4. 4. 解: (1)∵抛物线经过点C(-1,-2),∴-2=1+2m +m 2-2, ∴m =-1,∴抛物线的表达式是y =x 2+2x -1; (2)抛物线的对称轴为直线x =m , 当x≥m 时,y 随x 的增大而增大; 点M ,N 均在直线x =-2的右侧,∴直线x =-2必须在直线x =m 右侧或与之重合. ∴m ≤-2.(3)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴y P 的最小值为-2,此时m =-2,∴当x <-2时,y 随x 的增大而减小, ∵x 1<x 2≤-2, ∴y 1>y 2;(4)∵y=(x -m)2-2,∴抛物线的顶点在直线y =-2上.当x =0时,y =m 2-2.当x =2时,y =m 2-4m +2. ∵抛物线与线段AB 有交点,∴⎩⎪⎨⎪⎧m 2-2≤2m 2-4m +2≥2 或⎩⎪⎨⎪⎧m 2-2≥2m 2-4m +2≤0或⎩⎪⎨⎪⎧m 2-2≥0m 2-4m +2≥20<m <2, 解得:-2≤m≤0或2≤m≤4.第二部分 题型研究题型二 二次函数性质综合题 类型二 二次项系数不确定型针对演练1. (2013杭州)已知抛物线y 1=ax 2+bx +c(a≠0)与x 轴相交于点A 、B(点A 、B 在原点O 两侧),与y 轴相交于点C ,且点A 、C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.2. 在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m≠0)与y 轴交于点A ,其对称轴与x 轴交于点B.(1)求点A ,B 的坐标;(2)若抛物线在-2≤x≤3的区间上的最小值为-3,求m 的值;(3)设直线l 与直线AB 关于该抛物线的对称轴对称,且该抛物线在-2<x <-1这一段位于直线l 的上方,在2<x <3这一段位于直线AB 的下方,求该抛物线的解析式.第2题图3. 已知二次函数y =kx 2+(3k +2)x +2k +2.(1)若二次函数图象经过直线y =x -1与x 轴的交点,求此时抛物线的解析式;(2)点A(x 1,y 1),B(x 2,y 2)是函数图象上的两个点,若满足x 1+x 2=-3,试比较y 1和y 2的大小关系.4. (2012杭州)在平面直角坐标系中,反比例函数与二次函数y =k(x 2+x -1)的图象交于点A(1,k)和点B(-1,-k).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.考向 2) 函数类型不确定型(杭州:2015.20,2014.23,2012.18) 针对演练1. (2012杭州)当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由,若有,请求出最大值.2. (2015杭州)设函数y =(x -1)[(k -1)x +(k -3)](k 是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3的图象,求函数y 3的最小值.第2题图3. (2011杭州)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,画出这两个特殊函数的图象;(2)根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明; (3)对任意负.实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.4. 已知函数y =(k -1)x 2+x -k +2(k 为常数).(1)求证:不论k 为何值,该函数的图象与x 轴总有交点;(2)当k 为何值时,函数图象过原点,并指出此时函数图象与x 轴的另一个交点;(3)试问该函数是否存在最小值-3?若存在,求出此时的k 值;若不存在,请说明理由.5. 已知关于x 的函数y =kx 2+(2k -1)x -2(k 为常数).(1) 试说明:无论k 取什么值,此函数图象一定经过(-2,0); (2) 在x>0时,若要使y 随x 的增大而减小,求k 的取值范围;(3) 若该函数图象为抛物线,将其向上平移2个单位后,平移前后图象、对称轴和y 轴围成的图形面积为4,求此时k 的值.6. 关于x 的函数y =2kx 2+(1-k)x -1-k(k 是实数),探索发现了以下四条结论: ①函数图象与坐标轴总有三个不同的交点;②当k =-3时,函数图象的顶点坐标是(13,83);③当k>0时,函数图象截x 轴所得的线段长度大于32;④当k≠0时,函数图象总经过两个定点. 请你判断四条结论的真假,并说明理由.答案1. 解:∵点C 在一次函数y 2=43x +n 的图象上,线段OC 长为8,∴n =±8,①当n =8时,一次函数为y 2=43x +8,当y =0时,x =-6,求得点A 的坐标为A(-6,0),∵抛物线y 1=ax 2+bx +c (a≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16,∴这时抛物线开口向下,B(10,0);如解图①所示,抛物线的对称轴是x =2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2;第1题解图①②当n =-8时,一次函数为y 2=43x -8,当y =0时,x =6,求得点A 的坐标为(6,0),∵抛物线y 1=ax 2+bx +c(a≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16,∴这时抛物线开口向上,B(-10,0),如解图②所示,抛物线的对称轴是x =-2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≤-2;第1题解图②综合以上两种情况可得:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2或x≤-2. 2. 解:(1)当x =0时,y =-2, ∴A(0,-2),∵抛物线的对称轴为直线x =--2m2m=1,∴B(1,0);(2)易知抛物线y =mx 2-2mx -2的对称轴为x =1, 当m >0时,抛物线开口向上,∵-2≤x≤3,∴y 最小值在x =1处取得,y 最小值=-m -2, ∴-m -2=-3,∴m =1, 当m <0时,抛物线开口向下,y 最小值在x =-2处取得,即8m -2=-3,∴m =-18.。

浙教版2018-2019学年度九年级数学中考模拟试卷含答案

浙教版2018-2019学年度九年级数学中考模拟试卷含答案

浙教版2018-2019学年度九年级数学中考模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H2.如图,下列图形从正面看是三角形的是()A.B.C.D.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→156.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的内角的度数为.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H【分析】根据倒数的定义即可判断;【解答】解:的倒数是,∴在G和H之间,故选:D.【点评】本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n【分析】各项计算得到结果,即可做出判断.【解答】解:A、(﹣2x)2•x=4x2•x=4x3,本选项错误;B、﹣x5•(﹣x)3=x8,本选项正确;C、x2•x3=x5,本选项错误;D、(x+y)2•(x+y)n=(x+y)2+n,本选项错误.故选:B.【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定【分析】把a,b中的一个当作未知数,就可得到一个方程,解方程即可求解.【解答】解:两边同乘以a,得到:a2+(﹣2b)a﹣2=0,解这个关于a的方程得到:a=2b,或a=﹣,∵a+≠0,∴a≠﹣,故选:C.【点评】把其中的一个字母当作未知数,转化为方程问题是解决关键.5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→15【分析】直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.【解答】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A. B. C. D.【分析】本题是规律性题型,基本方法是,将一个分数分为两个分数的差,因为所求式子,每一个分母的两个因数相差2,一个分数分为两个分数时,需要乘以.【解答】解:由上式可知+++…+=(1﹣)=.故选A.【点评】此题属规律性题目,解答此题时要注意观察所给式子的特点,总结出规律再求解.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④【分析】如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b),利用图象法即可解决问题.【解答】解:如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b)观察图象可知,x1≠x2,故①正确设抛物线的对称轴为x=h,x2=h+m,x1=h﹣m,b=h+n,a=h﹣n,m>n,∴x1•x2=h2﹣m2,ab=h2﹣n2,∵m>n,∴x1•x2<ab,故②正确,∵=,∴x1+x2=a+b,故③错误,∴x12+2x1x2+x22=a2+2ab+b2,∵2x1x2<2ab,∴x12+x22>a2+b2,观察图象可知若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,故④正确.故选:B.【点评】本题考查抛物线与x轴的交点,一元二次方程的根与系数的关系等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.【分析】由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是一次函数还是二次函数)就能选出答案.【解答】解:已知∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴=,即=,解得:EH=x,所以y=•x•x=x2,∵x y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x 2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选:A.【点评】本题主要考查了一次函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为 2.54×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为2π.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .【分析】先证四边形ABEF是平行四边形得BE=AF,由=2知=、=,设S△ECG=a,根据△ECG∽△FAG知S△FAG=4a,根据△ECG∽△BCA知S△BCA=9a、S四边形ABEG=S△BCA﹣S△ECG=8a,继而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD、BC∥AD,且AD=BC,∵EF∥CD,∴四边形ABEF是平行四边形,∴BE=AF,∵=2,∴=、=,设S△ECG=a由BC∥AD知△ECG∽△FAG,则=()2,即=,则S△FAG=4a;由EF∥AB知△ECG∽△BCA,则=()2,即=,则S△BCA=9a,∴S四边形ABEG=S△BCA﹣S△ECG=8a,则==,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握平行四边形的判定与性质及相似三角形的判定与性质.14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)【分析】要求所用行车时间最短,就要计算好行驶的路线,可以设在公路上行驶x千米,根据题意,找出可以运用勾股定理的直角三角形,运用勾股定理求解.【解答】解:如图所示,公路上行驶的路线是AD,草地上行驶的路线是DB,设AD的路程为x千米,由已知条件AB=10千米,BC=5千米,BC⊥AC,知AC==15千米.则CD=AC﹣AD=(15﹣x)千米,BD==km,设走的行驶时间为y,则y=+.整理为关于x的一元二次方程得3x2+(160y﹣120)x﹣6400y2+1200=0.因为x必定存在,所以△≥0.即(160y﹣120)2﹣4×3×(1200﹣6400y2)≥0.化简得102400y2﹣38400y≥0.解得y≥,即消防车在出发后最快经过小时可到达居民点B.故答案为:.【点评】本题考查的是在直角三角形中勾股定理的运用,画出图形构建直角三角形是关键,根据一元二次不等式的求解,可以计算出解的最小值,以便求出最短路程.15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的内角的度数为.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以A n为顶点的底角的度数.【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为;17.5°,.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.【分析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解答】解:原式=3﹣+1﹣+=2+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.【分析】先判断出∠ACD+∠BCD=90°,再判断出∠A+∠ACD=90°,进而得出∠A=∠BCD,再用三角形的外角即可得出结论.【解答】证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD为AB边上的高,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠CFE=∠BCD+∠CBE=∠A+∠ABE,∵∠CEF=∠A+∠ABE,∴∠CEF=∠CFE,∴CE=CF.【点评】此题主要考查了等腰三角形的判定,直角三角形的性质,三角形的高的意义,三角形的外角的性质,判断出∠A=∠BCD是解本题的关键.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.【分析】(1)作AB的垂直平分线得到AB的中点O,然后以O为圆心,OA为半径作圆交BC于D;(2)先利用圆周角定理得到∠ADB=∠CAB,则可判断△CAD∽△CBA,然后利用相似比得到CA:CB=CD:CA,再根据比例的性质即可得到结论.【解答】(1)解:如图,(2)证明:连接AD,如图,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠CAB,∵∠C=∠C,∴△CAD∽△CBA,∴CA:CB=CD:CA,∴AC2=CD•CB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.利用相似比是解决(2)小题的关键.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.【分析】(1)由于点B在圆上,要说明BC是⊙O的切线,证明OB⊥BC即可;(2)要证明△ABF∽△BED,有一个同弧上的圆周角∠BAF与∠BDE,可通过证明∠ABF=∠BED来实现,利用圆内接四边形的对角互补计算∠BED的度数,利用平行线的性质计算∠ABF的度数即可.(3)由(2)的△ABF∽△BED,可得,要求AF需求出AB、BD、BE.由于AD是直径,∠BAD=45°,AD=4,可求得AB、BD的长.连接OE,可利用垂径定理求出BE的长,计算出AF2即可.【解答】解:(1)证明:连接OB,∵四边形ABCD是平形四边形,∠BAD=45°,∴∠ABC=135°∵OA=OB,∴∠BAD=∠ABO=45°,∴∠OBC=∠ABC﹣∠ABO=135°﹣45°=90°,∴OB⊥BC,又∵点B在圆上∴BC是⊙O的切线;(2)证明:∵ABED是⊙O的圆内接四边形,∴∠BED+∠BAD=180°,∴∠BED=180°﹣45°=135°=∠ABC又∵∠BAF=∠BDE∴△ABF∽△BED(3)解:连接OE交BD于点G.∵AD是⊙O的直径,∴∠ABD=90°∵∠BAD=45°,AD=4,∴AB=BD=2∵AF平分∠BAD交⊙O于点E,∴∠BAF=∠FAD,∴∠EBD=∠EDB,∴BE=ED,又因为OE是半径∴OE⊥BD,BG=GD=∵∠BAD=45°=∠BDA∴OG=GB=.∴GE=OE﹣OG=2﹣在Rt△BEG中,BE2=BG2+GE2=2+(2﹣)2=8﹣4由(2)知,△ABF∽△BED∴∴AF==∴AF 2===16+8【点评】本题主要考查了切线的判定、相似三角形的判定和性质、勾股定理及圆周角等知识,综合性较强.解决(3)利用垂径定理是关键.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.【分析】(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值;(2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值;(3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向.【解答】解:(1)∵抛物线的对称轴经过点A,∴A点为抛物线的顶点,∴y的最小值为﹣3,∵P点和O点对称,∴t=﹣6;(2)分别将(﹣4,0)和(﹣3,﹣3)代入y=ax2+bx,得:,解得,∴抛物线开口方向向上;(3)将A(﹣3,﹣3)和点P(t,0)代入y=ax2+bx,,由①得,b=3a+1③,把③代入②,得at2+t(3a+1)=0,∵t≠0,∴at+3a+1=0,∴a=﹣.∵抛物线开口向下,∴a<0,∴﹣<0,∴t+3>0,∴t>﹣3.故t的值可以是﹣1(答案不唯一).(注:写出t>﹣3且t≠0或其中任意一个数均给分)【点评】此题主要考查了抛物线的对称性及开口方向的问题,对于二次函数的图象和性质要很熟悉.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=180,s2=120330﹣180﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【分析】(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.【分析】(1)将b=2a+c整理为4a﹣2b+c=0即可判断其经过的点的坐标;(2)根据题目提供的条件求得其顶点的纵坐标,进一步整理即可得到答案;(3)将(0,y1)和(1,y2)分别代入函数的解析式,利用y1•y2>0、2a+3b+6c=0,即可确定纵坐标的取值范围.【解答】(1)解:由b=2a+c,可得4a﹣2b+c=0,∵当x=﹣2时,y=4a﹣2b+c=0,∴函数图象一定经过点(﹣2,0);(2)证明:此时抛物线解析式为y=ax2+bx,图象是开口向下的抛物线,a<0.∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)解:由2a+3b+6c=0,可得6c=﹣(2a+3b),由题意,y1•y2=c•(a+b+c)>0,即6c•(6a+6b+6c)>0,∴﹣(2a+3b)•(4a+3b)>0,(2a+3b)•(4a+3b)<0,两边同除以9a2,∵9a2>0,∴<0,∴或∴,∴,即为所求.【点评】本题考查了二次函数的性质及抛物线与x轴的交点,另外还考查了二次函数图象上的点的特征,是一道比较复杂的二次函数综合题.。

2018年浙江省中考数学试题(含答案)

2018年浙江省中考数学试题(含答案)

2018年浙江省中考试题复习题1、如果2a b +=,那么代数式2b a a a a b ⎛⎫- ⎪-⎝⎭ 的值是( ) 2、计算:0(3)4sin 451-π+. 3、解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩ 4、关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根。

(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根。

5、如图,在四边形ABCD 中,90ABC AC AD M N ∠=︒=,,、分别为AC CD ,的中点,连接BM MN BN ,,. (1)求证:BM MN =;(2)若60BAD AC ∠=︒,平分2BAD AC ∠=,,求BN 的长. 6、如图,AB 为O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D 作O 的切线,交BA 的延长线于点E .(1)求证:AC DE ∥;(2)连接CD ,若OA AE a ==,写出求四边形ACDE 面积的思路.7y x x 0x >y x .小腾根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:① 4x =对应的函数值y 约为______________;② 该函数的一条性质:__________________________________________________________________.8在平面直角坐标系xOy 中,抛物线221(0)y mx mx m m =-+->与x 轴的交点为A B ,. (1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫整点.①当1m =时,求线段AB 上整点的个数;②若抛物线在点A B ,之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m 的取值范围.9、在等边ABC △中,(1) 如图1,P Q ,是BC 边上两点, 20AP AQ BAP =∠=︒,,求AQB ∠的度数; (2)点,P Q 是BC 边上的两个动点(不与,B C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接,.AM PM①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点,P Q 运动的过程中,始终有.PA PM =小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA PM =,只需证APM ∆是等边三角形。

中考数学专项复习、中考真题分类解析:专题4.2 三角形(第01期)(解析版)

中考数学专项复习、中考真题分类解析:专题4.2 三角形(第01期)(解析版)

C. D.浙江省温州市2018年中考数学试卷C..如图,已知,添加以下条件,不能判定的是(A. B. C. D.)作线段,分别以为圆心以长为半径作弧两弧的交点为;)以为圆心仍以长为半径作弧交的延长线于点;)连接A. B.点是的外心 D.BD=AB=ABAC=CD,=AB、C.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能判定(A. B. C. D..已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹A. B.C. D.∴弦为.在中,,于,平分交于,则下列结论一定成立的是(A. B. C. D.如图,,且.、是上两点,,.若,,,则A. B. C. D..如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大A. C. D.【来源】陕西省2018【答案】证明见解析..如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.)线段,,之间的数量关系是)若,求的度数);(ADB=,年中考数学试卷BC=,cos ADB= cos∠ABE=cos ADB==AC=AB=3BC=CD= AB=3本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化,当点在菱形内部或边上时,连接,与的数量关系是,与的位置)当点在菱形外部时,,当点在线段的延长线上时,连接,若,求四边形的面积) .,,∴,是等边三角形,∴,∵,∴,===,的面积是 .在中,,为的中点,,垂足分别为点,且.求证:是CE=∴,FC==,CE==.MC=BD EM=BDCM=ME=BD=DM DE=EM=DM,等腰三角形中,,求的度数(答案:)等腰三角形中,,求的度数(答案:或或)等腰三角形中,,求的度数)后,小敏发现,的度数不同,得到的度数的个数也可能不同如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围)或或;()当且,有三个不同的度数)分为顶角和为底角,两种情况进行讨论)分①当时,②当时,两种情况进行讨论.在中,,平分,平分,相交于点,且,则__________【答案】EF=,∴AE=,即+2-aa=,CH=FH=,AC=AE+EH+HC=,故答案为:.是正方形,和都是直角,且点三点共线,,则阴影部分的.等腰三角形的一个底角为,则它的顶角的度数为【答案】的网格中,的顶点,,均在格点上)的大小为)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求;)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求AC=,BC=,AB=,的等边中,,分别为,的中点,于点,为的中点,连接,则的长为【答案】分析:连接.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.,则__________.【答案】.如图,五边形是正五边形,若,则__________交于点,根据得到∠根据五边形是正五边形得到∠交于点∵,∵五边形是正五边形,.如图,为的平分线.,..则点到射线的距离为.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度【答案】或,此时正方形的边长为时,正方形。

2018年中考数学(浙教版)精品复习题全集(含答案)

2018年中考数学(浙教版)精品复习题全集(含答案)

函数一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。

4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。

5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。

二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。

三.知识要点:知识点1、平面直角坐标系与点的坐标一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。

点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。

知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a | 点P (a ,b )到原点的距离等于:22b a + 知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。

浙江省2018年中考数学复习 第一部分 考点研究 第五单元 四边形 第23课时 平行四边形与多边形试题

浙江省2018年中考数学复习 第一部分 考点研究 第五单元 四边形 第23课时 平行四边形与多边形试题

第五单元四边形第23课时平行四边形与多边形(建议答题时间:60分钟)基础过关1.(2017百色)多边形的外角和等于( )A. 180°B. 360°C. 720°D. (n-2)-180°2.(2017湘西)如图,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是( ) A. OA=OC B. ∠ABC=ADCC. AB=CDD. AC=BD第2题图3.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是( )第3题图A. 75°B. 70°C. 65°D. 60°4.(2017台州模拟)如图,点E,F是▱ABCD对角线上两点,在条件:①DE=BF;②∠ADE =∠CBF;③AF=CE;④∠AEB=∠CFD中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④第4题图5.(2017眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )第5题图A. 14B. 13C. 12D. 106.(2017青岛)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE的长为( )A.32B.32C.217D.2217第6题图7.(2017广州)如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )第7题图A. 6B. 12C. 18D. 248.(2017南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=________°.第8题图9.(2017宁夏)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A′处.若∠1=∠2=50°,则∠A′为________.第9题图10.(2017武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为________.第10题图11.(2017六盘水)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.第11题图12.(2017凉山州)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F,则四边形AFBD的面积为________.第12题图13.如图,在平行四边形ABCD中,AD=2CD,F是AD的中点,CE⊥AB,垂足E在线段AB上,下列结论:①∠DCF=∠ECF;②EF=CF;③∠DFE=3∠AEF;④S△BEC<2S△CEF中,一定成立的是______.(请填序号)第13题图14.(2017齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是________.第14题图15.(2017山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE =DF.连接EF,与对角线AC交于点O.求证:OE=OF.第15题图16.如图,点O是△ABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的长.第16题图17.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.第17题图18.(2017攀枝花)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD交于点G和H,且AB=2 5.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.第18题图满分冲关1.(2017孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE.则下列结论成立的个数是( )①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 5第1题图2.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF 与CE相交于点Q,若S△APD=15 cm2,S△BQC=25 cm2,则阴影部分的面积为________ cm2.第2题图3. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.第3题图4. 如图,在四边形ABCD中,AB∥DC,E是AD的中点,EF⊥BC于点F,BC=5,EF=3.第4题图(1)若满足AB=DC,则四边形ABCD的面积S=________;(2)若满足AB>DC,则此时四边形ABCD的面积S′________S(用“>”或“=”或“<”填空).5.(2017安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30 cm.将该纸片沿过点B的直线折叠,使点A落在斜边BC上的点E处,折痕记为BD(如图①),剪去△CDE 后得到双层△BDE(如图②),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为________ cm.第5题图6.(2017泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.第6题图答案基础过关1.B 【解析】所有多边形的外角和都是360°.2. D 【解析】∵四边形ABCD是平行四边形,∴AO=CO,∠ABC=∠ADC,AB=CD,∴A,B,C选项都正确,而AC与BD不一定相等,故D错误.3.A 【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°-∠B=180°-45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD-∠EAF=135°-60°=75°.4.D 【解析】①不能证明;②在▱ABCD中,AD=BC,∠DAC=∠ACB,∵∠ADE=∠CBF,∴△ADE ≌△CBF (ASA),∴DE =BF ,∠DEA =∠CFB ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴可得题目要求;③∵AF =CE ;∴AE =CF ,∵在▱ABCD 中,AD =BC ,AD ∥BC ,∴∠DAE =∠FCB ,∴△ADE ≌△CBF (SAS),同理可得题目要求;④在▱ABCD 中,CD ∥AB ,CD =AB ,∴∠DCF =∠BAE ,∵∠AEB =∠CFD ,∴△CDF ≌△ABE (AAS),∴DF =BE ,∵∠AEB =∠CFD ,∴∠BEF =∠DFE ,∴DF ∥BE ,∴四边形ABCD 是平行四边形.5.C 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC ,∴∠DAC =∠ACB ,在△OAE 和△OCF 中,⎩⎪⎨⎪⎧∠DAC =∠ACB OA =OC ∠AOE=∠COF ,∴△OAE ≌△OCF ,∴CF =AE ,OE =OF ,∵OE =1.5,∴EF =2OE =3,∵▱ABCD 的周长为18,∴AD +DC =9,∴四边形EFCD 的周长为DE +EF +CF +CD =DE +AE +CD +EF =AD +CD +EF =9+3=12.6.D 【解析】∵四边形ABCD 是平行四边形且AC =2,BD =4,∴AO =OC =1,BO =OD =2,又∵AB =3,∴AB 2+AO 2=BO 2,∴∠BAC =90°,∵在Rt △BAC 中,BC =AB 2+AC 2=(3)2+22=7,S △ABC =12AB ·AC =12BC ·AE ,∴AE =AB ·AC BC =3×27=2217.7. C 【解析】由折叠的性质可知:∠FEG =∠DEF =60°,∵AD ∥BC ,∴∠EFG =∠DEF =60°,∴∠EGF =60°,∴△EFG 是等边三角形,则其周长为3×6=18,故选C.8.425 【解析】由∠1=65°可得∠DEA =115°,∵五边形内角和=(5-2)×180°=540°,∴∠A +∠B +∠C +∠D =540°-115°=425°.9.105° 【解析】由折叠的性质知:∠2=∠DBA ′=50°,∠ADB =∠BDA ′,∵AD ∥BC ,∴∠ADB =∠DBG ,∴∠BDG =∠DBG ,又∵∠1=∠BDG +∠DBG ,∠1=∠2=50°,∴∠BDG =25°,∴∠GBA ′=50°-25°=25°,∴∠A ′=180°-50°-25°=105°.10. 30° 【解析】∵在▱ABCD 中,∠D =100°,AB ∥DC ,∴∠ABC =∠D =100°,∠DAB =80°,∵AE 平分∠DAB ,∴∠BAE =∠DAE =40°,又∵AE =AB ,∴∠ABE =12(180°-40°)=70°,∴∠EBC =100°-70°=30°.11.169【解析】如解图,延长FO 交BC 于点G ,∵四边形ABCD 是平行四边形,∴AB =CD =5,且易证△AFO ≌△CGO (ASA),可得AF =CG ,∴BG =BC -CG =8-AF ,又AF ∥BC ,∴△AEF ∽△BEG ,∴AE BE =AF BG ,即22+5=AF 8-AF ,解得AF =169.第11题解图12.12 【解析】∵AF ∥BC ,∴∠AFC =∠FCD ,在△AEF 与△DEC 中,⎩⎪⎨⎪⎧∠AFE =∠ECD ∠AEF=∠DEC AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形,∴S四边形AFBD=2S △ABD ,又∵BD =DC ,∴S △ABC =2S △ABD ,∴S四边形AFBD=S △ABC ,∵∠BAC =90°,AB=4,AC =6,∴S △ABC =12AB ·AC =12×4×6=12,∴S 四边形AFBD =12.13.②③④ 【解析】对于①,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCF =∠DFC ,∵AD =2CD ,F 是AD 的中点,∴DF =CD ,∴∠DCF =∠DFC =∠BCF =∠BCE +∠ECF ,∴∠DCF ≠∠ECF ,故①错;对于②,如解图,过点F 作FO ⊥CE 于点O ,则FO ∥CD ,∵F 是CD 的中点,∴O 是CE 的中点,∴FO 是CE 的垂直平分线,∴EF =CF ,故②正确;对于③,∵EF =FC ,∴∠FEC =∠FCE ,∵CE ⊥AB ,∴∠AEC =∠DCE =90°,∴∠AEF =∠DCF =∠DFC ,∵∠EFO =90°-∠FEO =∠AEF ,∴∠DFE =∠DFC +∠CFO +∠EFO =3∠AEF ,故③正确;对于④,∵S △CEF =12CE ·FO =12CE ·12(AE +CD ),∴2S △CEF =12CE (AE +CD ),,∵S △BCE =12BE ·CE ,BE <CD +AE ,∴S ΔBCE <2S △CEF ,故④正确.第13题解图14.10或273或413 【解析】按解图①方式摆放,得AC =10;第14题解图①按解图②方式摆放得AD=8,第14题解图②作MA′⊥AD交AD的延长线于点M,易知AM=16,A′M=6,∴A′A=(MA′)2+AM2=62+162=273;按解图③方式摆放,作BM⊥CD交CD延长线于点M,易知CM=12,BM=8,∴BC=BM2+CM2=82+122=413;∴这个平行四边形较长的对角线为10或273或413.第14题解图③15.证明:如解图①,第15题解图①∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠1=∠2,∴△AOE≌△COF(ASA),∴OE=OF.【一题多解】如解图②,连接AF,CE,第15题解图②∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF , ∵AB ∥CD , ∴AE ∥CF ,∴四边形AECF 是平行四边形, ∴OE =OF ,16.(1)证明:∵AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G , ∴DG ∥BC ,DG =12BC ,EF ∥BC ,EF =12BC ,∴DG ∥EF ,DG =EF ,∴四边形DEFG 是平行四边形;(2)解:如解图,过点O 作OM ⊥BC 于点M ,第16题解图在Rt △OCM 中,∠OCM =30°,OC =4, ∴OM =12OC =2,∴CM =OCcos30°=23,在Rt △OBM 中,∠OBM =∠BOM =45°, ∴BM =OM =2, ∴BC =2+23, ∴EF =12BC =1+ 3.17.(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD , ∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠ADB =∠ADE =∠BAD ,∴AB =BD =5, 设BF =x ,则AB 2-BF 2=AD 2-DF 2,即52-x 2=62-(5-x )2, 解得x =75,∴AF =AB 2-BF 2=52-(75)2=245,∴AC =2AF =485.18.解:(1)∵AE ⊥BC ,CF ⊥AD ,AD ∥BC , ∴AE =CF ,∵tan ∠ABE =2=AE BE,∴BE =12AE ,∴AB =AE 2+BE 2=52AE , 即AB ∶AE =5∶2, ∵AB =25,∴CF =AE =2×255=4;(2)证明:∵四边形ABCD 是平行四边形, ∴AB =CD 且AB ∥CD ,∠ABE =∠C D F , ∴∠ABD =∠BDC , ∵AE ⊥BC ,CF ⊥AD ,∴∠ABE+∠BAE=∠CDF+∠DCF=90°,∴∠BAE=∠DCF,∴△ABG≌△CDH(ASA),∴BG=DH.满分冲关1. D 【解析】∵内角都相等,∴六边形ABCDEF是正六边形,∴每个内角为120°,又∵∠DAB=60°,∴∠FAD=60°,根据四边形的内角和为360°可知∠EDA=60°=∠DAB,故AB∥DE,①正确;∵六边形的内角都相等,则∠F=∠FAB=120°,又∵∠DAB =60°,∴∠FAD=60°,∴∠F+∠FAD=180°,∴EF∥AD,同理,BC∥AD,即EF∥AD∥BC,②正确;∵六边形ABCDEF是正六边形,∴AF=CD,③正确;如解图,连接DF、AC,∵∠E =∠B,AB=BC=DE=EF,∴△ABC≌△DEF,∴AC=DF,∵AF=DC,∴四边形ACDF是平行四边形,④正确;正六边形ABCDEF既是中心对称图形,也是轴对称图形,⑤正确.第1题解图2.40 【解析】如解图,连接EF,∵△ADF与△DEF同底同高,∴S△ADF=S△DEF∴S△DEF -S△DPF=S△ADF-S△DPF,即S△EPF=S△APD=15 cm2,同理可得S△EFQ=S△BQC=25 cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40 cm2.第2题解图3. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,如解图,作它的外接圆⊙O ,∴正十二边形每条边所对的圆心角为30°,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第3题解图4. 15;= 【解析】(1)∵AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形,∴S ▱ABCD=BC ·EF =15;(2)如解图,连接BE 并延长交CD 的延长线于点G ,过点G 作GH ⊥BC 交BC的延长线于点H .∵AB ∥CG ,∴∠ABE =∠DGE ,又∵∠AEB =∠DEG ,AE =DE ,∴△ABE ≌△DGE (AAS),∴S △ABE =S △DGE ,BE =EG ,∵EF ⊥BC ,GH ⊥BC ,∴EF ∥GH ,∴△BEF ∽△BGH ,∴BEBG=EF GH =12,∴GH =2EF =6,∴S △BCG =12BC ·GH =12×5×6=15,∴四边形ABCD 的面积S ′=15,∴S ′=S =15.第4题解图5.40或 8033 【解析】在Rt △ABC 中,AC =30 cm ,∠C =30°,可得AB =BE =10 3cm ,由折叠的性质可知∠ABD =∠EBD =30°,∴在Rt △ABD 中,AD =10 cm ,∴AD =DE =10 cm ,CD =20 cm.a.如解图①所示,当沿过E 点的直线剪开,展开后所得平行四边形是以AD 和DE 为邻边的平行四边形ADEF 时,∵AD =DE =10 cm ,∴所得平行四边形ADEF 的周长为4AD =40 cm ;第5题解图b.如解图②所示,当沿过D点的直线剪开,展开后所得平行四边形是以∠B为顶角,BD为对角线的平行四边形DFBG时,由折叠的性质可得DG=DF,DF∥AB,∴DF∶AB=CD∶CA=2∶3,AB=10 3 cm,∴DF=2033cm,∴所得平行四边形DFBG的周长为4DF=8033cm.6.(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,如解图,连接CE,第6题解图∵E为AB中点,∴AE=EC,∴∠ACE=∠BCE=45°,∴∠DAE=∠ECF=135°,又∵∠AED+∠CED=∠CEF+∠CED=90°,∴∠AED=∠CEF,∴△AED≌△CEF,∴ED=EF;【一题多解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AD⊥AC,AD=AC,∴BC⊥AC,BC=AC,∴∠CAB=∠CBA=45°,∵∠DAF=∠DEF=90°,∴点D,A,E,F四点在同一圆上,如解图,连接FD,∴∠FDE=∠FAE=45°,∴∠EFD=∠EDF=45°,∴DE=EF.(2)四边形ACPE是平行四边形;证明:由(1)得△AED≌△CEF,∴AD=CF,∴AC=AD=CF,又∵CP∥AE,∴CP为△FAB的中位线,∴CP =12AB =AE ,∴四边形ACPE 是平行四边形; (3)垂直;证明:如解图,过点E 作EH ⊥AF 于H ,作EG ⊥DA 交DA 延长线于点G , ∵AE =EC ,∴∠EAC =∠HCE =45°, ∴△AGE ≌△CHE , ∴EG =EH , 又ED =EF ,∴Rt △DEG ≌Rt △FEH , ∴∠ADE =∠CFE , ∴∠DEA =∠FEC ,∴∠FEC +∠DEC =∠DEA +∠DEC =90°, ∴∠DEF =90°, ∴ED ⊥EF .。

【中考汇编】浙江省2018年中考一轮复习:考点研究汇编 250页 含答案(含近9年真题)

【中考汇编】浙江省2018年中考一轮复习:考点研究汇编 250页 含答案(含近9年真题)

【中考汇编】浙江省2018年中考一轮复习:考点研究汇编目录2018年中考数学复习第01单元数与式第1课时实数中考真题含答案2018年中考数学复习第01单元数与式第2课时代数式与整式中考真题含答案2018年中考数学复习第01单元数与式第3课时分式中考真题含答案2018年中考数学复习第01单元数与式第4课时二次根式中考真题含答案2018年中考数学复习第02单元方程组与不等式组第5课时一次方程组及其应用中考真题含答案2018年中考数学复习第02单元方程组与不等式组第6课时公式方程式及其应用中考真题含答案2018年中考数学复习第02单元方程组与不等式组第7课时一元二次方程及其应用中考真题含答案2018年中考数学复习第02单元方程组与不等式组第8课时不等式组的解法及不等式的应用中考真题含答案2018年中考数学复习第03单元函数第9课时平面直角坐标系及函数初步中考真题含答案2018年中考数学复习第03单元函数第10课时一次函数的图像及性质中考真题含答案2018年中考数学复习第03单元函数第11课时一次函数的实际应用中考真题含答案2018年中考数学复习第03单元函数第12课时反比例函数中考真题含答案2018年中考数学复习第03单元函数第13课时二次函数的图像及性质中考真题含答案2018年中考数学复习第03单元函数第14课时二次函数的实际应用中考真题含答案2018年中考数学复习第03单元函数第15课时二次函数综合题中考真题含答案2018年中考数学复习第04单元三角形第16课时线段角相交线与平行线中考真题含答案2018年中考数学复习第04单元三角形第17课时三角形的基础知识中考真题含答案2018年中考数学复习第04单元三角形第18课时等腰三角形中考真题含答案2018年中考数学复习第04单元三角形第19课时直角三角形与勾股定理中考真题含答案2018年中考数学复习第04单元三角形第20课时全等三角形中考真题含答案2018年中考数学复习第04单元三角形第21课时图形的相似中考真题含答案2018年中考数学复习第04单元三角形第22课时锐角三角函数及其应用中考真题含答案2018年中考数学复习第05单元四边形第23课时平行四边形与多边形中考真题含答案2018年中考数学复习第05单元四边形第24课时矩形菱形正方形中考真题含答案2018年中考数学复习第06单元圆第25课时圆的基本性质中考真题含答案2018年中考数学复习第06单元圆第26课时与圆有关的位置关系中考真题含答案2018年中考数学复习第06单元圆第27课时与圆有关的计算中考真题含答案2018年中考数学复习第07单元图形的变化第28课时尺规作图中考真题含答案2018年中考数学复习第07单元图形的变化第29课时视图与投影中考真题含答案含答案2018年中考数学复习第07单元图形的变化第30课时图形的对称平移与旋转中考真题含答案2018年中考数学复习第08单元统计与概率第31课时数据的收集与整理中考真题含答案2018年中考数学复习第08单元统计与概率第32课时数据的分析与应用中考真题含答案2018年中考数学复习第08单元统计与概率第33课时事件的概率与应用中考真题含答案第一单元 数与式 第1课时 实数浙江近9年中考真题精选(2009~2017)编者按:分析浙江12个地市近9年中考真题:①逐课时划分命题点;②每个命题点批注近6年考情;③每个命题点精选浙江12个地市近9年真题.命题点1 实数的分类(台州2016.7,温州2012.1)1. (2014宁波1题4分)下列各数中,既不是正数也不是负数的是( )A. 0B. -1C. 3D. 22. (2012金华1题3分)如果零上2℃记作+2℃,那么零下3℃记作( ) A. -3℃ B. -2℃ C. +3℃ D. +2℃3.(2012温州1题4分)给出四个数,-1,0,0.5,7,其中为无理数的是( ) A. -1 B. 0 C. 0.5 D. 74. (2013湖州1题3分)实数π,15,0,-1中,无理数是( )A. πB. 15C. 0D. -15.(2016台州7题4分)如图,数轴上点A ,B 分别对应1,2,过点B 作PQ ⊥AB ,第5题图以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是( )A. 3B. 5C. 6D. 7命题点2 相反数、绝对值、倒数(台州2考,温州2017.1,绍兴4考) 6.(2017台州1题4分)5的相反数是( ) A. 5 B. -5 C. 15 D. -157.(2015宁波1题4分)-13的绝对值是( )A. -3B. 3C. 13D. -138.(2013台州1题4分)-2的倒数为( ) A. -12 B. 12C. 2D. 19.(2016丽水1题3分)下列四个数中,与-2的和为0的数是( ) A. -2 B. 2 C. 0 D. -1210.(2009杭州1题3分)如果a +b =0,那么a ,b 两个实数一定是( ) A. 都等于0 B. 一正一负C. 互为相反数D. 互为倒数11.(2017金华1题3分)下列各组数中,把两数相乘,积为1的是( ) A. 2和-2 B. -2和12C. 3和33D. 3和- 3 12.(2012金华3题3分)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )第12题图A. -4B. -2C. 0D. 413.(2016宁波10题4分)能说明命题“对于任何实数a ,|a |>-a ”是假命题的一个反例可以是( )A. a =-2B. a =13C. a =1D. a = 2命题点3 科学记数法(杭州3考,台州3考,绍兴必考)14.(2017台州3题4分)人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( )A. 978×103B. 97.8×104C. 9.78×105D. 0.978×10415.(2017绍兴2题4分)研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为( )A. 15×1010B. 0.15×1012C. 1.5×1011D. 1.5×101216.(2016宁波3题4分)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( )A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元17.(2014杭州11题4分)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为__________人.命题点4 平方根、算术平方根、立方根(杭州2016.1) 18.(2010杭州2题3分)4的平方根是( ) A. 2 B. ±2 C. 16 D. ±1619.(2016杭州1题3分)9=( ) A. 2 B. 3 C. 4 D. 520.(2016宁波13题4分)实数-27的立方根是________.命题点5 实数的大小比较(杭州2013.12,台州2016.1,温州2015.1,绍兴2014.1) 21. (2015温州1题4分)给出四个数0,3,12,-1,其中最小的是( )A. 0B. 3C. 12D. -122.(2016台州1题4分)下列各数中,比-2小的数是( )A. -3B. -1C. 0D. 223.(2015丽水1题3分)在数-3,-2,0,3中, 大小在-1和2之间的数是( ) A. -3 B. -2 C. 0 D. 324.(2014绍兴1题4分)比较-3,1,-2的大小,正确的是( ) A. -3<-2<1 B. -2<-3<1 C. 1<-2<-3 D. 1<-3<-225. (2016金华2题3分)若实数a ,b 在数轴上的位置如图所示,则下列判断错误的是( )第25题图A .a <0 B. ab <0C. a <b D .a ,b 互为倒数26. (2012金华11题4分)写出一个比-3大的无理数是________.27.(2013杭州12题4分)把7的平方根和立方根按从小到大的顺序排列为________________. 命题点6 有理数的运算(杭州4考,台州2考,温州3考,绍兴2016.10) 28. (2013衢州1题3分)比1小2的数是( ) A. 3 B. 1 C. -1 D. -229. (2012杭州1题3分)计算(2-3)+(-1)的结果是( ) A. -2 B. 0 C. 1 D. 230.(2014台州1题4分)计算-4×(-2)的结果是( ) A. 8 B. -8 C. 6 D .-231.(2017杭州1题3分)-22=( ) A. -2 B. -4 C. 2 D. 432.(2010杭州1题3分)计算(-1)2+(-1)3=( ) A. -2 B. -1 C. 0 D. 233. (2016绍兴10题4分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生的天数是( )第33题图A. 84B. 336C. 510D. 132634.(2012台州16题5分)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3) ⊕ (-4)=(-4) ⊕ (-3)=-76,(-3) ⊕5=5⊕ (-3)=-415,…你规定的新运算a ⊕b =______(用a ,b 的一个代数式表示). 35.(2015湖州11题4分)计算:23×(12)2=________.36.(2013杭州11题4分)32× 3.14+3×(-9.42)=________________________________________________________________________.37.(2016杭州17题6分) 计算:6÷(-12+13).方方同学的计算过程如下: 原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程. 命题点7 实数的混合运算(杭州2017.4,台州、温州、绍兴必考) 38.(2017杭州4题3分)|1+3|+|1-3|=( ) A. 1 B. 3 C. 2 D. 2 339.(2017湖州17题6分)计算:2×(1-2)+8.40.(2016台州17题8分)计算:4-|-12|+2-1.41.(2017衢州17题6分)计算:12+(π-1)0×|-2|-tan60°.42.(2016绍兴17(1)题4分)计算:55-(2-5)0+(12)-2.43.(2017绍兴17(1)题4分)计算:(23-π)0+|4-32|-18. 44.(2015绍兴17(1)题4分)计算:2cos45°-(π+1)0+14+(12)-1.45.(2017金华17题6分)计算:2cos60°+(-1)2017+|-3|-(2-1)0答案1. A2. A3. D4. A5.B 【解析】由题可知:OB =2,BC =1,则OC =22+12=5,则点M 对应的数为 5.6.B 7.C 8.A 9.B 10.C 11.C 12.B13.A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故选A.14.C 【解析】一个绝对值较大的数用科学记数法可表示为a ×10n的形式,其中1≤|a |<10,n 等于该数的整数位数减1,a =9.78,n =6-1=5,故978000=9.78×105.15.C 【解析】一个绝对值较大的数用科学记数法可表示为a ×10n的形式,其中1≤|a |<10,n 等于该数的整数位数减1,a =1.5,n =12-1=11,150000000000=1.5×1011.16.C 【解析】1亿=108,84.5亿=84.5×108=8.45×109.17.8.802×10618.B 19.B 20.-321.D 22.A 23.C 24.A 25.D26.-2答案不唯一.27.-7<37<7 【解析】∵7的平方根有两个,是±7;7的立方根是 37,∴把7的平方根和立方根按从小到大的顺序排列为-7<37<7.28.C 29.A 30.A 31.B 32.C33.C 【解析】 由图可知,图中显示的七进制数据为1326(7),将它改写成十进制的方法,即通过7为底数的幂将其展开:1326(7)=1×73+3×72+2×71+6×70=510,所以孩子自出生后的天数为510天.故选C.34.2a +2b 或2a +2b ab 【解析】根据题意可得:1⊕2=2⊕1=3=21+22,(-3)⊕(-4)=(-4)⊕(-3)=-76=2-3+2-4,(-3)⊕5=5⊕(-3)=-415=2-3+25,则a ⊕b =2a +2b =2a +2bab.35.2 【解析】原式=8×14=2.36.0 【解析】原式=3×(3×3.14-9.42)=3×(9.42-9.42)=3×0=0. 37.解:方方同学的计算过程错误.(2分) 正确的计算过程如下: 原式=6÷(-36+26)=6÷(-16)=6×(-6) =-36.(6分)38.D 【解析】原式=1+3+3-1=2 3. 39.解:原式=2-22+22(4分) =2.(6分)40.解:原式=2-12+12(4分)=2.(8分)41.解:原式=23+1×2- 3 =3+2.(6分)42.解:原式=5-1+4(3分) =5+3.(4分)43.解:原式=1+32-4-3 2 =-3.(4分) 44.解:原式=2×22-1+12+2 =32+ 2.(4分) 45.解:原式=2×12-1+3-1=2.(6分)第一部分 考点研究第一单元 数与式第2课时 代数式与整式(含因式分解) 浙江近9年中考真题精选(2009~2017)命题点1 代数式及求值类型一 列代数式(温州2012.15)1.(2014宁波16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是________(用a 、b 的代数式表示).第1题图2.(2012温州15题5分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人(用含有m 的代数式表示).类型二 代数式求值3.(2015湖州2题3分)当x =1时,代数式4-3x 的值是( ) A. 1 B. 2 C. 3 D. 44.(2016丽水14题4分)已知x 2+2x -1=0,则3x 2+6x -2=________. 命题点 2) 整式及其运算(杭州5考,台州5考,温州2014.5,绍兴4考)5.(2014杭州1题3分)3a ·(-2a )2=( )A. -12a 3B. -6a 2C. 12a 3D. 6a 26.(2016台州4题3分)下列计算正确的是( )A. x 2+x 2=x 4B. 2x 3-x 3=x 3C. x 2·x 3=x 6D. (x 2)3=x 57.(2012杭州5题3分)下列计算正确的是( )A. (-p 2q )3=-p 5q 3B. (12a 2b 3c )÷(6ab 2)=2abC. 3m 2÷(3m -1)=m -3m 2D. (x 2-4x )x -1=x -48. (2015绍兴4题4分)下面是一位同学做的四道题:①2a +3b =5ab .②(3a 3)2=6a 6.③a 6÷a 2=a 3.④a 2·a 3=a 5.其中做对的一道题的序号是( ) A. ① B. ② C. ③ D. ④9.(2013杭州2题3分)下列计算正确的是( )A. m 3+m 2=m 5B. m 3·m 2=m 6C. (1-m )(1+m )=m 2-1 D.-42(1-m )=2m -110.(2016杭州5题3分)下列各式的变形中,正确的是( ) A. x 2·x 3=x 6B. x 2=|x |C. (x 2-1x )÷x =x -1D. x 2-x +1=(x -12)2+1411.(2015杭州4题3分)下列各式的变形中,正确的是( )A. (-x -y )(-x +y )=x 2-y 2B. 1x -x =1-xxC. x 2-4x +3=(x -2)2+1 D. x ÷(x 2+x )=1x+112.(2017台州7题4分)下列计算正确的是( )A. (a +2)(a -2)=a 2-2B. (a +1)(a -2)=a 2+a -2C. (a +b )2=a 2+b 2D. (a -b )2=a 2-2ab +b 213.(2013台州11题5分)计算:x 5÷x 3=________.命题点3 整式化简及求值(杭州2考,台州2考,温州必考,绍兴2考) 14.(2017温州17(2)题5分)化简:(1+a )(1-a )+a (a -2).15.(2017金华17题6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.16.(2014绍兴17(2)题4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.17.(2012杭州17题4分)化简:2[(m -1)m +m (m +1)][(m -1)m -m (m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(2014杭州19题8分)设y =kx ,是否存在实数k ,使得代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为x 4?若能,请求出所有满足条件的k 值,若不能,请说明理由.命题点4 因式分解(杭州2考,台州必考,温州必考,绍兴必考)19.(2015台州6题4分)把多项式2x 2-8分解因式,结果正确的是( )A. 2(x 2-8)B. 2(x -2)2C. 2(x +2)(x -2)D. 2x (x -4x)20.(2017温州11题5分)分解因式:m 2+4m =________.21.(2015丽水11题4分)分解因式:9-x 2=________.22.(2009杭州12题4分)在实数范围内因式分解x 4-4=________.23.(2016台州11题5分)因式分解:x 2-6x +9=____________.24.(2016杭州13题4分)若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是________(写出一个即可).命题点5 数式规律探索(台州2014.16)25.(2014台州16题5分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次运算的结果y n =________(用含字母x 和n 的代数式表示). 答案1.ab 【解析】设小正方形边长为x ,则有a -4x =b ,解得x =a -b4,则图②中未被覆盖的面积为(b +2x )2-4x 2=b 2+4bx =ab .2.2m+3 【解析】设会弹古筝的有m人,则会弹钢琴的人数为m+10,∴该班同学共有m+m +10-7=(2m+3)人.3.A4.1 【解析】∵x2+2x-1=0,∴x2+2x=1,∴3x2+6x-2=3(x2+2x)-2=3×1-2=1.5.C6.B 【解析】8.D 【解析】逐项分析故做对的一道题的序号是④,故选D.9.D11.A12.D 【解析】14.解:原式=1-a 2+a 2-2a (2分) =1-2a .(5分)15.解:原式=x 2-x +5x -5+x 2-4x +4=2x 2-1,当x =-2时,原式=8-1=7.16.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2,(3分) 当a =1,b =-12时,原式=1+(-12)2=1+14=54.(4分)17.解:原式=2(m 2-m +m 2+m )(m 2-m -m 2-m ) =-8m 3.(3分)原式=-8m 3,表示一个能被8整除的数.(4分) 18.解:存在.理由如下: (x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)=4x 4-x 2y 2-4x 2y 2+y 4+12x 4-3x 2y 2=16x 4-8x 2y 2+y 4. 又y =kx ,∴原式=16x 4-8x 2(kx )2+(kx )4=16x 4-8k 2x 4+k 4x 4=(16-8k 2+k 4)x 4,(4分)则由题意有:16-8k 2+k 4=1,(5分) k 4-8k 2+15=0, (k 2-3)(k 2-5)=0, k 2=3或k 2=5,∴k=±3或k=± 5.(8分)19.C 【解析】原式=2(x2-4)=2(x+2)(x-2).20.m(m+4) 21.(3-x)(3+x)22.(x2+2)(x+2)(x-2) 【解析】原式=(x2+2)(x2-2)=(x2+2)(x+2)(x-2).23.(x-3)224.-4(答案不唯一) 【解析】根据平方差公式确定k的值.当k=-a2(a为非零的有理数)时,原式=x2-a2y2=(x-ay)(x+ay).25.2n x(2n-1)x+1【解析】由题意知,y1=2xx+1,将y1代入y2得y2=2y1y1+1=2×2xx+12xx+1+1=4x3x+1,将y2代入y3得y3=2y2y2+1=2×4x3x+14x3x+1+1=8x7x+1,…,以此类推,可以发现,第n次运算结果y n=2n x(2n-1)x+1.第一部分 考点研究第一单元 数与式 第3课时 分式浙江近9年中考真题精选(2009~2017)命题点1 分式有意义、值为0的条件(温州2考) 1. (2014温州4题4分)要使分式x +1x -2有意义,则x 的取值应满足( ) A. x ≠2 B. x ≠-1 C. x =2 D. x =-1 2.(2016温州5题4分)若分式x -2x +3的值为0,则x 的值是( ) A. -3 B. -2 C. 0 D. 2 3.(2011杭州15题4分)已知分式x -3x 2-5x +a,当x =2时,分式无意义,则a =________;当a<6时,使分式无意义的x 的值共有________个.命题点2 分式的化简及求值类型一 直接约分型(杭州2考,台州2016.6)4.(2016台州6题4分)化简x 2-y 2(y -x )2的结果是( )A. -1B. 1C.x +y y -x D. x +yx -y5.(2012义乌8题3分)下列计算错误..的是( ) A. 0.2a +b 0.7a -b =2a +b 7a -b B. x 3y 2x y =xyC.a -b b -a =-1 D. 1c +2c =3c6.(2013杭州6题3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a>b>0),则有( )第6题图A. k >2B. 1<k <2C. 12<k <1D. 0<k <127.(2012杭州12题4分)化简m 2-163m -12得________;当m =-1时,原式的值为________.类型二 乘除运算(台州2012.13)8.(2012台州13题5分)计算:xy ÷y x的结果是________. 类型三 加减运算(台州2015.18,绍兴2考)9. (2015绍兴6题4分)化简x 2x -1+11-x的结果是( )A. x +1B.1x +1 C. x -1 D. x x -110.(2012绍兴5题4分)化简1x -1x -1,可得( )A.1x 2-x B. -1x 2-x C. 2x +1x 2-x D. 2x -1x 2-x11.(2017衢州12题4分)计算:2x x +1+1-xx +1=________. 12.(2013衢州12题4分)化简:x 2+4x +4x 2-4-xx -2=__________.13.(2012宁波19题6分)计算:a 2-4a +2+a +2.14.(2015台州18题8分)先化简,再求值:1a +1-a (a +1)2,其中a =2-1. 类型四 混合运算(杭州2014.7,台州2017.18) 15.(2014杭州7题3分)若(4a 2-4+12-a)·w =1,则w =( ) A. a +2(a ≠-2) B. -a +2(a ≠2) C. a -2(a ≠2) D. -a -2(a ≠±2)16.(2017台州18题8分)先化简,再求值:(1-1x +1)·2x,其中x =2017. 17.(2015衢州18题6分)先化简,再求值:(x 2-9)÷x -3x,其中x =-1.答案1.A 【解析】根据分式有意义的条件:分母不能为0,即x -2≠0,∴x ≠2.2.D 【解析】根据分式的值为0,即分母不为0,分子为0得,x -2=0且x +3≠0,∴x =2.3.6,2 【解析】由题意,知当x =2时,分式无意义,∴分母x 2-5x +a =22-5×2+a =-6+a =0,∴a =6;当x 2-5x +a =0时,Δ=52-4a =25-4a ,∵a <6,∴Δ=25-4a >0,故当a <6时,整式方程有两个不相等的实数根,即使分式无意义的x 的值共有2个.4.D 【解析】x 2-y 2(y -x )2=(x +y )(x -y )(x -y )2=x +yx -y,故选D. 5.A 【解析】0.2a +b 0.7a -b =2a +10b7a -10b.6.B 【解析】由图形可知S 甲阴=a 2-b 2,S 乙阴=a 2-ab ,∴k =S 甲阴S 乙阴=a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a ,∵a >b >0,∴0<b a <1,∴1<1+ba <2,∴1<k <2. 7.m +43;1 【解析】m 2-163m -12=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.8.x 2【解析】原式=xy ·xy=x 2.9.A 【解析】原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1.10.B 【解析】原式=x -1-x x (x -1)=-1x (x -1)=-1x 2-x .11.1 【解析】原式=2x +1-x x +1=x +1x +1=1. 12.2x -2 【解析】原式=x 2+4x +4(x +2)(x -2)-x (x +2)(x +2)(x -2)=2x +4(x +2)(x -2)=2x -2. 【一题多解】原式=(x +2)2(x +2)(x -2)-x x -2=x +2x -2-x x -2=x +2-x x -2=2x -2.13.解:原式=(a +2)(a -2)a +2+a +2,=a -2+a +2, =2a .(6分) 14.解:原式=a +1-a (a +1)2=1(a +1)2,(6分) 当a =2-1时,原式=1(2-1+1)2=12.(8分) 15.D 【解析】4a 2-4+12-a =4(a +2)(a -2)-1a -2=4(a +2)(a -2)-a +2(a +2)(a -2)=4-a -2(a +2)(a -2)=-1a +2.∵(-1a +2)·w =1,∴w =-a -2.要保证分式有意义,则应保证24020a a ⎧-ϒ≠⎨-≠⎩ ,则a ≠±2.16.解:原式=x +1-1x +1·2x=2x +1,(6分) 当x =2017时,原式=22017+1=11009.(8分)17.解:原式=(x +3)(x -3)·xx -3(6分) =x (x +3),当x =-1时,原式=-(-1+3)=-2.(8分)第一部分 考点研究第一单元 数与式 第4课时 二次根式浙江近9年中考真题精选(2009~2017)命题点1 二次根式的运算1.(2011杭州1题3分)下列各式中,正确的是( ) A. (-3)2=-3 B. -32=-3C. (±3)2=±3D. 32=±3 2.(2010杭州15题4分)先化简23-(1624-3212),再求得它的近似值为________.(精确到0.01,2≈1.414,3≈1.732)命题点2 二次根式的估值(杭州2考,台州2考,温州2017.4)3. (2017温州4题4分)下列选项中的整数,与17最接近的是( ) A. 3 B. 4 C. 5 D. 64. (2015杭州6题3分)若k <90<k +1(k 是整数),则k =( ) A. 6 B. 7 C. 8 D. 9 5.(2012杭州7题3分)已知m =(-33)×(-221),则有( ) A. 5<m<6 B. 4<m<5C. -5<m<-4D. -6<m<-56.(2013台州16题5分)任何实数a ,可用[a ]表示不超过a 的最大整数.如[4]=4,[3]=1,现对72进行如下操作:72――→第1次[72]=8――→第2次[8]=2――→第3次[2]=1,这样对72只需进行3次操作后变为1.类似地,①对81只需进行______次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是________.答案1.B 【解析】2.5.20 33=33≈3×1.732≈5.20.3.B 【解析】因为16<17<25,所以4<17<5,因为4.52=20.25,所以4<17<4.5,所以17离4最接近.【一题多解】因为16<17<25,所以4<17<5.因为(5-17)-(17-4)=9-217,又217=68,因为64<68<81,所以8<68<9,所以9-217>0,所以5-17>17-4,所以17离4最近. 4.D 【解析】∵81<90<100,∴81<90<100,即9<90<10,而已知k <90<k +1,∴k =9.5.A 【解析】m =221×33=27=28>0,∵25<m<36,∴5<m <6.6.3;255 【解析】①[81]=9,[9]=3,[3]=1,故对81进行3次操作后变为1;②最大的是255,[255]=15,[15]=3,[3]=1,而[256]=16,[16]=4,[4]=2,[2]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255.第一部分 考点研究第二单元 方程(组)与不等式(组) 第5课时 一次方程(组)及其应用 浙江近9年中考真题精选(2009~2017)命题点 1 等式的性质(杭州2017.5)1.(2017杭州5题3分)设x ,y ,c 是实数,( )A. 若x =y ,则x +c =y -cB. 若x =y ,则xc =ycC. 若x =y ,则x c =y cD. 若x 2c =y3c ,则2x =3y命题点 2 二元一次方程组及其解法类型一 解二元一次方程组(温州2016.13)2.(2016温州13题5分)方程组⎩⎪⎨⎪⎧x +2y =53x -2y =7的解_________.类型二 根据二元一次方程组求代数式的值(杭州2考)3.(2017嘉兴6题3分)若二元一次方程组⎩⎪⎨⎪⎧x +y =33x -5y =4的解为⎩⎪⎨⎪⎧x =ay =b ,则a -b =( )A. 1B. 3C. -14D. 744.(2014杭州13题4分)设实数x ,y 满足方程组⎩⎪⎨⎪⎧13x -y =413x +y =2,则x +y =__________.类型三 二元一次方程组的解的应用(杭州2考,台州2013.19)5.(2012杭州10题3分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +3y =4-ax -y =3a ,其中-3≤a ≤1,给出下列结论:①⎩⎪⎨⎪⎧x =5y =-1是方程组的解; ②当a =-2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( )A. ①②B. ②③C. ②③④D. ①③④6.(2016杭州16题3分)已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是__________.7.(2013台州19题8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =72mx -3ny =4的解为⎩⎪⎨⎪⎧x =1y =2,求m ,n 的值.命题点 3 一次方程(组)的实际应用 类型一 调配问题(杭州2考,绍兴2014.8)8.(2016杭州6题3分)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤数是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运x 吨煤到乙煤场,则可列方程为( ) A. 518=2(106+x ) B. 518-x =2×106C. 518-x =2(106+x )D. 518+x =2(106-x )9.(2014绍兴8题4分)如图①,天平是平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码,现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧称盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球质量为( )第9题图A. 10克B. 15克C. 20克D. 25克 类型二 分配类问题(杭州2017.16,温州3考,绍兴2考)10.(2016温州4题4分)已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意列方程组正确的是( )A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2xC. ⎩⎪⎨⎪⎧x +2y =7x =2yD. ⎩⎪⎨⎪⎧2x +y =7y =2x 11.(2012温州9题4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元,小明买20张门票共花了1225元,设其中有x 张成人票、y 张儿童票,根据题意,下列方程组正确的是( )A. ⎩⎪⎨⎪⎧x +y =2035x +70y =1225B. ⎩⎪⎨⎪⎧x +y =2070x +35y =1225C. ⎩⎪⎨⎪⎧x +y =122570x +35y =20D. ⎩⎪⎨⎪⎧x +y =122535x +70y =20 12.(2015嘉兴5题5分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.13.(2013绍兴13题5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有________只,兔有________只.14.(2017杭州16题4分)某水果店销售50千克香蕉,第一天售价为9元/千克,每二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉________千克.(结果用含t的代数式表示)15.(2013嘉兴23题12分)某镇水库的用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量,实施城市化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?16.(2015绍兴22题12分)某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图①,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比A M∶AN=8∶9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图②,将三条通道改为两条,纵向宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪中均有一边的长为8 m,这样能在这些草坛中建造花坛,如图③,在草坪RPCQ中,已知RE⊥P Q于点E,CF⊥PQ于点F,求花坛RECF的面积.第16题图类型三阶梯费用问题(台州2017.9,绍兴2016.14)17.(2017台州9题4分)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A.10分钟 B.13分钟 C.15分钟 D.19分钟18.(2016绍兴14题5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元. 类型四 水流量问题(绍兴2015.16)19.(2015绍兴16题5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度外连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙水位高度之差是0.5cm.第19题图答案1.2.⎩⎪⎨⎪⎧x =3y =1 【解析】由于y 的系数互为相反数,用加减消元法先消y ,两方程相加得4x =12,解得x =3,把x =3代入x +2y =5中,得3+2y =5,解得y =1,因此该方程组的解为⎩⎪⎨⎪⎧x =3y =1.3.D 【解析】将方程组中两个方程相加得4x -4y =7,把⎩⎪⎨⎪⎧x =a y =b代入得4a -4b =7,∴a -b =74.4.8 【解析】⎩⎪⎨⎪⎧13x -y =4 ①13x +y =2 ②,方程①+②,得23x =6,∴x =9,代入①得y =-1,∴x +y =8.5.C 【解析】解这个方程组,得⎩⎪⎨⎪⎧x =2a -1y =1-a ,①∵3≤s ≤1,∴-5≤x ≤3,0≤y ≤4,∴⎩⎪⎨⎪⎧x =4y =-1,不可能是方程组的解,故①错误;②当a =-2时,⎩⎪⎨⎪⎧x =-3y =3,即x ,y 的值互为相反数,则②正确;③当a =1时,⎩⎪⎨⎪⎧x =3y =0,而方程x +y =4-a =3,即x ,y 也是此方程的解,则③正确;④x ≤1,则2a+1≤1,则a ≤0,而题中所给-3≤a ≤1,则-3≤a ≤0,1≤1-a ≤4,即1≤y ≤4,则④正确,故选C.6.25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1,∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23,当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.7.解:将⎩⎪⎨⎪⎧x =1y =2代入方程组中得⎩⎪⎨⎪⎧m +2n =7 ①2m -6n =4 ②,(2分) ①×3得:3m +6n =21 ③,(4分)②+③得:5m =25,解得m =5,(6分) 将m =5代入①,解得n =1,(7分)∴⎩⎪⎨⎪⎧m =5n =1.(8分) 8.C 【解析】设从甲煤场运x 吨煤到乙煤场,则现在甲煤场有煤(518-x )吨,乙煤场有煤(106+x )吨,根据等量关系“甲煤场存煤数是乙煤场的2倍”建立一元一次方程得518-x =2(106+x). 9.A 【解析】设左、右侧秤盘中一袋玻璃球的质量分别为m 克、n 克,根据题意得m =n +40.设被移动的玻璃球的质量为x 克,根据题意得m -x =n +x +20,则x =12(m -n -20)=12(n +40-n -20)=10.10.A 【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.根据题意,可列方程组⎩⎪⎨⎪⎧x +y =7x =2y .11.B 【解析】设其中有x 张成人票,y 张儿童票,根据题意得,⎩⎪⎨⎪⎧x +y =2070x +35y =1225.12.1338 【解析】设这个数为x ,则x +17x =19,解得x =1338. 13.22;11 【解析】设鸡有x 只,兔有y 只,由题意得⎩⎪⎨⎪⎧x +y =332x +4y =88,解得⎩⎪⎨⎪⎧x =22y =11,∴鸡有22只,兔有11只.14.30-t2 【解析】设第三天销售香蕉x 千克,则第一天销售香蕉(50-x -t)千克,由题意得9(50-x -t )+6t +3x =270,化简得2x +t =60,∴x =30-t2.15.解:(1)设年降水量为x 万立方米,每人年平均用水量为y 立方米,根据题意得⎩⎪⎨⎪⎧12000+20x =16×20y 12000+15x =20×15y ,(4分) 解得⎩⎪⎨⎪⎧x =200y =50,答:年降水量为200万立方米,每人年平均用水量为50立方米;(7分) (2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意得12000+25×200=20×25z,(10分)解得z =34,则50-34=16(立方米).答:该镇居民人均每年需节约16立方米的水才能实现目标.(12分) 16.解:(1)设通道的宽为x m ,AM =8y m ,AN =9y m ,由题意可知⎩⎪⎨⎪⎧2x +24y =18x +18y =13,解得⎩⎪⎨⎪⎧x =1y =23,答:通道的宽是1 m ;(5分)(2)∵四块相同草坪中的每一块有一条边长为8 m , 若RP =8 m ,则AB >13 m ,与实际不符,∴RQ =8 m ,∴纵向通道的宽为2 m ,横向通道的宽为1 m ,∴RP=6 m , ∵RE ⊥PQ ,四边形RPCQ 是长方形,∴PQ =62+82=10 m ,∴RE ·PQ =PR ·QR ,∴RE =4.8 m ,∵RP 2=RE 2+PE 2,∴PE =3.6 m , 同理可得QF =3.6 m ,∴EF =PQ -PE -QF =10-3.6-3.6=2.8 m ,∴S 四边形RE CF =R E·EF=4.8×2.8=13.44 m 2,答:花坛RECF 的面积为13.44 m 2.(12分)17.D 【解析】 设小王和小张的行车时间分别为x 分钟和y 分钟,则由题意得6×1.8+0.3x =8.5×1.8+0.3y +1.5×0.8,化简得0.3(x -y )=5.7,∴x -y =19.18.248或296 【解析】设第一次购书原价为a 元,则第二次购书原价为3a 元,第一次购书原价必然不超过100元,否则两次付款必然大于229.4元,故分类讨论如下: ①若a ≤100且3a ≤100,显然a +3a ≤200<229.4(舍去);②若a ≤100且100<3a ≤200,则a +0.9×3a =229.4,解得a =62,所以两次购书原价和为4a =4×62=248元;③若a ≤100且3a >200,则a +0.7×3a =229.4,解得a =74, 所以两次购书原价和为4a =4×74=296元,综上所述:两次购书原价的和为248元或296元.19.35,3320,17140 【解析】∵甲、乙、丙三个圆柱形容器的底面半径之比为1∶2∶1,注水1分钟,乙的水位上升56 cm ,∴单独向甲或丙注水1分钟水位就上升56×4=103cm ,设开始注入t 分钟的水量后,甲与乙的水位高度之差是0.5 cm ,有三种情况:①当乙的水位低于甲的水位时,有1-56t =0.5,解得t =35;②当甲的水位低于乙的水位时,甲的水位不变时,∵56t -1=0.5,解得t =95,∵103×95=6>5,∴此时丙容器已向乙容器溢水,∵5÷103=32分钟,56×32=54,即经过32分钟丙容器的水到达管子底部,乙的水位上升54,∴54+2×56(t -32)-1=0.5,解得t =3320;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为32+(5-54)÷56÷2=154分钟,∴5-1-2×103(t -154)=0.5,解得t =17140.综上所述,开始注入35,3320,17140分钟后,甲与乙的水位高度之差为0.5 cm.第一部分 考点研究第二单元 方程(组)及其应用 第6课时 分式方程及其应用浙江近9年中考真题精选(2009-2017)命题点 1 分式方程的解法(杭州2017.14,台州2考,温州3考,绍兴2考)1. (2014台州7题4分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是( )A. 1-2x =3B. x -1-2x =3C. 1+2x =3D. x -1+2x =32.(2013绍兴12题5分)方程2xx -1=3的解是________.3.(2012宁波14题3分)分式方程 x -2x +4=12的解是________.4.(2012温州13题5分)若代数式2x -1-1的值为零,则x =________.5. (2015温州14题5分)方程2x =3x +1的根是________.6.(2017杭州14题4分)若 m -3m -1·|m |=m -3m -1,则m =_______.7.(2009杭州15题4分)已知关于x 的方程 2x +mx -2=3的解是正数,则m 的取值范围为________.8. (2015嘉兴18题8分)小明解方程 1x -x -2x =1的过程如图,请指出他解答过程中的错误,并写出正确的解答过程.第8题图9.(2014嘉兴18题8分)解方程:1x -1-3x 2-1=0.10.(2016台州18题8分)解方程:x x -7-17-x=2.命题点2 分式方程的实际应用(台州2012.9,温州2017.14)11.(2012台州9题4分)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14.设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A. 40x +20=34×40x B. 40x =34×40x +20 C. 40x +20+14=40x D. 40x =40x +20-1412. (2017温州14题5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:________________. 13.(2015湖州22题10分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.答案1.B 【解析】根据等式的基本性质,给方程两边同时乘以(x -1),得x -1-2x =3.2.x =3 【解析】去分母,得2x =3(x -1),去括号,得2x =3x -3,解得x =3,经检验,x =3是分式方程的解.3.x =8 【解析】方程两边同乘2(x +4),得2(x -2)=x +4,即2x -4=x +4,解得x =8,检验:把x =8代入2(x +4)=24≠0,故原方程的解为x =8.4.3 【解析】由题意得2x -1-1=0,即2x -1=1,解方程得x =3.经检验,x =3是原分式方程的解.。

(完整)2018年浙教版初三数学中考复习题含答案,推荐文档

(完整)2018年浙教版初三数学中考复习题含答案,推荐文档

O 逆时针旋转,使点 F 落在 y 轴上,得到矩形 OMNP,OM 与 GF 相交于点 A.若经过点 A 的反
k
比例函数 y (x>0)的图象交 EF 于点 B,则点 B 的坐标为

x
16. 如图,在平面直角坐标系中,以点 M(0,3)为圆心、5 为半径的圆与 x 轴交于点
A、B(点 A 在点 B 的左侧),与 y 轴交于点 C、D(点 C 在点 D 的上方),经过 B、C 两点的
4、下列计算正确的是 (

A. m3 m2 m5, B. m3m2 m6 ,
C. 2 与 3 之间
D. 3 与 4 之间
C. (1 m)(1 m) m2 1 D. 4 2
2(1 m) m 1
第 2题
第6题
第8题
5、某校篮球队员六位同学的身高为:168、167、160、164、168、168(单位:cm)
获得这组数据的方法是 (

(A)直接观察 (B)查阅文献资料
(C)互联网查询
(D)测量
6、"奋斗小组”的 4 位同学坐在课桌旁讨论问题,学生 A 的座位如图所示,学生 B.C.D 随机
坐到其他三个座位上,则学生 B 坐在 2 号位的概率是 (

1
1
1
2
A.
B.
C.
D.
2
3
4
3
7、若正多边形的一个内角是1200 ,则这个多边形的边数为( )
20.(本题 8 分)如图,某大楼的顶部竖有一块广告牌 CD,小李在山坡的坡脚 A 处测得 广告牌底部 D 的仰角为 60°,沿坡面 AB 向上走到 B 处测得广 告牌顶部 C 的仰角为 45°,已知山坡 AB 的坡度 i=1: ,AB=20 米,AE=30 米. (1) 求点 B 距水平面 AE 的高度 BH;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。

4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。

5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。

二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。

三.知识要点:知识点1、平面直角坐标系与点的坐标一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。

点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。

知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a | 点P (a ,b )到原点的距离等于:22b a + 知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。

知识点5、已知函数解析式,判断点P (x ,y )是否在函数图像上的方法,若点P (x ,y )的坐标适合函数解析式,则点P 在其图象上;若点P 在图象上,则P (x ,y )的坐标适合函数解析式.知识点6、列函数解析式解决实际问题设x 为自变量,y 为x 的函数,先列出关于x ,y 的二元方程,再用x 的代数式表示y ,最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。

知识点7、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。

知识点8、一次函数的图象和性质一次函数y =kx +b 的图象是经过点(0,b )和点(-kb,0)的一条直线,k 值决定直线自左向右是上升还是下降,b 值决定直线交于y 轴的正半轴还是负半轴或过原点。

知识点9、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定 k 1≠k 2⇔ 1与 2相交,k 1=k 2,b 1≠b 2⇔ 1与 2平行,k 1=k 2, b 1=b 2⇔ 1与 2重合。

知识点10、反比例函数的定义形如:y =x k或y =kx -1(k 是常数且k ≠0)叫做反比例函数,也可以写成xy =k (k ≠0)形式,它表明在反比例函数中自变量x 与其对应的函数值y 之积等于已知常数k ,知识点11、反比例函数的图像和性质反比例函数的图像是双曲线,它是以原点为对称中心的中心对称图形,同时又是直线y =x 或y =-x 为对称轴的轴对称图形,当k >0时,图像的两个分支分别在一、三象限,在每个象限内y 随x 的增大而减小,当k <0时,图象的两个分支分别在二、四象限,在每个象限内,y 随x 的增大而增大。

知识点12、反比例函数中比例系数k 的几何意义。

过双曲线上任意一点P 作x 轴、y 轴的垂线PA 、PB 所得矩形的PAOB 的面积为|k|。

知识点13、二次函数的定义形如:y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)那么y 叫做x 的二次函数,它常用的三种基本形式。

一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h )2+k (a ≠0)交点式:y =a (x -x 1)(x -x 2)( a ≠0,x 1、x 2是图象与x 轴交点的横坐标) 知识点14、二次函数的图象与性质二次函数y =ax 2+bx +c (a ≠0)的图象是以(a b ac a b 44,22--)为顶点,以直线y =ab 2-为对称轴的抛物线。

在a >0时,抛物线开口向上,在对称轴的左侧,即x <ab2-时,y 随x 的增大而减小;在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而增大。

在a <0时,抛物线开口向下,在对称轴的左侧,即x <ab2-时,y 随着x 的增大而增大。

在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而减小。

当a >0,在x =a b2-时,y 有最小值,y 最小值=a b ac 442-,当a <0,在x =ab2-时, y 有最大值,y 最大值=a b ac 442-。

知识点15、二次函次图象的平移二次函数图象的平移只要移动顶点坐标即可。

知识点16、二次函数y =ax 2+bx +c 的图象与坐标轴的交点。

(1)与y 轴永远有交点(0,c )(2)在b 2-4ac >0时,抛物线与x 轴有两个交点,A (x 1,0)、B (x 2,0)这两点距离为AB =|x 1-x 2|,(x 1、x 2是ax 2+bx +c =0的两个根)。

在b 2-4ac =0时,抛物线与x 轴只有一个交点。

在b 2-4ac <0时,则抛物线与x 轴没有交点。

知识点17、求二次函数的最大值常见的有两种方法:(1)直接代入顶点坐标公式(ab ac a b 44,22--)。

(2)将y =ax 2+bx +c 配方,利用非负数的性质进行数值分析。

两种方法各有所长,第一种方法过程简单,第二种方法有技巧。

例1. 若一次函数y =2x 222mm --+m -2的图象经过第一、二、三象限,求m 的值.分析:这是一道一次函数概念和性质的综合题.一次函数的一般式为y =kx +b (k ≠0).首先要考虑m 2-2m -2=1.函数图象经过第一、二、三象限的条件是k >0,b >0,而k =2,只需考虑m -2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.例题精讲所以m =3例 2. 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?分析:本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.解:(1)一次函数,(2)设y =kx +b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得,∴y =2x -10, (3)当x =26时,y =2×26-10=42. 答:应该买42码的鞋.例3. 某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出当x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?分析:本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.解:(1)当x ≤40时,设y =kx +b .根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y =50x +1500, ∴当x =40时,y =50×40+1500=3500,当x ≥40•时,根据题意得,y =100(x -40)+3500,即y =100x -500.鞋长 16 19 24 27 鞋码 22 28 38 44∴当x ≥40时,y 与x 之间的关系式是y =100x -500. (2)当y ≥4000时,y 与x 之间的关系式是y =100x -500, 解不等式100x -500≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 例4. 若函数y =(m 2-1)x 235m m +-为反比例函数,则m =________.分析:在反比例函数y =kx中,其解析式也可以写为y =k ·x -1,故需满足两点,一是m 2-1≠0,二是3m 2+m -5=-1 解:m =43- 点评:函数y =kx为反比例函数,需满足k ≠0,且x 的指数是-1,两者缺一不可. 例5. 已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =•2x 的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 1<y 2<y 3C. y 2<y 1<y 3D. y 2<y 3<y 1解析:反比例函数y =2x的图象是双曲线、由k =2>0•知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y 的值随着x 值的增大而减小的,点P 1,P 2,P 3•的横坐标均为负数,故点P 1,P 2均在第三象限内,而P 3在第一象限.故y >0.•此题也可以将P 1,P 2,P 3三点的横坐标取特殊值分别代入y =2x中,求出y 1,y 2,y 3的值,再比较大小.解:C 例6. 如图,一次函数y =kx +b 的图象与反比例函数y =mx图象交于A (-2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.解析:(1)求反比例函数解析式需要求出m 的值.把A (-2,1)代入y =mx中便可求出m =-2.把B (1,n )代入y =2x-中得n =-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x 的取值范围.解:(1)y =-2x,y =-x -1 (2)x <-2或0<x <1例7. (1)二次函数y=ax2+bx+c的图像如图(1),则点M(b,ca)在(D )A. 第一象限B. 第二象限C. 第三象限D. 第四象限(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图(2)所示,•则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是(B)A. 1个B. 2个C. 3个D. 4个(1)(2)点评:弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.例8. 已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.点评:本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.解:(1)顶点(-1,-3),对称轴x=-1,(2)26例9. 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.分析:本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好地考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.解:设矩形PNDM的边为DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4)易知CN=4-x,EM=4-y.且有NP BC BFCN AF-=(作辅助线构造相似三角形),即34yx--=12,∴y=-12x+5,S=xy=-12x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,•函数的值是随x的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12. 例10. 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30 … y (件) 25 20 10 …若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?解:(1)设此一次函数表达式为y =kx +b .则⎩⎨⎧=+=+20202515b k b k ,解得k =-1,b =40,•即一次函数表达式为y =-x +40.(2)设每件产品的销售价应定为x 元,所获销售利润为w 元w =(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225. 产品的销售价应定为25元,此时每日获得最大销售利润为225元.点评:解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.例11. 已知点A (0,-6),B (-3,0),C (m ,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法).点评:本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.解:设直线AB 的解析式为y =k 1x +b ,则130,6,k b b -+=⎧⎨=-⎩ 解得k 1=-2,b =-6.•所以直线AB 的解析式为y =-2x -6.∵点C (m ,2)在直线y =-2x -6上,∴-2m -6=2, ∴m =-4,即点C 的坐标为C (-4,2),由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y =2k x .则2=24k-, ∴k 2=-8.即经过点C•的反比例函数的解析式为y =-8x.例12. 某校九年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a 元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.(1)求y与x的函数关系式;(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?点评:这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x的关系式,同时这也是一道确定最优方案的题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.解:(1)设y=kx+b,∵x=4时,y=400;x=5时,y=320,∴400480,: 3205720k b kk b b=+=-⎧⎧⎨⎨=+=⎩⎩解之得∴y与x的函数关系式为y=-80x+720.(2)该班学生买饮料每年总费用为50×120=6000(元),当y=380时,380=-80x+720,得x=4.25.该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元),显然,从经济上看饮用桶装纯净水花钱少.(3)设该班每年购买纯净水的费用为W元,则W=xy=x(-80x+720)=-80(x-92)2+•1620.∴当x=92时,W最大值=1620.要使饮用桶装纯净水对学生一定合算,则50a≥W最大值+780,•即50a•≥1620+780.解之得,a≥48.所以a至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例13. 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;•它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)点评:本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.解:(1)设y1=mx+n,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1nm n+=⎧⎨+=⎩解得:m=-350,n=5.1,∴y1=-350x+5.1(0≤x≤50).(2)又由题目已知条件可设y2=a(x-25)2+2.因其图象过点(15,3),∴3=a(15-25)2+2,∴a=1 100,∴y2=1100x2-12x+334(或y=1100(x-25)2+2)(0≤x≤50)(3)设第x天上市的这种绿色蔬菜的纯利润为:y1-y2=-1100(x2-44x+315)(0≤x≤55).依题意:y1-y2=0,即x2-44x+315=0,∴(x-9)(x-35)=0,解得:x1=9,x2=35.所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.一. 选择题1. 如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0的解集是()A. x>0B. x>2C. x>-3D. -3<x<22. 如图,直线y=kx+b与x轴交于点(-4,0),则y>0时,x的取值范围是()A. x>-4B. x>0C. x<-4D. x<03. 已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()4. 某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间关系的图像,则用电阻R表示电流I的函数解析式为()A. I=2366 ...B IC ID IR R R R===-5. 如图,过原点的一条直线与反比例函数y=kx(k<0)的图像分别交于A、B两点,若A点坐标为(a,b),则B点的坐标为()A. (a,b)B. (b,a)C. (-b,-a)D. (-a,-b)6. 反比例函数y=kx与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图像大致为()课后练习7. 函数y=kx(k≠0)的图象如图所示,那么函数y=kx-k的图象大致是()8. 已知点P是反比例函数y=kx(k≠0)的图像上的任一点,过P•点分别作x轴,y轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k的值为()A. 2B. -2C. ±2D. 49. 如图,梯形AOBC的顶点A、C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A. 3B. 3C. 3-1D. 3+110. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;•③b2-4ac>0,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个11. 根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y•的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x 6.17 6.18 6.19 6.20y=ax2+bx+--0.02 0.04A. 6<x<6.17B. 6.17<x<6.18C. 6.18<x<6.19D. 6.19<x<6.20二. 填空题1. 函数y1=x+1与y2=ax+b的图象如图所示,•这两个函数的交点在y轴上,那么y1、y2的值都大于零的x的取值范围是_ ______.2. 经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .3. 如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-203,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是________.4. 将抛物线y=x2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是_____________5. 如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC•的三个顶点A,B,C,则ac的值是___ _____.三. 解答题1. 地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2)求当岩层温度达到1770℃时,岩层所处的深度为多少千米?温度t(℃)…90 160 300 …深度h(km)… 2 4 8 …2. 甲、乙两车从A 地出发,沿同一条高速公路行驶至距A•地400千米的B 地.L 1、L 2分别表示甲、乙两车行驶路程y (千米)与时间x (时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L 2的函数表达式(不要求写出x 的取值范围);(2)甲、乙两车哪一辆先到达B 地?该车比另一辆车早多长时间到达B 地?3. 在平面直角坐标系XOY 中,直线y =-x 绕点O 顺时针旋转90°得到直线L ,直线L 与反比例函数y =kx 的图象的一个交点为A (a ,3),试确定反比例函数的解析式.4. 某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如下图所示.(1)请直接写出反比例函数表达式和自变量的取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板的面积至少要多大?5. 如图,已知反比例函数y1=mx(m≠0)的图象经过点A(-2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.6. 如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=5,tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.7. 观察下面的表格:x 0 1 2ax2 2ax2+bx+c 4 6 (1)求a,b,c的值,并在表格内的空格中填上正确的数;(2)求二次函数y=ax2+bx+c图象的顶点坐标与对称轴.8. 如图,P为抛物线y=34x2-32x+14上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.9. 在平面直角坐标系中,已知二次函数y=a(x-1)2+k•的图像与x轴相交于点A、B,顶点为C,点D在这个二次函数图像的对称轴上,若四边形ABCD•是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.10. 近几年,连云港市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到连云港观光旅游的客人越来越多,花果山景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?11. 某环保器材公司销售一种市场需求量较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元),存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值的,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下使产品的销售量最大,你认为销售单价应为多少元?一. 选择题1. C2. A3. A4. C5. D6. B7. C8. C9. D 10. B 11. C二. 填空题1. -1<x<22. y=x-2或y=-x+23. y=-12x4. y=(x+4)2-2(y=x2+8x+14) 5. -2三. 解答题1. 解:(1)t与h的函数关系式为t=35h+20.(2)当t=1770℃时,有1770=35h+20,解得:h=50千米.2. 解:(1)设L2的函数表达式是y=k2x+b,则2230,419400.4k bk b⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k2=100,b=-75,∴L2的函数表达式为y=100x-75.(2)乙车先到达B地,∵300=100x-75,∴x=154.设L1的函数表达式是y=k1x,∵图象过点(154,300),∴k1=80.即y=80x.当y=400时,400=80x,∴x=5,∴5-194=14(小时),∴乙车比甲车早14小时到达B地.3. 解:依题意得,直线L的解析式为y=x.因为A(a,3)在直线y=x上,则a=3,即A(3,3),又因为(3,3)在y=kx的图象上,可求得k=9,所以反比例函数的解析式为y=9x4. 解:(1)P=600S(S>0),(2)当S=0.2时,P=6000.2=3000.即压强是3000Pa.(3)由题意知,600S≤6000,∴S≥0.1.即木板面积至少要有0.1m2.5. 解:(1)反比例函数的解析式为y=-2x,一次函数的解析式为y=x+3.(2)点B的坐标为B(-1,2)6. 解:1)反比例函数的解析式为y=-2x,一次函数的解析式为y=-2x-3.(2)S△AOB=154个平方单位.7. 解:(1)a=2,b=-3,c=4,0,8,3 (2)顶点坐标为(3,23),对称轴是直线x练习答案=348. 解.∵PA⊥x轴,AP=1,∴点P的纵坐标为1.当y=1时,34x2-32x+14=1,即x2-2x-1=0,•解得x1=1+2,x2=1-2,∵抛物线的对称轴为x=1,点P在对称轴的右侧,∴x=1+2,∴矩形PAOB的面积为(1+2)个平方单位.9. 解:本题共四种情况,设二次函数的图像的对称轴与x轴相交于点E,(1)如图①,当∠CAD=60°时,因为ABCD为菱形,一边长为2,所以DE=1,BE=3,所以点B的坐标为(1+3,0),点C的坐标为(1,-1),解得k=-1,a=13,所以y=13(x-1)2-1.(2)如图②,当∠ACB=•60°时,由菱形性质知点A的坐标为(0,0),点C的坐标为(1,-3),解得k=-3,a=3,所以y=•3(x-1)2-3,同理可得:y=-13(x-1)2+1,y=-3(x-1)2+3,所以符合条件的二次函数的表达式有:y=13(x-1)2-1,y=3(x-1)2-3,y=-13(x-1)2+1,y=-3(x-1)2+3.10. 解:(1)设函数解析式为y=kx+b,由图象知:直线经过(50,3500)(60,3000)两点.则50350050,6030006000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y=6000-50x.(2)①w=xy=x(6000-50x),即w=-50x2+6000x.②w=-50x2+6000x=-50(x2-120x)=-50(x-60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元11. 解.(1)由题意,设y=kx+b,图象过点(70,5),(90,3),∴1570,1039012k b kk bb⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得∴y=-110x+12.=(-110x+12)(x-40)-10×(-110x+12)-42.5=-0.1x2+17x-642.5=-110(x-85)2+80.当x=85时,年获利的最大值为80万元.(3)令w=57.5,得-0.1x2+17x-642.5=57.5,整理,得x2-170x+7000=0.解得x1=70,x2=100.由图象可知,要使年获利不低于57.5万元,销售单价为70元到100元之间.又因为销售单位越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.函数一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x轴,y轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。

相关文档
最新文档