某钢结构气象塔在时程风荷载作用下考虑PΔ效应的动力时程分析
工程中风压-风荷载理论定义和计算方法
![工程中风压-风荷载理论定义和计算方法](https://img.taocdn.com/s3/m/a6a94ed1ad51f01dc281f1dd.png)
第一章风、风速、风压和风荷载第一节风的基本概念风是空气从气压大的地方向气压小的地方流动而形成的。
气流一遇到结构的阻塞,就形成高压气幕。
风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。
结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。
风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。
风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。
因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。
对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。
不同的季节和时日,町以有不同的风向,给结构带来不同的影响。
每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。
由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。
关于需考虑风向的参数将在下面有关章节中加以说明。
风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。
这样,结构上除水平分风力外,还存在上下作用的竖向分风力。
竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。
但其值也较水平风力为小,但属于同一数量级。
根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。
包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。
图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。
根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。
PMSAP总体介绍
![PMSAP总体介绍](https://img.taocdn.com/s3/m/ea1c768350e2524de5187e59.png)
[钢管混凝土规程]
3 型钢柱(斜撑)配筋 4 型钢梁配筋
[冶金部标准]
五、后处理---结果表达
5.1 图形输出 5.2 文本输出
5.1 图形输出
1.结构变形
各静力工况位移动画 (+彩色云斑图) 各地震工况位移动画 (+彩色云斑图) 各阶固有振型动画 (+彩色云斑图) 时程响应位移动画 地震、风层间位移简图 时程分析层间位移简图 梁弹性挠度图
2.9 计算模型处理
1.剪力墙网格自动细分(LXmax,LYmax) 2.楼板网格自动细分 (LXmax) 3.与楼板相邻的梁的自动细分(LXmax) 4.与剪力墙相邻的柱的自动细分(LYmax) 5.楼层间协调性自动修复,消除悬空墙、悬空柱 6.自动实现梁、楼板和剪力墙的相互协调细分
细分墙、细分楼板、细分杆件以及 考虑自动相互协调带来的具体的
21
20
错
19
层
7
18
结
17
6
16
构
15
楼
5
14
层
4
13
编
12 3
11
号
2
10
9 1
8
楼层灵活编号,避免因打断造成的过矮楼层, 楼层位移、楼层刚度等结果统计更符合规范
16
15 10
9
14
8
13
7 12
6
5
11
4
3
2 1
(多塔+错层)情况的编号
15
14
13
22
12
11
21
10
20
9
8
动力气象试题解答
![动力气象试题解答](https://img.taocdn.com/s3/m/a35b0428182e453610661ed9ad51f01dc28157d7.png)
动力气象试题解答一、名词解释1.科里奥利力科里奥利力是一种视示力,它只是在物体相对于地球有运动时才出现。
单位质量空气微2V3始终与和V3相垂直,团所受的科里奥利力为2V3。
而与赤道平面垂直,所以2V3必通过运动微团所在的纬圈平面内。
在北半球,科里奥利力指向速度的右方,科里奥利力对空气微团不作功,它不能改变空气微团的运动速度大小,只能改变其运动方向。
2.尺度分析法尺度分析法是一种对物理方程进行分析和简化的有效方法。
尺度分析法是依据表征某类运动系统的运动状态和热力状态各物理量的特征值,估计大气运动方程中各项量级大小的一种方法。
根据尺度分析的结果,结合物理上考虑,略去方程中量级较小的项,便可得到简化方程,并可分析运动系统的某些基本性质。
3.罗斯贝数罗斯贝数的定义式为R0Uf0L,它代表水平惯性力与水平科里奥利力的尺度之比。
罗斯贝数的大小主要决定于运动的水平尺度。
对于中纬大尺度运动,R01,科里奥利力不能忽略不计,对于小尺度运动,R01,科里奥利力可忽略不计。
4.Richardon数理查德孙(Richardon)数的定义式为RiNDU,它代表垂直惯性力与水平科里奥利力的尺度之比。
由于222glnzVz2N2Vz2N2D2~Ri,理查德孙数又是一个U2与大气层结稳定度和风的铅直切变有关的动力学参数。
层结愈不稳定,风的铅直切变愈强,则愈有利于湍流和对流运动的发展,所以Ri可用于判断对流或扰动发展的条件。
5.地转风等压线为一族平行的直线(|RT|)时的平衡流场称为地转风场,或称为地转运动。
在地转运动中,水平气压梯度力与科里奥利力相平衡。
地转风的方向与等压线相平行,在北半球(f>0),高压在速度方向右侧,低压在速度方向左侧;地转风大小与水平气压梯度成正比,与密率和纬度的正弦成反比。
地转风关系的重要性在于揭示了大尺度运动中风场和水平气压场之间的基本关系。
6.梯度风最一般的平衡流场称为梯度风场。
在梯度风运动中,水平气压梯度力、科里奥利力、惯性离心力相平衡。
等效风荷载计算方法
![等效风荷载计算方法](https://img.taocdn.com/s3/m/03b99a986037ee06eff9aef8941ea76e59fa4a44.png)
等效静力风荷载的物理意义从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。
等效静力风荷载理论就是在这一背景下提出的。
其基本思想是将脉动风的动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。
等效静力风荷载是联系风工程研究和结构设计的纽带[3],是结构抗风设计理论的核心内容,近年来一直是结构风工程师研究的热点之一。
等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明[45, 108]。
图1.3 气动力作用下的单自由度体系对如图1.3的单自由度体系,在气动力()P t 作用下的振动方程为:()mx cx kx P t ++= (1.4.1)考虑粘滞阻尼系统,则振动方程可简化为:()()()200222P t x f x f x mξππ++=(1.4.2)式中0f =为该系统的自振频率,ξ=为振动系统的临界阻尼比。
假设气动力为频率为f 的简谐荷载,即()20i ft P t F e π=,那么其稳态响应为:()()()2020012i ft F kx t e f f i f f πξ=-+⋅ (1.4.3)进一步化简有:()()2i ft x t Ae πψ-= (1.4.4)其中A =,()0202arctan1f f f f ξψ=-,A 为振幅,ψ为气动力和位移响应之间的相位角。
现在假设该系统在某静力F 作用下产生幅值为A 的静力响应,那么该静力应该为:F kA ==(1.4.5)如果不考虑相位关系,静力F 与简谐气动力()P t 将产生一致的幅值响应,则这两种荷载之间存在一种“等效”的关系,那么F 可以称为()P t 的“等效静力风荷载”。
从上面这个简单的实例可以很清楚的体会到,所谓等效静力风荷载是指这样一种静力荷载,当把它作用于结构上时,其在结构上产生的静力响应(不仅指代位移响应,也包括内力响应等)与外加气动力荷载产生的动力响应最大幅值是完全相等的。
混凝土建筑结构第三章作业答案
![混凝土建筑结构第三章作业答案](https://img.taocdn.com/s3/m/b12cfc0ec5da50e2524d7f8e.png)
第三章思考题3.1 房屋结构设计时应考虑那些荷载或作用?P52,P56答:主要考虑竖向荷载(自重、楼屋面活荷载等)和水平作用(风荷载和地震作用等)。
3.2 房屋建筑结构的竖向荷载如何取值?进行竖向荷载作用下的内力计算时,是否要考虑活荷载的不利布置?P52答:对永久荷载,采用标准值作为代表值;对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;对偶然和在应按建筑结构使用的特点确定其代表值。
一般情况下可不考虑活荷载的最不利布置,但如果楼面活荷载大于4kN/2m 时,其不利分布对梁弯矩的影响会比较明显,应予考虑。
3.3 结构承受的风荷载与哪些因素有关?P56答:由k z s z 0=w βμμω,可知结构承受的风荷载与基本风压、风荷载体型系数、风压高度变化系数和高度z 处的风振系数有关。
其中,基本风压与地区有关;风压高度系数与高度有关、也与地貌及周围环境有关;风荷载体形系数与建筑物的体型与尺寸有关、也与周围环境和地面粗糙度有关;风振系数与地面类别、结构阻尼比和地面尺寸有关。
3.4 房屋结构风荷载计算时,基本风压、结构体型系数和高度变化系数应分别如何取值?(P56)答:基本风压系以当地比较空旷平坦地面上离地10m 高统计所得的50年一遇10min 平均最大风速0v (m/s )为标准,按200/1600w v =确定的风压值。
按《荷规》附录E 中附表E.5给出的50年重现期的风压采用,但不得小于0.3kN/2m 。
结构体形系数取值如下: 1) 圆形平面建筑取0.8.2)0.8 1.2/s μ=+3) 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3. 4) 下列建筑取1.4:(A ) V 型、Y 型、弧形、双十字形、井字形平面建筑; (B ) L 型、槽型和高宽比H/B 大于4的十字形平面建筑;(C ) 高宽比H/B 大于4,长宽比L/B 不大于1.5的矩形、鼓型平面建筑 5) 在需要更细致进行风荷载计算的情况下,风荷载体形系数可按《高规》附录B 采用,或由风洞试验确定。
工程中风压-风荷载理论定义和计算方法
![工程中风压-风荷载理论定义和计算方法](https://img.taocdn.com/s3/m/a6a94ed1ad51f01dc281f1dd.png)
第一章风、风速、风压和风荷载第一节风的基本概念风是空气从气压大的地方向气压小的地方流动而形成的。
气流一遇到结构的阻塞,就形成高压气幕。
风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。
结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。
风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。
风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。
因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。
对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。
不同的季节和时日,町以有不同的风向,给结构带来不同的影响。
每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。
由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。
关于需考虑风向的参数将在下面有关章节中加以说明。
风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。
这样,结构上除水平分风力外,还存在上下作用的竖向分风力。
竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。
但其值也较水平风力为小,但属于同一数量级。
根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。
包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。
图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。
根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。
PKPM中satwe参数的解读总结
![PKPM中satwe参数的解读总结](https://img.taocdn.com/s3/m/e454413bbc64783e0912a21614791711cd797959.png)
PKPM中satwe参数的解读总结三种参考⽂献解读参数:1.点击相应的选项在窗⼝下⽅会有相应的规范2.PKPM⼿册3.钢筋混凝⼟框架以及砌体结构pkpm设计和应⽤2.3.1总信息1.⽔平⼒与整体坐标夹⾓⽤于指定地震作⽤和风荷载计算时⽔平⼒⽅向与整体坐标轴X轴之间的夹⾓。
⽤于计算⽔平地震作⽤。
暂时为0,对于不规则结构还要在W AQ.out⽂件查看⾓度后填⼊再重新算。
2.混凝⼟容重⼀般应考虑构件表⾯抹灰等装饰层⾃重,因此该值可以填写为26-27,剪⼒墙可取27。
3.钢材容重当考虑钢构件中加劲肋等附加重量以及表⾯装饰层、防腐涂层和防⽕层⾃重时候,容重需要乘1.04-1.18等放⼤系数,因此该值可填写为81-92。
4.裙房层数⽤于确定带裙房的塔楼结构剪⼒墙底部加强区的⾼度。
从结构最底层算起(包括地下室层数)。
⽤于判断剪⼒墙底部加强区⾼度。
且⾼层建筑混凝⼟结构技术规程(JGJ 3-2010)规定抗震设计时候,塔楼中与裙房相连的外围柱、剪⼒墙,从固定端⾄裙房屋⾯上⼀层的⾼度范围内,柱纵向钢筋的最⼩配筋率应该适当提⾼,柱箍筋宜在裙楼屋⾯上下层的范围内全⾼加密。
5.转换层所在层号⾼层建筑混凝⼟结构技术规程(JGJ 3-2010)规定带托墙转换层的剪⼒墙结构(即部分框⽀剪⼒墙结构)以及带托柱转换层的筒体结构,并对这两种带转换层的结构规定了不同设计要求。
6.嵌固端所在层号建筑抗震设计规范(GB50011)规定了地下室顶板作为上部结构嵌固部位时候,抗震等级确定原则。
取值⽅法是当地下室顶板作为嵌固部位时候,嵌固端所在层为地上⼀层,即地下室层数加⼀,当结构嵌固在基础顶⾯时候,则嵌固端所在层号为1。
7.地下室层数该参数为上部结构同时进⾏内⼒分析的地下室部分的层数。
同时,程序能结合地下室信息页的地下室外围回填⼟约束作⽤数据,考虑回填⼟的约束作⽤。
当上部结构与地下室共同进⾏内⼒整体分析时候,此时基础顶⾯为结构的嵌固端,应该输⼊地下室层数。
建筑结构的静力与动力分析方法
![建筑结构的静力与动力分析方法](https://img.taocdn.com/s3/m/f7ed6d9477eeaeaad1f34693daef5ef7ba0d1206.png)
建筑结构的静力与动力分析方法建筑结构的静力与动力分析是在设计与施工阶段对建筑结构进行力学计算和分析的过程。
静力分析主要研究建筑结构在静力荷载作用下的力学特性,而动力分析则关注建筑结构在动力荷载作用下的响应与稳定性。
本文将介绍建筑结构的静力与动力分析方法。
一、静力分析方法静力分析是建筑设计的基础,通过对建筑结构静力平衡条件的建立和计算,确定建筑结构受力状态和内力分布。
常用的静力分析方法有刚度法和位移法。
刚度法是基于结构刚度矩阵的计算,通过建立结构梁、柱和墙等构件的刚度方程,求解结构的位移和内力。
该方法计算简单,适用于刚性结构。
位移法则是建立结构的位移方程,通过推导结构的位移和内力关系,求解结构的位移和内力。
该方法适用于柔性结构,计算结果更为准确。
二、动力分析方法动力分析是研究建筑结构在地震、风荷载等动力荷载作用下的响应与稳定性。
常用的动力分析方法有响应谱法和时程分析法。
响应谱法是利用结构的动力特性与输入地震波的响应谱进行对比,确定结构的受力响应。
该方法适用于地震荷载作用下的结构设计,其优点是计算简便。
时程分析法是通过数值模拟结构在地震或风荷载作用下的真实时程响应,考虑荷载的历时性与变化特性。
该方法适用于复杂结构的动力分析,计算结果更为精确。
三、静力与动力分析的比较静力分析和动力分析各有其特点,适用于不同的结构设计需求。
在设计过程中,静力分析常用于建筑结构的常规设计,能够满足建筑结构在正常使用荷载下的安全强度要求,计算简单快速。
而动力分析则主要应用于对建筑结构在地震、风荷载等极端荷载下的设计。
它能够更真实地预测结构在这些荷载作用下的响应,提供重要的设计依据。
四、结语建筑结构的静力与动力分析是建筑设计与施工过程中不可忽视的环节。
静力分析与动力分析各有其独特的应用场景,需要根据具体要求进行选择。
合理的分析方法能够为建筑结构的设计与施工提供准确的力学基础,保障建筑的安全与稳定。
通过本文对建筑结构的静力与动力分析方法的介绍,希望读者们对建筑结构的力学计算与分析有更深入的了解,提高设计与施工的质量和安全性。
(总结)midas gen学习总结
![(总结)midas gen学习总结](https://img.taocdn.com/s3/m/17cd7f7a581b6bd97f19ea9e.png)
Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
动力气象学第三章 尺度分析和P坐标系下运动方程组
![动力气象学第三章 尺度分析和P坐标系下运动方程组](https://img.taocdn.com/s3/m/51890c5ed1f34693dbef3e5e.png)
u Vu*,t Tt*
这里的q是广义的,不仅包括气象要 素,还包括方程各项。
比较物理量的大小,可以比较特 征量的大小。
如:已知:
u Vu*,t Tt*
则:
u t
V T
u * t *
V 是 u 的特征量,u* 是其无量纲量。
T t
t *
在中纬度大尺度大气运动,各物理 量的特征量为:
V ~ 101 ms1;W ~ 102 ms1; L ~ 106 m; H ~ 104 m
V T
10-4
V2 L
10-4
VW H
10-5
f V 1 h P
0 L
f 0W
0
V
H2
10-3 10-6 10-3 10-6
--ms-2
其中:
2u
2u x 2
2u y 2
2u z 2
~V V V L2 L2 H 2
v u v v v w v 1 p fu 2v t x y z y
u x
v y
U L
3、两个变量乘积的数量级一般为变量数量级的乘积。
4、在一个方程式中,数量级最大项至少要有两项。如果方程中只有一 个最大项,不是各项量级估计不正确,就是原方程不成立。
尺度分析的基本步骤
一、写出方程中各项的特征值 二、根据运动的类型写出各项的数量级 三、略去小项、保留大项得到各级近似简化
m s
L ~ 106 m
R0
V f0L
~ 101 1
特征惯性力很小,加速度很小,可忽略
⑴ 分子粘性力可以忽略 不考虑分子粘性和湍流粘性 ——“自由大气”
分子粘性很小 短期天气过程不计; 气候学中不能忽略!
高层:层流,分子、湍流粘性力可略-自由大气; 低层:湍流粘性力重要,分子粘性力可略 -湍流边界层
兰大18秋《钢结构设计原理课程作业_A(满分)
![兰大18秋《钢结构设计原理课程作业_A(满分)](https://img.taocdn.com/s3/m/774efe4d7f21af45b307e87101f69e314332fa7e.png)
兰大18秋《钢结构设计原理课程作业_A(满分)------------------------------------------------------------------------------------------------------------------------------ 单选题普通螺栓分为几个级别()A: 1B: 2C: 3D: 4单选题现代钢结构中最主要的连接方法是()A: 焊接连接B: 螺栓连接C: 铆钉连接D: 紧固件连接单选题吊车钢梁在设计荷载作用下应按哪个应力阶段设计计算()A: 弹性阶段B: 弹塑性阶段C: 全塑性阶段D: 强化阶段单选题轴心受压钢构件总体稳定验算时,容许应力折减系数φ所对应的长细比λ是绕()A: 两主轴方向长细比中的较大者B: 两主轴方向长细比中的较小者C: 绕弱轴方向的长细比D: 两主轴方向长细比中,所对应的φ较小者单选题拉弯构件承载能力极限状态的计算通常包括()A: 强度B: 刚度C: 整体稳定D: 局部稳定判断边缘屈服准则是指以构件截面边缘纤维屈服的弹性受力阶段极限状态作为强度计算的承载能力极限状态判断对于计算疲劳的梁也要考虑塑性的发展判断设计或选用屋面压型钢板时,应考虑风吸力引起截面应力反号的影响,此时,不计入风吸力外所有可变荷载效应的影响,构件自重的荷载分项系数取作1.0判断对于有孔洞削弱的轴心受力构件,以其全截面的平均应力达到屈服强度为强度极限状态。
判断铆钉的材料应有良好的塑性,通常采用专用钢材BL2和BL3号钢制成判断------------------------------------------------------------------------------------------------------------------------------ 判断当风吸力超过屋面永久荷载时,横向力的指向相反。
此时Z形钢檩条的斜拉条需要设置在屋脊处,而卷边槽钢檩条则需设在屋檐处判断拉弯压弯构件也是通过限制构件长细比来保证构件的刚度要求,其容许长细比与轴心受力构件相同判断当剪切面在螺纹处时,承压型连接的高强螺栓的抗剪承载力应按螺纹处的有效截面计算判断对于长细比较小的轴心受压构件,截面应力在屈曲前已超过钢材的比例极限,构件处于弹塑性阶段,应按弹塑性屈曲计算其临界力判断二阶弹性分析时叠加原理已不再适用判断钢结构塑性设计主要是利用在结构中的若干截面处形成塑性铰后,在该截面处发生转动而产生内力重分配,最后形成破坏机构,因此要求钢材必须具有良好的延性判断当有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连,能阻止梁的受压翼缘侧向位移时不需验算梁的整体稳定判断吊车梁在支座处的横向加劲肋应在腹板两侧成对布置,并与梁上下翼缘刨平顶紧判断轴心受力构件,按其截面组成形式,可分为实腹式构件和格构式构件两种单选题普通螺栓分为几个级别()A: 1B: 2C: 3D: 4单选题现代钢结构中最主要的连接方法是()A: 焊接连接B: 螺栓连接C: 铆钉连接D: 紧固件连接单选题吊车钢梁在设计荷载作用下应按哪个应力阶段设计计算()A: 弹性阶段B: 弹塑性阶段C: 全塑性阶段D: 强化阶段单选题轴心受压钢构件总体稳定验算时,容许应力折减系数φ所对应的长细比λ是绕()------------------------------------------------------------------------------------------------------------------------------ A: 两主轴方向长细比中的较大者B: 两主轴方向长细比中的较小者C: 绕弱轴方向的长细比D: 两主轴方向长细比中,所对应的φ较小者单选题拉弯构件承载能力极限状态的计算通常包括()A: 强度B: 刚度C: 整体稳定D: 局部稳定判断边缘屈服准则是指以构件截面边缘纤维屈服的弹性受力阶段极限状态作为强度计算的承载能力极限状态判断对于计算疲劳的梁也要考虑塑性的发展判断设计或选用屋面压型钢板时,应考虑风吸力引起截面应力反号的影响,此时,不计入风吸力外所有可变荷载效应的影响,构件自重的荷载分项系数取作1.0判断对于有孔洞削弱的轴心受力构件,以其全截面的平均应力达到屈服强度为强度极限状态。
输电铁塔结构应力及稳定性分析
![输电铁塔结构应力及稳定性分析](https://img.taocdn.com/s3/m/f889206d76232f60ddccda38376baf1ffd4fe34c.png)
输电铁塔结构应力及稳定性分析山东兆维铁塔有限公司摘要:随着科技进步和国民经济的迅速发展,高压、超高压输电方式已成为当今电力供应的主要发展模式。
据国家电力规划部门预测,2020年前我国将建成超过7 000 km的高压输电线路。
作为高负荷电能输送载体的重要组成部分,高压输电塔的破坏不仅会导致供电系统的瘫痪,造成重大的经济损失,同时还可能会引发火灾等次生灾害,给人民群众的生命财产造成重大威胁。
统计资料显示,输电塔的破坏有很大一部分是由于风荷载下杆塔的动态侧倾失稳造成的,而现行规范中并未考虑风荷载的动力效应。
针对这种情况,对输电塔的风荷载作用下的动力稳定性的研究就显得十分必要和迫切。
关键词:输电塔结构动力稳定性1 稳定性的判定准则结构的稳定性问题有多种定义方法,一般来讲,如果结构在微小的荷载增量下产生了较大的响应变化,则认为结构发生了失稳或屈曲。
从数学上来说,结构在荷载作用下出现的屈曲可转化为平衡方程的多值性问题,属于定态分叉问题。
结构稳定性的判定准则,目前普遍采用的是能量准则,该方法是考察包括结构变形和外荷载在内的力学系统的总势能C,如果C达到最小,则结构就是稳定的。
从数学意义上就是考察总势能C二阶变分的符号。
若W2C>0,则结构是稳定的;W2C=0时,结构处于临界状态;W2C <0时,结构处于失稳状态。
Budiansky-Roth准则。
B-R准则最早由Bu-diansky和Roth[7]在研究球壳跳跃屈曲问题时提出。
该准则可表述为:如果结构在微小荷载增量下引起剧烈响应变化,则认为结构屈曲。
这个准则建立在物理直观上,在数值计算中比较容易实现。
位移相等准则。
雅库勃夫在讨论爆炸波作用下的土中圆柱壳的屈曲问题时采用了该准则。
该准则利用静动力屈曲位形相同的基本假设,认为结构受动力作用产生的位移与相应的静力屈曲位移相等时,结构就发生屈曲。
动态增量法(IDA)。
该方法通过计算不同强度动力荷载下结构的动力响应,得到相对于荷载参数的结构特征响应,研究荷载参数与结构特征响应之间的关系来判断结构的动力稳定性。
YJK参数设置详细解析
![YJK参数设置详细解析](https://img.taocdn.com/s3/m/c6270888e43a580216fc700abb68a98271feac15.png)
结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国”。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。
B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。
5、嵌固端所在层号:(P219~224)抗规条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。
由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。
在YJK中的结果文件wmass.out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。
如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。
6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
9、加强层所在层号:人工指定。
根据《高规》10.3、《抗规》条并结合工程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规10.211、施工模拟加载层步长:一般默认1.12、恒活荷载计算信息:(P66)1)一般不允许不计算恒活荷载,也较少选一次性加载模型;2)模拟施工加载一模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;3)按模拟施工二:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。
ETABS分析技巧
![ETABS分析技巧](https://img.taocdn.com/s3/m/76e27ff6ba0d4a7302763a0b.png)
2010年10月18日评论(0)|浏览(16) 点击查看原文定义反应谱函数时,选择通过文件导入的方式,无法输入周期折减系数,怎么办?:周期折减系数只能在中国规范中定义。
可以采用一种办法。
通过文件导入后,使用转换为用户自定义功能,记录下周期-加速度的数据对。
然后添加中国规范的反应谱,转换为用户自定义,将之前纪录的数据对输入,还原导入的反应谱即可。
错层塔楼怎么建模?多塔层高不同如何在etabs中建模:对于多塔结构,以其中一个塔楼为基准,建另一个塔楼的模型,最好是以较高的塔作为主塔,对于楼层,进行绘制控制的时候,一个塔楼可按照1、3、5...楼层来布置,另外一个塔楼可按照2、4、6.....来控制绘制。
注意不同层高的楼层指定不同的刚性隔板。
中梁刚度放大:中梁刚度放大需要人工调。
考虑到楼板对梁抗扭稳定性的贡献,需要对中梁和边梁进行刚度放大。
当楼板使用壳和板单元建模时,程序自动考虑,不需要人为调整;当楼板使用膜单元建模时,由于膜单元没有平面外刚度,无法束缚梁平面外的变形,因此需要人为调整:在框架属性修改对话框中设置,调整其围绕三轴的惯性矩,通常情况下中梁调整系数为2,边梁调整系数为1.5 转换梁如何处理?通常用壳元来模拟框支剪力墙连梁,这样可以更清楚地查看转换梁的应力情况。
以下是几个转换梁的例子,可以看到细部的应力结果。
偏心如何指定?在ETABS中,线对象的偏心是使用插入点来实现的(指定>框架/线>插入点)。
偏心布置完成后,需要通过拉伸显示来查看。
需要强调的是,通过设定偏轴的距离来绘制偏心布置的梁(如下图),是错误的。
偏轴绘制使线对象的几何位置发生了变化,线对象将在新位置上形成新的节点。
而线对象的偏心指定不会使线对象的几何位置发生变化,线对象的节点仍在轴线上。
在“框架插入点”对话框有一个复选项:不转换框架刚度距质心的偏移。
不勾选该项,程序将考虑截面偏心所带来的节点刚度影响。
绘制构件时弹出的对象属性浮动对话框中的平面偏移将使整个构件(包括其节点)发生偏移,这样会导致节点不相连的情况。
第7章思考题与参考答案
![第7章思考题与参考答案](https://img.taocdn.com/s3/m/5f25c364783e0912a2162a09.png)
第7章思考题参考答案1. 为什么说结构的自振频率是结构的重要动力特征,它与那些量有关,怎样修改它? 答:动荷载(或初位移、初速度)确定后,结构的动力响应由结构的自振频率控制。
从计算公式看,自振频率与质量与刚度有关。
质量与刚度确定后自振频率就确定了,不随外部作用而改变,是体系固有的属性。
为了减小动力响应一般要调整结构的周期(自振频率),只能通过改变体系的质量、刚度来达到。
总的来说增加质量将使自振频率降低,而增加刚度将使自振频率增加。
2.自由振动的振幅与那些量有关?答:振幅是体系动力响应的幅值,动力响应由外部作用和体系的动力特性确定。
对于自由振动,引起振动的外部作用是初位移和初速度。
因此,振幅应该与初位移、初速度以及体系的质量和刚度的大小与分布(也即频率等特性)有关。
当计及体系阻尼时,则还与阻尼有关。
3. 任何体系都能发生自由振动吗?什么是阻尼比,如何确定结构的阻尼比?答:并不是所有体系都能发生自由振动的,当体系中的阻尼大到一定程度时,体系在初位移和初速度作用下并不产生振动,将这时的体系阻尼系数称为临界组尼系数,其值为2m ω。
当阻尼系数小于该值时(称为小阻尼),可以发生自由振动。
阻尼比是表示体系中阻尼大小的一个量,它为体系中实际阻尼系数与临界阻尼系数之比。
若阻尼比为0.05,则意味着体系阻尼是临界阻尼的5%。
阻尼比可通过实测获得,方法有多种,振幅法是其中之一,振幅法确定阻尼比读者可见教材例题7-1。
4. 阻尼对频率、振幅有何影响?答:按粘滞阻尼(或等效粘滞阻尼)假定分析出的体系自振频率计阻尼与不计阻尼是不一样的,2者之间的关系为d ω=,计阻尼自振频率d ω小于不计阻尼频率ω,计阻尼时的自振周期会长于不计阻尼的周期。
由于相差不大,通常不考虑阻尼对自振频率的影响。
阻尼对振幅的影响在频比(荷载频率与自振频率的比)不同时大小不同,当频比在1附近(接近共振)时影响大,远离1时影响小。
为了简化计算在频比远离1时可不计阻尼影响。
钢结构PKPM抗震计算模型四
![钢结构PKPM抗震计算模型四](https://img.taocdn.com/s3/m/438ce944195f312b3069a527.png)
多高层计算书项目编号:多高层No.1项目名称:多高层目录一、设计依据 (4)二、软件信息 (4)三、结构模型概况 (4)1.总信息 (4)2.楼层信息 (5)3.支座信息 (5)4.材料信息 (6)5.活荷载折减 (7)6.地震信息 (8)7.风荷载信息 (8)8.调整信息 (9)9.设计信息 (9)四、工况和组合 (10)1.工况表 (10)2.组合表 (10)五、质量信息 (10)1.结构质量分布 (11)2.各层质心、刚心、偏心率信息 (12)六、荷载效应 (13)1.地震作用下的基底总反力 (13)2.支座工况反力表 (13)3.支座组合反力表-标准值 (17)4.支座组合反力表-设计值 (23)七、立面规则性 (30)1.楼层刚度 (30)2.楼层薄弱层调整系数 (31)3.各楼层受剪承载力 (32)八、抗震分析及调整 (33)1.结构周期及振型方向 (33)2.各地震方向参与振型的有效质量系数 (37)3.地震作用下楼层剪重比及其调整 (39)九、结构体系指标及二道防线调整 (41)1.竖向构件的倾覆力矩及百分比 (41)2.竖向构件地震剪力及百分比 (43)十、变形验算 (44)1.规定水平作用下的位移比验算 (44)2.地震作用下的楼层位移和位移角验算 (46)3.弹塑性层间位移角 (48)十一、风振舒适度验算 (49)十二、抗倾覆和稳定验算 (50)1.抗倾覆验算 (50)2.整体稳定刚重比验算 (50)十三、时程分析包络结果 (51)1.结构底部地震剪力包络结果 (51)2.楼层剪力包络结果 (51)3.楼层位移角包络结果 (53)4.楼层位移包络结果 (54)5.层间位移包络结果 (56)十四、构件验算结果统计 (58)1.钢构件、方钢管混凝土构件应力比统计 (58)十五、指标汇总 (59)一、设计依据《建筑结构荷载规范》GB50009-2012《建筑抗震设计规范》 (GB50011-2010)(2016年版)《钢结构设计规范》GB50017-2017二、软件信息3D3S14.0.0三、结构模型概况1.总信息结构材料信息:钢框架,无填充墙结构结构体系:框架结构结构重要性系数:1.00地下室层数:0嵌固端层号:0裙房层数:0转换层层号:0中梁刚度放大系数:按2010规范值取整体指标采用刚性楼板假定:是用于地震效应计算的连梁刚度折减系数:0.70地震位移自动按连梁刚度不折减计算:是2.楼层信息(一)楼层表3.支座信息支座类型说明:N:无约束 R:刚性约束 E:弹性约束D:支座位移 G:间隙约束4.材料信息(一)材料表(二)材料统计图(三)配筋信息(1) 梁、柱、支撑(2) 剪力墙5.活荷载折减楼面梁活荷载折减:不折减活荷载柱、墙活荷载折减:不折减活荷载6.地震信息地震作用计算依据:《建筑抗震设计规范》 (GB50011-2010)(2016年版)地震作用计算依据:7度(0.10g)场地类别:Ⅱ设计地震分组:第二组特征周期值:0.40多遇水平地震影响系数最大值:0.080罕遇水平地震影响系数最大值:0.500考虑抗侧力构件斜置地震作用:否反应谱:按规范周期折减系数:1.00计算振型数:15振型组合方法:CQC按双向地震作用考虑耦联:否计算竖向地震作用:否结构阻尼比:0.047.风荷载信息建筑结构类型:高层建筑房屋类型:钢结构参考点高度Z0(m):0.00基本风压:0.55(kN/m2)地面粗糙度:D风压高度变化修正系数η:1.00风荷载计算用阻尼比:0.02考虑顺风向风振影响:是考虑横风向风振影响:否基本周期T1来源:模态分析8.调整信息梁端负弯矩调幅:是框支柱调整系数上限5.00调整与框支柱相连的梁内力:否薄弱层刚度计算方法:抗规方法(V/u)进行最小减重比调整:是最小剪力系数:按《抗规》表5.2.5取值0.2V0调整:程序确定调整系数0.2V0调整系数上限:1.50与柱相连的框架梁端M、V调整:否9.设计信息按高层结构进行内力调整及设计:是考虑P-Δ效应:是仅考虑竖向荷载Pz的影响:否P-Δ力(几何刚度)来源:1.0恒+0.5活考虑框架结构缺陷(假想水平力):否考虑结构整体缺陷(屈曲模态):否框支剪力墙结构底部加强区框支柱、剪力墙抗震等级自动提高一级:否地下一层一下抗震构造措施的抗震等级逐层降低至抗震措施四级:否转换层指定为薄弱层:否钢柱计算长度按有侧移计算:是承载力设计时风荷载效应放大系数:1.009度结构及一级框架结构梁柱钢筋超配系数:1.15梁活荷载内力放大系数:1.00梁扭矩折减系数:0.40与剪力墙面外相连的梁按框架梁设计:是连梁按对称配筋设计:是柱剪跨比设计方法:通用方法(M/Vb0)框架柱的轴压比限值按纯框架结构采用:否构造边缘构件设计执行高规7.2.16-4:否约束边缘构件层全部设为约束边缘构件:否构造边缘构件尺寸设计依据:《抗规》GB50011-2010 第6.4.5条位移指标统计时考虑斜柱:是支撑临界角:15.00°四、工况和组合1.工况表2.组合表五、质量信息1.结构质量分布根据《高规》3.5.6条的规定,楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层的1.5倍。
考虑-P-Delta效应的分析
![考虑-P-Delta效应的分析](https://img.taocdn.com/s3/m/5ac18c43804d2b160a4ec000.png)
考虑P-Delta 效应的分析P-Delta效应是指构筑物同时受到水平力和轴力作用时,水平力作用下产生的位移和轴力组合产生附加弯矩的效应。
例如:受到外力弯矩作用的柱子如果附加受到轴向拉力或者轴向压力的作用,轴向拉力有抵抗外力产生弯矩的效应,相反轴向压力将使柱子受到更大的弯矩作用。
因此对于同时受到水平力和轴力作用的构筑物(beam-column),尤其是细长比较大的情况,应考虑P-D elta的效应求出实际构件的内力和位移,以便结构设计更加合理。
GENw的P-Delta分析过程是对已知的荷载条件进行静力分析后,使用各个单元中发生的内力和应力组成几何刚度矩阵(geometric stiffness matrix),然后在与原来的刚度矩阵进行组合形成新的刚度矩阵,直到可以满足给定的条件时候为止反复进行结构分析。
GENw的P-Delta 分析过程中所使用的静力平衡方程式如下:[K]{u} + [K G]{u} = {P}这里[K] : 变形前计算模型的刚性矩阵(stiffness matrix)[K G]: 每次重复计算过程中,按照新的内力和应力重新形成的几何刚度矩阵(geometric stiffness matrix){P} : 静力荷载向量{u} : 位移向量▪受到轴向压力时,水平方向的几何刚度[K G]减少▪受到轴向拉力时,水平方向的几何刚度[K G]增加MIDAS 中P-Delta的分析概念如下:输入结构分析模型图 1. 进行P-Delta分析的概念图现在对P-Delta 分析过程中需要输入的荷载条件及控制反复进行分析的P-Delta Analysis Control 进行说明。
在Main Menu 中,选择Analysis>P-Delta Analysis Control... 菜单。
❑Control Parameters▪Number of Iteration是输入P-Delta 分析可以反复进行的最大次数。
考虑周期折减的结构弹性时程分析调整方法
![考虑周期折减的结构弹性时程分析调整方法](https://img.taocdn.com/s3/m/d9167b40c381e53a580216fc700abb68a982adf4.png)
考虑周期折减的结构弹性时程分析调整方法
吴克川;陶忠;潘文;兰香;余文正;张龙飞
【期刊名称】《地震工程学报》
【年(卷),期】2024(46)3
【摘要】针对结构弹性时程分析时无法考虑周期折减的问题展开研究,通过对比结构时程分析的过程中,地震波的选取是否考虑周期折减的差异,提出采用增大系数放大时程分析法输入地震波有效峰值加速度以及地震响应;考虑弹性时程分析过程中,周期折减对结构地震作用的增大效应。
理论分析增大系数取值的影响因素,并基于单自由度体系对比两种调整方法的效果及差异,采用实际算例以验证所提出弹性时程分析中考虑周期折减调整方法的有效性。
结果表明:增大系数的取值与周期折减系数、结构自振周期及场地特征周期等因素有关;对于单自由度体系,两种调整方法具有完全相同的调整效果;按文章提出方法考虑周期折减的算例结构,弹性时程分析所得各楼层地震剪力及层间位移角与考虑周期折减的反应谱(CQC)计算结果均较为接近。
【总页数】10页(P548-556)
【作者】吴克川;陶忠;潘文;兰香;余文正;张龙飞
【作者单位】昆明学院建筑工程学院;昆明理工大学建筑工程学院
【正文语种】中文
【中图分类】TU352.1;P315.97
【相关文献】
1.某钢结构气象塔在时程风荷载作用下考虑P-Δ效应的动力时程分析
2.一种考虑应变率效应的结构非线性时程分析方法
3.考虑土-结构相互作用的结构延性折减系数分析
4.预制外墙结构抗震计算时的周期折减系数研究
5.考虑刚度折减的弹性二阶分析法在双跨排架结构中的运用
因版权原因,仅展示原文概要,查看原文内容请购买。
PKPM前处理注意事项
![PKPM前处理注意事项](https://img.taocdn.com/s3/m/c3e07e21f78a6529647d5340.png)
前处理注意事项1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。
2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。
PMCAD的数据检查要通过。
SATWE数据报告提示的问题要消除。
3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。
范例外的自重需用户输入。
4、板―柱结构输入:柱网需输入截面为100X100的虚梁。
5、厚板转换层输入:柱网需输入截面为100X100的虚梁。
层高以板厚的1/2划分。
6、错层结构输入:A、框架错层:在PM中调整梁端高,含斜梁。
B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。
C、多塔层高不同:把形成的塔虚层中楼板去掉。
关于整理SATWE设计参数便览的说明设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。
SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。
论坛里也有许多帖子,但总觉得系统性、实用性有些不足。
SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。
由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。
更欢迎参与。
SATWE参数便览之总信息1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算值重算。
2、混凝土容重:隐含值25。
构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。
3、钢材容重:隐含值78。
可行。
4、裙房层数:指地上的周边都有的群房。
当主体一面或多面无裙房时,风荷载需个案处理。
5、转换层所在层号:按自然层号填输,含地下室的层数。
6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。
7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某钢结构气象塔在时程风荷载作用下考虑P-Δ效应的动力时
程分析
作者:李亮, 李国强, 陈军武, LI Liang, LI Guoqiang, CHEN Junwu
作者单位:李亮,李国强,LI Liang,LI Guoqiang(同济大学建筑工程系,上海,200092), 陈军武,CHEN Junwu(西安有色冶金设计研究院,西安,710001)
刊名:
结构工程师
英文刊名:STRUCTURAL ENGINEERS
年,卷(期):2009,25(4)
被引用次数:0次
1.王肇民高耸结构振动控制 1997
2.Davenport A G The spectrum of horizontal gustiness near ground in high winds 1961(87)
3.Toriumi R.Katsuchi H.Furuya N A study on spatial correlation of natural wind 2000
4.祁德庆.于春海.王剑平高耸结构物动力分析与振动控制[期刊论文]-结构工程师 2000(03)
5.刘学利.王肇民高耸结构空间相关风场的模拟研究 2004(04)
6.董军.邓洪洲.刘学利高层建筑脉动风荷载时程模拟的AR模型方法[期刊论文]-南京建筑工程学院学报 2000(02)
本文链接:/Periodical_jggcs200904016.aspx
授权使用:同济大学图书馆(tjdxtsg),授权号:eebd1e53-7177-4ffe-8d57-9e650108a458
下载时间:2011年1月8日。