反应谱曲线及公式

合集下载

反应工程公式总结

反应工程公式总结

反应速率为:
������������
=

1 ������
������������������ ������������
;������������
=
−1
������
������������������ ������������
;������������
=
1 ������
������������������ ������������
因此 tafel方程只适用于强极化范围。
《反应工程》学习总结
参考资料: 《反应工程》第二版 李绍芬
主要学习:
1.反应动力学基础 2.吸附与脱附
1.反应动力学基础
化学反应速率:以反应
������������������ + ������������������ → ������������������ 为例:
又因为
������������
=
������������������,所以对于恒容过程,������������
= − ������������������
������������
该式以浓度对时间的变化率表
示化
学反应速率
2.动力学方程
基元反应的速率方程(幂函数型速率方程):
������:反应速率常数,是温度的函数
总之不论是可逆还是不可逆反应。反应速率 都是随着转化率增大而降低的。
4.反应速率与转化率的关系
单一反应:������������������ + ������������������ → ������������������
������������ = ������0[exp

第三节 单自由度弹性体系的水平地震作用及其反应谱

第三节  单自由度弹性体系的水平地震作用及其反应谱

第三节 单自由度弹性体系的水平地震作用及其反应谱一、水平地震作用的基本公式 由上一节可知,()()[]()()t kx t x c t xt x m +=+- 0 3.26因()()r kx t xc ,略去不计,有()()[]()t kx t x t x m ≈+-0 3.27质点的绝对加速度为3.28()()()()()t x t x mkt xt x t a 20ϖ-=-=+= 将式3.24代入上式,得3.29质点的最大绝对加速度为()m ax a t a S =3.30一、 地震反应谱 反应谱分析法:求解结构最大地震反应的方法即反应谱分析法,这种方法是对单质点单自由度体系,在给定的阻尼比 时,取不同的自振周期T ,求出任意给定的地震波下的最大加速度 。

然后,以阻尼比 为参数,作出自振周期T 与最大反应的关系曲线族,即反应谱。

这样一来,对于任何单质点、单自由度体系,如果已知其自振周期T 、阻尼比 ,便可从反应谱图中直接查得该结构体系在特定地震波下的最大反应,实际运用是比较方便的。

图3.7是根据1940.5.18美国埃尔森特罗地震时地面运动加速度记录绘出的加速度反应谱曲线。

任何地震波所得的地震反应谱,几乎后共同的特点。

1、谱曲线是多峰点的,是由于地面运动的不规则造成的,但在阻尼比等于零时反应谱的谱值最大,而任何较小的阻尼比都能否使峰点削平很多。

2、当结构自振周期较小时,随周期T 的增加,反应急剧增长,而较大自振周期时,反应逐渐衰减、稳定。

目前,世界各国已普遍计算和利用地震反应谱。

在现今设计中,已有许多可以直接应用的地震反应谱,包括最大加速度、最大相对加速度或最大相对位移反应,以满足不同使用的要求。

aS 与质点质量的乘积即为水平地震作用的绝对最大值a mS F = 3.31二、 标准反应谱βGk x Sg x mg mS F max a max a =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==00 3.32式中: k—— 地震系数 β—— 动力系数mg G =——重力(一)地震系数1、概念:即指地面运动最大加速度与重力加速度的比值2、公式:gxk max0 =3.333、有关因素:与地震烈度有关4、确定:见表 3.1 (二)动力系数β1、概念:即指单质点弹性体系在地震作用下最大反应加速度与地面最大加速度之比。

振型分解反应谱法

振型分解反应谱法

如何解j振型对应的广义坐标方程
Dj (t)
2
j
j
Dj
2 j
D
j
(t)
j
xg (t)
已知:对于单自由度体系
x 2x 2x xg (t)
x(t) 1
d
t 0
xg (
)e
(t
)
sin
d
(t
)d
对于j振型折算体系(右图)
j
(t
)
1
j
t 0
xg (
)e
j
j
(t
)
sin
j
(t
)d
D
j
(t
)
j j
其中: Fji (t) mi[x ji jj (t) x ji j xg (t)]
---t时刻第j振型i质点的水平地震作用
Fji (t) mi[x ji jj (t) x ji j xg (t)]
---t时刻第j振型i质点的水平地震作用
体系j振型i质点水平地震作用标准值为:
Fji Fji (t) max mi x ji j j (t) xg (t) max
0.55 0.75
第三组 0.35
0.45
0.65 0.90
例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。 抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。
解:(1)求体系的自振周期和振型
0.334
0.667
4.019
X 1 0.667 X 2 0.666 X 3 3.035
F1n
F2n
F jn
Fnn
mi
F1i
F2i
F ji
Fni

抗震设计中反应谱的应用

抗震设计中反应谱的应用

抗震设计中反应谱的应用一.什么就是反应谱理论在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。

它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。

用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。

地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。

β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。

二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。

一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。

实践也证明此方法更适合工程技术人员采用。

由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。

地震动反应谱方法

地震动反应谱方法
3)动力法 -----地震动时程分析法
二、反应谱法
2.1 反应谱法发展历程 2.2 反应谱的定义和抗震规范中的反应谱 2.3 振型分解反应谱法 2.4 在ABAQUS中实现反应谱分析 2.5 反应谱法的局限性
华南理工大学
2.1 反应谱发展历程
国外:
40 年代初 M.Biot 提出从地震动记录计算反应谱的概念
华南理工大学
主要内容
一、地震相关概念 二、反应谱法 三、地震加速时程合成
一、地震相关概念
地震是一种突发性和不可预测性的自然地质灾害,发生频度较高经易 对建筑物造成破坏,造成重大经济损失,并会产生严重次生灾害,给对 社会也会产生很大影响等。
汶川地震输电塔损坏
华南理工大学
1.1 相关概念
1、震级
表征地震强弱
2
t 0
xg
et
cost
d
2 22
t 0
xg
e t
sin
t
d
2
t 0
xg
e t
sin
t
d
(5)
由(3)、(4)和(5)式:
Sd
xt max
Sv
x&t max
Sa &x&t &x&g t max
相对位移反应谱 相对速度反应谱 相对加速度反应谱
简单来说,反应谱是指单质点体系地震最大反应与结构自振周期 之间的关系。它是跟阻尼比和周期有关的函数。
烈度
max
水平地震影响系数最大值
6
7
8
0.12
0.23
0.45
9 0.90
CHONGQING UNIVERSITY

清华规范反应谱公式

清华规范反应谱公式

清华规范反应谱公式清华规范反应谱公式可分为加速度反应谱和速度反应谱两种类型。

加速度反应谱描述了地震动对结构物的加速度影响,而速度反应谱则描述了地震动对结构物的速度影响。

这些反应谱的计算基于地震动时程分析和傅里叶变换的原理。

对于加速度反应谱公式,清华规范采用了双曲线模型来描述结构物在地震动下的加速度响应。

该模型以地震动参数的峰值加速度为输入,进而推导出结构物的反应加速度随频率的变化规律。

具体地,清华规范的加速度反应谱公式如下:Sa(T)=ξSa,g(T)×[(1+c1α+c2α^2)/(1+α)],其中,Sa(T)表示在周期为T的地震动下的加速度反应谱;ξ为地震动参数的比值,等于实际地震动的峰值加速度与设计地震动的峰值加速度的比值;Sa,g(T)为设计地震动下的加速度反应谱;α为结构物的振动周期与地震动周期的比值;c1和c2为与结构物的阻尼比有关的系数,可根据工程经验进行选择。

对于速度反应谱公式,清华规范同样采用了双曲线模型。

速度反应谱公式如下:Sv(T)=ξSv,g(T)×(1+c1α+c2α^2)/(1+α),其中,Sv(T)表示在周期为T的地震动下的速度反应谱;ξ为地震动参数的比值,等于实际地震动的峰值速度与设计地震动的峰值速度的比值;Sv,g(T)为设计地震动下的速度反应谱;α为结构物的振动周期与地震动周期的比值;c1和c2为与结构物的阻尼比有关的系数,可根据工程经验进行选择。

需要注意的是,清华规范的反应谱公式是以设计地震动参数为基础进行计算的,因此在实际工程中应根据具体情况进行调整。

此外,反应谱公式中的系数c1和c2对结构的动态特性影响较大,因此在选择时需要考虑结构物的性质和使用要求。

总体而言,清华规范反应谱公式提供了一种有效的工具,能够对地震动对结构物的动力响应进行定量描述。

在土木工程设计和抗震设计中,通过使用这些公式,可以合理评估结构物的抗震性能,从而确保结构物在地震中具有足够的安全性和稳定性。

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。

1. 地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。

但是, 不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。

由结构动力学789地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。

与基本烈度的关系基本烈度地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于的地震系数,而《抗震规范》2010表5.1.4-1除以2.25后应该为基本烈度地震系数kJt-/ J w *购)地震系数 2.25 倍0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论〜)a 八=动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。

b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。

调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。

2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。

3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。

经过上述三条措施后,再将计算得到的P (T)平滑化后,可得到抗震设计采用的动力系数谱曲线。

工e说讣来fl的站力•罠丁厂lit动耕盘阀期.蚣墙豪捋叽酿尼《鳖卓《”联】』3.地震影响系数谱曲线吏汇:反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响1,万,1,千地质测量质量要求表(吉林参考)11,万1,5千1,2千1,千1,万草测1,2千草沉1对地层划分到组或阶,如范围大应进一步二分或三分,确定1.在1,万分成的基础上,按岩层、岩性特一般地段的研究程含矿层或地积其时代,测定其厚度及产状点进一步详细划分岩层,研究岩石的物质成度可低于1,万或成矿有利质岩2.对标志层、成矿有利的岩层在图上的宽度大于1毫米者应扩分、结构、构造特征,胶结物性质,结核体与之相似。

反应谱分析原理的简单介绍

反应谱分析原理的简单介绍

反映谱的应用及意义相关:当阻尼比给定时,任一结构对给定地震的最大相对位移反应和最大加速度反应仅由自振频率决定。

改变结构的自振频率,就可以得到不同的Sd和Sa。

给定地震作用下,不同周期对应结构地震反应的最大值。

结构的地震反应仅与结构的阻尼比及自珍频率有关。

反应谱的计算要完成一系列具有不同自振周期的结构反应。

利用抗震规范给出的平均反应谱可以得到一个工程场地结构地震反应的最大值。

(?如何由反应谱计算出反应时程?)5.1.5 建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和:形状参数应符合下列要求:1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.0采用,形状参数应符合下列规定:1)直线上升段,周期小于0.1s的区段。

2)水平段,自0.1s至特征周期区段,应取最大值(αmax)。

3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9。

4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02。

反应谱分析建立在振型分解反应谱理论基础上。

振型分解理论将结构的地震作用响应分解为各振型分量的叠加,即对应每个振型都有一个地震作用,然后通过一定的组合方法(SRSS,CQC,ABS等)叠加各振型结构的地震响应得到最终总的结构地震响应值。

振型分解法的数学和力学的本质:首先是利用功的互等定理(贝蒂定理)得到的振型正交性质,从而将多自由度结构振动偏微分方程组解耦成若干等效单自由度体系的常微分方程组,进而得到结构位移响应的解答。

当然,对于地震作用这样的复杂问题,结构振动的偏微分方程组的精确解是难以得到的,而必须采用数值解法。

常采用的数值解法有Wilson-θ法,New mark-β法等。

这些数值积分方法都有对应的求解程序,结构工程师不需要很精通这些数值求解方法的具体过程,而只需要建立一些概念即可。

这里需要注意一个概念:振型分析反应谱法只适用线弹性体系。

如果考虑结构的弹塑性性质,则这种方法不适用。

反应谱

反应谱

从理论上讲,如果反映谱分析所用的反映谱是时程分析分析时用的地震波所产生的反映谱,而分析又限於弹性阶段,两者几乎没有差别,因为反映谱分析(取足够的模态)只是忽略了影响很小的高阶效应。

但是如果结构进入非弹性阶段,只有用时程分析反应普法有几个假设:1,结构是弹性反应,反应可以叠加;2,无土结的相互作用;3,质点的最大反应即为其最不利反应;4,地震是平稳随机过程.而时程分析是把地震过程安时间步长分为若干段,在每时间段内安弹性分析,算出反应,然后再调整刚度和阻尼.总得一句话,就是步步积分法!①反应谱方法是一种拟静力方法,虽然能够同时考虑结构各频段振动的振幅最大值和频谱两个主要要素,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受到了严重的破坏,这充分说明了持时要素在设计中应该被考虑。

②反应谱方法忽略了地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特性的改变,而导致结构中的内力重新分布这一现象。

③反应谱方法假设结构所有支座处的地震动完全相同,忽略基础与土层之间的相互作用。

时程分析方法是一种相对比较精细的方法,不但可以考虑结构进入塑性后的内力重分布,而且可以记录结构响应的整个过程。

但这种方法只反应结构在一条特定地震波作用下的性能,往往不具有普遍性。

我国反映谱方法的曲线是由255条地震波的地震反映的平均值,而非包络值,体现的是共性,但无法反映结构进入塑性的整体结构性能。

时程方法体现的是具体某条地震波的反映,不同地震波作用下结果的差异也很大,需要合理选波。

底部剪力法/反应谱法/时程分析法一些有用的概念/histruct/blog/item/465ce38787299023c75cc357.html从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。

那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。

反应谱

反应谱

1.2 弹性反应谱在Maurice A. Biot []首先提出弹性反应谱的概念之后,经若干学者的发展,反应谱的概念已得到了较大程度的推广,且反应谱现在已被广泛地应用于地震工程的各个方面(如地震危险性分析、结构抗震设计、地震加速度记录的选择和调整及基于性能的地震工程等)。

目前,反应谱主要包括:傅立叶谱、弹性反应谱、弹塑性反应谱、能量反应谱和损伤谱等。

以下主要介绍弹性反应谱的定义,其余反应谱的定义与弹性反应谱类似。

所谓弹性反应谱就是在给定的地震加速度输入下,单自由度弹性系统的最大反应和体系的自振特征(自振周期或频率和阻尼比)之间的函数关系。

单自由度弹性系统的最大反应可以是:相对于地面的最大位移、相对于地面的最大速度、最大绝对加速度、拟速度和拟加速度。

在地面加速度的激励下,单自由度弹性系统的动力平衡方程为:)()()()(t u m t ku t u c t u m g -=++(1.1)式(1)的解可由Duhamel 积分求得:ττωτωτξωd t e u t u D t tg D)(sin )(1)()(0--=--⎰(1.2)将式(1.2)求导可得相对速度反应为:ττωτωτξωd t e ut uD t tg D)(sin )(1)()(0--=--⎰(1.3)将式(1.3)求导再与地面加速度相加可得绝对加速度反应为:ττωτωτξωd t e u t u t u D t tg Dg )(sin )(1)()()(0--=+--⎰(1.4)在式(1.1)~(1.4)中,m 为单自由度弹性体系的质量;c 为阻尼系数;k为体系的刚度系数;u(t)为体系相对于地面的位移;)(t u为体系的相对速度;)(t u 为体系的相对加速度;)(t u g 为地面加速度;ω为体系的无阻尼自振圆频率(ω2=2π/T=k/m );T 为体系自振周期;ζ为阻尼比(ζ=c/2m ω);ωD 为体系的有阻尼自振圆频率(21ξωω-=D )。

反应谱分析方法一

反应谱分析方法一

20
操作实例
21
3.1 结构各振型含义及计算方法
22
23
重要结论: 1.振型是根据无阻尼自由振动方程求出。 2.振型向量的绝对值是没有意义的。 3.有限元分析程序中振型为对质量归一化后的振型向量。
24
3.2 实例分析
25
3.1 实例分析
26
27
28
29
3.2 计算结果—参照模型及excel表格 各振型的组合结果
Bridging Your Innovations to Realities
本期主要内容
I.
动力平衡方程
II. 反应谱分析方法 III. 操作实例 IV. 程序参数输入
2
动力平衡方程
3
1.1 单自由度体系 (1)弹性力ky,与位移 y 的方向相反;
(2)惯性力mÿ,与加速度 ÿ 的方向相反;
根据达朗伯原理,可列隔离体平衡方程: mÿ + ky = 0 ÿ + ω2y = 0 齐次方程通解为 y(t) = a sin(ωt +α)
(2)计算各振型反应谱下结构响应。
(3)将各振型结果进行组合。
15
怎样画出反应谱?
反应谱是单自由度弹性体系在给定的地 震作用下,某个最大反应量(加速度) 与体系自振周期的关系曲线。
16
17
18
为什么采用振型叠加法?
1.振型叠加法引入振型的概念后,由于振型具有正交性,动力微分方程组简
化为动力微分方程,大大减少了计算量。(多自由度转换为单自由度)
38
4.5 定义M-Ф曲线
39
4.6 定义弹塑性材料—钢材
40
4.7 定义弹塑性材料—Mander模型无约束混凝土 注意: 导入混凝土抗压强度须修改 为立方体抗压强度(0.85倍) 4

7-反应谱概念与设计反应谱

7-反应谱概念与设计反应谱

)d
max
最大相对速度
Sv
x(t) max
t 0
xg
( )e
(t )
sin (t
)d
max
最大加速度
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t
)d
max
最大反应之间的关系 Sa Sv 2Sd
二、地震反应谱:
最大相对位移
Sd
x(t) max
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
3.对于速度反应谱,当结构周 期小于某个值时幅值随周期增 大,随后趋于常数。
4.对于位移反应谱,幅值随周期 增大。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
5.土质条件对反应谱的形状和 很大的影响,土质越松软,加 速度反应谱峰值对应的结构周 期也就越长。
max
3.曲线下降段,自特征周期至5倍特征周期区段: 0.9
4.直线下降段,自5倍特征周期至6s区段:1 0.02
*阻尼对地震影响系数的影响
当结构阻尼比不等于0.05时,其形状参数作如下调整 :
1.曲线下降段衰减指数的调整
2 2 2
d
t 0
xg
(
)e
(t
)
sin
d
(t
)d
2
d
t 0
xg
(
)e
(t
)
s
in
d
(t
)d
质点相对于地面的最大加速度反应为:
Sa x(t) xg max
t 0
xg ( )e (t )

反应谱曲线及公式

反应谱曲线及公式

4.2地震作用和地震反应计算4.2.1隔震房屋为砌体房屋或与砌体房屋结构基本周期相当的房屋,并且满足第4.1.1条的要求时,可采用等效侧力法计算。

4.2.2采用等效侧力法时,隔震房屋的地震作用可按第4.2.3~4.2.9条和第4.2.13条计算。

采用时程分析法时,隔震房屋的地震作用可按第4.2.10~4.2.14条计算。

4.2.3 结构阻尼比为0.05时的地震影响系数α,应根据烈度、场地类别、特征周期分区和结构自振周期按图4.2.3采用,其最大值αmax按第4.2.5条的规定确定。

场地特征周期T g,根据场地类别和特征周期分区按《建筑抗震设计规范》GB50011的有关规定确定。

隔震结构的自振周期T可采用与隔震结构相应的计算模型经计算确定。

图4.2.3 地震影响系数曲线图中,α—地震影响系数;max α—地震影响系数最大值;T —结构自振周期;T g —场地相关反应谱特征周期,按《建筑抗震设计规范》GB50011确定; γ—曲线下降段的衰减指数1η—直线下降段的斜率;2η—阻尼调整系数。

4.2.4结构阻尼比不等于0.05时,水平地震影响系数α曲线仍按图4.2.3确定,其中的形状参数应按下列规定调整:1 曲线下降段的衰减指数,应按下式确定:ζζγ55.005.09.0+-+=(4.2.4-1)式中 γ—曲线下降段的衰减指数;ζ—阻尼比,隔震结构可近似取隔震层的有效阻尼比。

2 直线下降段的斜率,应按下式确定:805.002.01ζη-+= (4.2.4-2)式中 η1—直线下降段的斜率,当η1小于零时应取η1=0。

4.2.5计算隔震房屋地震作用时,应符合下列规定:1 结构阻尼比为0.05时,房屋结构的水平地震影响系数最大值应按表4.2.5采用。

表4.2.5 水平地震影响系数最大值max45.0αmax2αη0 0.1 T g 5T g 6.0 α注:地震影响栏中括号内的数值分别用于设计基本地震加速度为0.15g 和0.30g 的地区,g 为重力加速度。

振型分解反应谱法

振型分解反应谱法

q1 (t ) 和
q2 (t )
确定后,质点的位移
u1 (t )

u2 (t )
也将随之确定。
2019/2/6
第8讲 振型分解反应谱法
3
式(3-55)也可以这样理解:体系的位移可看作是由 各振型向量乘以相应的组合系数和后叠加而成的。换句 话讲,这种方法是将实际位移按振型加以分解,故称为 振型分解法。另外,由于和是随时间变化的,因此,同 一振型在不同时刻对总位移“贡献”的大小是不一样的。

8讲
振型分解反应谱法
考虑两个自由度的体系。将质点和在水平向地震作用 下任一时刻的位移和用其两个振型的线性组合表示, 即:
u1 (t ) 11q1 (t ) 21q2 (t )
u2 (t ) 12 q1 (t ) 22 q2 (t )
(3-55a)
(3-55b)
2019/2/6
0.05
例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。 抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。 解: (1)求体系的自振周期和振型 m 180t
型组合公式,称为完全二次项组合法,简称CQC法:
S
ij S i S j i 1 j 1
m
m
(3-65)
式中 ,s-----水平地震作用效应; m-----参与振型组合的振型数,一般可取2~3个振型, 当基本自振周期 T1>1.5s
或房屋高宽比大于5时,振型个数可适当增加;
2019/2/6
一般的多自由度线弹性体系,式(3-55)可写成如下形式
{u(t )} { j }q j (t ) [ ]{q(t )} 3-56
j 1
n

第二节 反应谱

第二节 反应谱

绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱总结:
4、结构的最大地震反应,对于 低频结构主要取决于地面运动 最大位移。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
五、设计反应谱
设计反应谱:
地震反应谱直接用于结构的抗震设计有一定的困难,
而需专门研究可供结构抗震设计用的反应谱,称之为设计反应谱
2
T
(t
)d
max
Sa
xg max
2 1 T xg max
t 0
2 (t )
xg ( )e T
sin
2
T
(t
)d
max
yg (t ) (ms 2 )
t (s)
Elcentro 1940 (N-S) 地震记录
相对速度反应谱
Sv

x(t) max
t 0
xg ( )e (t )
sin (t
)d
max
yg (t ) (ms 2 )
Elcentro 1940 (N-S) 地震记录
t (s)
绝对加速度反应谱
2
Sa x(t) xg max T
t 0
2 (t )
xg ( )e T
sin
max
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t

)d
max
对比上两个公式,可以看出,地面最大加速度 xg (t) 对于给
定的地震时个常数,所以β—T的曲线形式与拟加速度反应谱
曲线的形状是完全一致的,只是纵坐标数值不相同。β—T 曲

振动的测量,傅里叶变换,duhamel积分,反应谱

振动的测量,傅里叶变换,duhamel积分,反应谱

8 振动的测量8。

1 前言有的时候,一些微小的、不显著的振动,会与结构,或者结构的某一部分产生共振,从而将振动放大.共振也会发生在人的身上,人体的自振频率大概为7.5Hz,因此次声(〈20Hz)会对人体造成伤害。

所以说,对于结构来说,利用合适的装置或者设计来减小这样的共振是非常有必要的。

那么,想要研究如何减小共振,我们首先要知道将要发生的振动的参数.想要知道这些参数,我们就需要一些仪器来测量,这些仪器就是我们这章要了解的。

首先来看一下一些概念.在结构工程中常常进行运动量(位移、速度或加速度)的测量,例如地震动时程的测量;振动台试验中结构模型的动力反应的测量;脉动作用下结构物的振动的测量;大桥、超高层结构风振的测量等.用于测量振动量的仪器(拾振仪)主要有三种:加速度位移计:测量加速度的时程(强震仪)。

位移计:测量位移时程(地震仪)。

速度计:测量速度.8。

2 理论8.2。

1 运动方程的建立D’Alembert原理:在质点系的运动的任意瞬间,如果除了实际作用于每一质点的主动力和约束反力外,再加上假想的惯性力,则在该瞬间质点系将处于假想的平衡状态,称之为动力平衡状态。

记所受的主动力、惯性力和约束反力,则D'Alembert原理可表示为通常主动力包括外荷载、阻尼力和弹性恢复力。

上图质量块m所受的主动力为惯性力为由于该体系是约束反力不做功的理想约束体系,故列运动方程时仅考虑运动方向上的受力,此时的约束反力是没有的。

将上面两式代入D'Alembert原理表达式,有当然,建立运动方程的方法有多种,除了上面介绍的D’Alembert原理之外,还有虚位移原理、Hamilton 原理和Lagrange方程,这四种方法对建立运动方程是完全等同的,可以推得完全相同的运动方程。

8。

2。

2 Fourier变化法(频域分析法)最简单的测量仪器模型是一单自由度弹簧—质点—阻尼体系,被封闭在一个刚性盒子里面,如图所示单自由度体系运动方程为:其中:则(1)式可以写为:使用傅里叶变换法(之后补上介绍),正变换,把问题从时间域(自变量为t)转变到频域(自变量为),可得:下面给出了关于频率比的图像:为复频反应函数,也叫传递函数。

反应谱

反应谱

返回
◆语文•选修\中国小说欣赏•(配人教版)◆
质点的绝对加速度为:
&x& &x&g 2x&2x
2
t 0xg (来自)e(t)c os d
(t
)d
2 2 2
d
t 0
xg (
)e
(t
)
sin
d
(t
)d
2
d
t 0
xg (
)e
(t
)
sin d
(t
)d
质点相对于地面的最大加速度反应为: d
Sa
t (s)
绝对加速度反应谱
Sa
&x&(t) &x&g max
2
T
t 0
2 (t )
&x&g ( )e T
sin
2
T
(t
)d
max
Sa
&x&g max
2 1 T &x&g max
t 0
&x&g (
2 (t )
)e T
sin
2
T
(t
)d
max
金品质•高追求 我们让你更放心!
返回
• 反应谱分为:
• 加速度反应谱 • 速度反应谱
• 位移金反品应谱质。•高追求
-2-
我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
一、水平地震作用
运动方程:
&x&(t) 2d x&(t) d2 x(t) &x&g (t) (2.1)
t 将

地震加速度反应谱

地震加速度反应谱

一、地震反应谱的概念在给定的地震输入下,不同固有周期的地层或结构物将有不同的振动位移反应,这种反应的时程曲线是由多种频率成分组成的振动曲线叫地震反应谱,取对应于不同固有周期的位移时程曲线的最大值作为纵坐标,取所对应的固有的周期为横坐标,由此绘成曲线,供抗震设计中选用在设计周期下的相应振动幅值。

二、地震反应谱在结构地震反应分析理论发展中的作用1940年,美国比奥特(M.A.Biot)教授通过对强地震动记录的研究,首先提出反应谱这一概念,为抗震设计理论进人一个新的发展阶段奠定了基础,20世纪504代初,美网豪斯纳(G.W.Housener)等人发展了这一理论,并在美国加州抗震设计规范中首先采用反复谱概念作为抗震设计理论,以取代静力法。

这一理论至今仍然是我国和世界上许多国家工程结构设计规范中地震作用计算的理论基础。

反应谱理论考虑了结构的动力特性与地震动特性之间的动力关系,并保持了原有的静力理论的简单形式。

按照反应谱理论,单自由度弹性体系的结构物所受的最大地震基底剪力或地震作用为F=FEk=k⋅ββ⋅G式中G——结构的重力荷载代表值k——地震系数β——动力系数,与结构自振周期和阻尼比有关因而上式表明:结构地震作用的大小不仅与地震强度有关,还与结构的动力特性有关。

这也是地震作用区别于一般作用(荷载)的主要特征。

随着震害经验的积累和研究的不断深人,人们逐步认识到建筑场地(包括表层土的动力特性和覆盖层厚度)、震级和震中距对反应谱的影响。

考虑到这些因素,一般抗震规范中都规定了不同的反应谱形状。

利用振型分解原理,可有效地将上述概念用于多质点体系的抗震计算,这就是抗震设计规范中给出的振型分解反应谱法。

它以结构自由振动的N个振型为厂义坐标,将多质点体系的振动分解成n个独立的等效单质点体系的振动,然后利用反应谱概念求出各个(或前几个)振型的地震作用,并按一定的法则进行组合,即可求出结构总的地震作用。

三、从地震动响应推导出地震反应谱曲线对于单自由度弹性体系,通常把惯性力看作一种反映地震对结构体系影响的等效作用,即把动态作用转化为静态作用,并用其最大值来对结构进行抗震验算。

3-A 弹性反应谱

3-A 弹性反应谱

(2) sin wd (t )]d (3)
(t ) X
X
0
t
g
( )e w(t ) [cos wd (t )
t

1 2
2 (t ) X (t ) w X ( )e w( t ) [(1 ) sin w (t ) 2 cos w (t )]d Xg d d d 1 2 1 2 0
反应谱
1
地震谱分析1
1.反应谱的概念
单自由度弹性系统在给定地震动作用下的最大反应随结构自振周期的变化 曲线。同时是阻尼比的函数。 这里所说的单自由度体系可认为是满足如下条件的单质点结构, 将结构中参 与振动的质量全部集中在一点上,用无重的弹性杆件系统支撑于地面上。并假定 地面运动和结构振动只是单方向的水平平移运动,不发生扭转。地基是刚性地面 (即不考虑土-结构相互作用) 。 本文中所涉及的谱包括绝对加速度反应谱,相对速度,位移反应谱,标准反 应谱,傅立叶谱。针对 El Centro 地震波给出了部分反应谱图形,并对结果进行 了相应的分析。
反应谱的理论基础反应谱的理论基础单自由度弹性系统在地震作用下的运动方程为gmxcxkxmx?????????1利用二阶常微分方程理论duhamal积分和一些简单的高等数学运算可求出其位移反应速度反应和绝对加速度反应如下?d?????twex??wtxtdtwgdsin10?????220?cossin1twtgddxt?x??ewtwtd???????????????322202??1sincos11twtdddxgt??xt??wx??ewtwtd???????????????????4由结论可见绝对加速度位移和速度都是系统自振圆频w阻尼比?时间t以及地震加速度tgx??的函数其中w?有单自由度系统特性支配
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2地震作用和地震反应计算
4.2.1隔震房屋为砌体房屋或与砌体房屋结构基本周期相当的房屋,并且满足第4.1.1条的要求时,可采用等效侧力法计算。

4.2.2采用等效侧力法时,隔震房屋的地震作用可按第4.2.3~4.2.9条和第4.2.13条计算。

采用时程分析法时,隔震房屋的地震作用可按第4.2.10~4.2.14条计算。

4.2.3 结构阻尼比为0.05时的地震影响系数α,应根据烈度、场地类别、特征周期分区和结构自振周期按图4.2.3采用,其最大值αmax按第4.2.5条的规定确定。

场地特征周期T g,根据场地类别和特征周期分区按《建筑抗震设计规范》GB50011的有关规定确定。

隔震结构的自振周期T可采用与隔震结构相应的计算模型经计算确定。

图4.2.3 地震影响系数曲线
图中,α—地震影响系数;
max α—地震影响系数最大值;
T —结构自振周期;
T g —场地相关反应谱特征周期,按《建筑抗震设计规范》GB50011确定; γ—曲线下降段的衰减指数
1η—直线下降段的斜率;
2η—阻尼调整系数。

4.2.4结构阻尼比不等于0.05时,水平地震影响系数α曲线仍按图4.2.3确定,其中的形状参数应按下列规定调整:
1 曲线下降段的衰减指数,应按下式确定:
ζ
ζ
γ55.005.09.0+-+
=
(4.2.4-1)
式中 γ—曲线下降段的衰减指数;
ζ—阻尼比,隔震结构可近似取隔震层的有效阻尼比。

2 直线下降段的斜率,应按下式确定:
8
05.002.01ζ
η-+
= (4.2.4-2)
式中 η1—直线下降段的斜率,当η1小于零时应取η1=0。

4.2.5计算隔震房屋地震作用时,应符合下列规定:
1 结构阻尼比为0.05时,房屋结构的水平地震影响系数最大值应按表4.2.5采用。

表4.2.5 水平地震影响系数最大值
max
45.0αmax
2αη0 0.1 T g 5T g 6.0 α
注:地震影响栏中括号内的数值分别用于设计基本地震加速度为0.15g 和0.30g 的地区,g 为重力加速度。

2 阻尼比不等于0.05时,表4.2.5中的数值应乘以下列阻尼调整系数:
ζζ
η7.106.005.012+-+
= (4.2.5)
式中 η2—阻尼调整系数,当小于0.55时,应取0.55。

相关文档
最新文档