初一数学上学期期中考试试题及答案

合集下载

河北省保定2024-2025学年上学期期中教学质量检测七年级数学试题(含答案)

河北省保定2024-2025学年上学期期中教学质量检测七年级数学试题(含答案)

2024-2025学年度第一学期期中教学质量监测七年级数学注意事项:1.全卷满分120分,答题时间为120分钟。

2.请将各题答案填写在答题卡上。

3.本次考试设卷面分,答题时要书写认真、工整、规范、美观一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,形状为圆锥的是( )A .B .C .D .2.1不是的( )A .绝对值B .相反数C .倒数D .到原点的距离3.下列现象属于面动成体的是( )A .雨滴滴下来形成雨丝B .旋转门的旋转C .汽车雨刷的转动D .流星划过夜空4.在代数式,,,,,中,多项式的个数是( )A .6B .5C .4D .35.绿色建筑是实现“双碳”目标的重要发力点之一,作为“中国低碳城市发展项目”首批试点城市,保定牢固树立和践行绿水青山就是金山银山的发展理念,全市绿色建筑累计面积已达4994万平方米,绿色建筑占新建建筑面积的比例达到100%.数据“4994”万用科学记数法表示为( )A .B .C .D .6.下列整式变形正确的是( )A .B .C .D .7.如图,这是一种转盘型密码锁,每次开锁时需要先把表示“0”的刻度线与固定盘上的标记线对齐,再按顺时针或逆时针方向旋转带有刻度的转盘三次.例如,按逆时针方向旋转5个小格记为“”,此时标记线对准的数是5,再顺时针旋转2个小格记为“”,再逆时针旋转3个小格记为“”,锁可以打开,那么开锁密码就可以记为“,,”.如果一组开锁密码为“,,”,那么打开锁时标记线对准的刻度线表示的数是( )1-a a b +2ab 22a b -312abc 5a +74.99410⨯64.99410⨯80.499410⨯649.9410⨯()22a b c a b c-+=-+()222a b c a b c +-=++()2222a b c a b c --=-+()44a b c a b c--=-+5+2-3+5+2-3+10-5+7-A .B .C .D .128.成安草莓果实呈心形,色泽鲜红,香味浓郁,口感细软,酸甜可口,产量高,品质优,嘉嘉和琪琪周末相约去采摘草莓,已知嘉嘉每小时采摘草莓口个,琪琪每小时比嘉嘉多采摘草莓5个,则嘉嘉和琪琪2小时共摘草莓的个数为( )A .B .C .D .9.当时,的值为4,则时,的值为( )A .4B .5C .6D .710.如图,点和点表示的数分别为和,下列式子中错误的是( )A .B .C .D .11.如图,小明在写作业不小心打翻了墨水,导致一部分内容看不清楚,则被墨水遮住的多项式为( )A .B .C .D .12.若,,且为负有理数,则( )A .B .3C .或3D .或3二、填空题(本大题共4个小题,每小题3分,共12分)13.若单项式与是同类项,则____________.14.计算的结果为____________.15.如图,这是由若干个小立方体搭起来的几何体的正面、侧面所看到的图,那么这个几何体至少应该由____________个小立方体组成.10-12-15-a 25a +210a +410a +45a +1x =31mx nx -+1x =-37mx nx -+A B ab 21a <0a b +<1b -<-20ab <2625x x +-2525x x +-263x x +262x +12x -=15y +=y x x y +=3-3-136m x y -466x y m =20242025122⎛⎫-⨯ ⎪⎝⎭16.如图,用一个表格中的表示的次数,表示的次数,例如,表格中的;.若都是系数为1的关于,的单项式,由规律可知,的次数为___________,若多项式★为,其中,,为3个不同的正整数,且多项式的值为75,则的最大值为____________.三、解答题(本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:.18.(8分)计算:.19.(8分)如图,这是一个正方体展开后的平面示意图,相对的面上的数相等.已知,求的值.20.(8分)周末,明明的父母带明明去革命圣地西柏坡参观。

湖北省武汉市七年级上学期期中考试数学试题(含答案)

湖北省武汉市七年级上学期期中考试数学试题(含答案)

七年级上学期数学期中考试试卷一、单选题1.-2020 的相反数是()A. -2020B. 2020C.D.2.单项式的系数和次数分别是()A. 1,9B. 0,9C. ,9D. ,243.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆,数36000用科学记数法表示为( )A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.下列运算结果错误的是()A. B. C. D.5.按括号内的要求用四舍五入法取近似数,其中正确的是()A. (精确到个位)B. (精确到十分位)C. (精确到0.1)D. (精确到0.0001)6.下列运算中正确的是()A. B. C. D.7.已知,且,那么等于()A. 8B. -2C. 8或-2D. -8或-28.某药厂计划对售价为元的药品进行降价销售,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二;第一次降价20%,第二次降价15%﹔方案三:第一、二次降价均为20%三种方案哪种降价最多()A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,都是由棱长为1的正方体叠成的图形.例如:第①个图形由1个正方体叠成,第②个图形由4个正方体叠成,第③个图形由10个正方体叠成…,低此规律,第10个图形由个正方体叠成,则的值为()A. 220B. 165C. 120D. 5510.把两张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为,宽为)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是()A. B. C. D.二、填空题11.若零上8℃记作+8℃,则零下5℃记作________℃.12.在有理数中,绝对值最小的数是________.13.两船从同一个港口同时出发反向而行,甲船顺水航行了小时,乙船逆水航行了小时,两船在静水中的速度都是,水流速度是则两船一共航行了________ .(用含的式子表示). 14.一个两位数M的个位上的数是、十位上的数是,把这个两位数的十位上的数与个位上的数交换位置,所得的新数记为,则________.(用含的式子表示)15.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5则________,第2019个格子填入的整数为________16.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:,…,我们把第一个数记为,第二个数记为,第三个数记为,…,第个数记为,则 1 2三、解答题17.计算(1)(2)(3)(4)18.先化简,再求值(1),其中(2),其中19.食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表;(1).这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2).若每袋标准质量为450克,求抽样检测的样品总质量是多少?20.一辆货车从龙信广场出发负责送货,向西走了2千米到达光华小区,继续向西走了3.5千米到达实验初中,然后向东走了6.5千米到达商和广场,最后返回龙信广场.(1).以龙信广场为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出光华小区、实验初中,商和广场的位置.(光华小区点表示,实验初中用点表示,商和广场用点表示)(2).光华小区与商和广场相距多远?(3).若货车每千米耗油升,那么这辆货车此次送货共耗油多少升?21.已知是有理数.(1).当时,先判断的正、负符号,再求的值;(2).当时,直接写出的值.22.一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1).小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2).如果小红买这种笔记本花了380元,她买了多少本?(3).如果小红买这种笔记本花了n元,她又买了多少本?23.如图是某年某月的月历,用如图所示的“凹”字型在月历中任意圈出5个数,设“凹“字型框中的五个数分别(1).若,则 1 2 ,若,则 3 (用含的式子表示);(2).在移动“凹”字型框过程中,小胖说被框住的5个数字之和可能为106,大胖说被框住的5个数字之和可能为90,你同意他们的说法吗?请说明理由;(3).若另一个“凹”字型框框住的五个数分别为,且,则符合条件的的值为 124.(问题背景)在数轴上,点表示数在原点的左边,点表示数在原点的右边,如图1所示,则有:① ;②线段的长度(1)(问题解决)点、点,点在数轴上的位置如图2所示,三点对应数分别为①线段的长度为________②若点为线段的中点,则点表示的数是________(用含的式子表示);③化简(2)(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应数为,点对应数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要秒,完全经过线段需要秒,求的值;②已知,当式子取最小值时,相应的的取值范围是________,式子的最小值是________.(用含的式子表示)答案解析部分一、单选题1.【答案】B【解析】【解答】解:-2020 的相反数是:2020.故答案为:B.【分析】根据相反数的定义:只有符号不同的两个数互为相反数,即可得出结论.2.【答案】C【解析】【解答】解:系数为:;次数为2+3+4=9。

2023学年初一数学第一学期期中考试卷(含答案)

2023学年初一数学第一学期期中考试卷(含答案)

2023学年初一数学第一学期期中考试卷(含答案)一、选择题(每题只有1个选项符合题意,每小题2分) 1. 41-的相反数是( ) A.41 B.-4 C.4 D.41- 2. 2021年5月11日,第七次全国人口普查主要数据结果公布,数据显示,全国人口共141178万人,比2010年增加7206万人,数据“7206万”用科学计数法表示正确的是( ) A.0.7206×108 B.7.206×108 C.7.206×107 D.72.06×107 3. 下列说法正确的是( )A. 近似数5千和5000的精确度是相同的B. 317500精确到千位可以表示为31.8万,也可以表示为3.18×105C. 2.46万精确到百分位D. 近似数8.4和0.7的精确度不一样 4. 下列各对数中,相等的一对是( )A.322与⎪⎪⎭⎫⎝⎛322 B.-22与(-2)2 C.-(-3)与-|-3| D.(-2)3与-23 5. 下列说法正确的是( )A. 如果一个数的绝对值等于它本身,那么这个数是正数B. 数轴原点两旁的两个数互为相反数C. 几个有理数相乘,当负因数的个数为奇数个时,积一定为负数D. -3.14既是负数,分数,也是有理数6. 面粉厂规定某种面粉每袋的标准质量为50±0.2kg ,现随机选取10袋面粉进行质量检测,结果如图所示:A.1袋B.2袋C.3袋D.4袋 7. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是( )A.ac >0B.|b|<|c|C.b+d >0D.a >-d 8. 观察下面三行数:第一行数:2、-4、8、-16、32、-64、······ 第二行数:0、-6、6、-18、30、-66、······ 第三行数:0、-3、3、-9、15、-33、······根据第一行数的排列规律,以及这三行数字之间的关系,确定第三行第8个数是( ) A.128 B.129 C.-128 D.-129二、填空题(每小题2分)9. 在一次立定跳远测试中,合格的标准是1.50m ,小红跳出了1.85m ,记为+0.35m ,小敏跳出了1.46m ,记为 m.10. 大陆上最高处是珠穆朗玛峰的峰顶,海拔为8848.86米,最低处位于亚洲西部名为死海的湖,海拔为-415米,两处高度相差是 米. 11. 比较大小:(1)-43 -65; (2)-(-3) |-4| 12. 绝对值小于2021的所有整数的和是 ;绝对值不大于3的负整数的积是 . 13. 若|x+7|+(y -6)2=0,则(x+y )2021的值为 . 14. 下列4个结论:①-πx 的系数为-1;②-5a 2b 的次数是3;③3nm 是多项式;④多项式3x 2y -6x 4y 2-21xy 3+27是7次多项式.其中正确结论的序号是 .15. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

人教版数学七年级上册《期中考试试卷》及答案

人教版数学七年级上册《期中考试试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各数中,其相反数等于本身的是( )A. B. 0 C. 1 D.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A 56℃ B. ﹣56℃ C. 310℃ D. ﹣310℃ 3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元 4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或57.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 9.若关于x ,y 多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 010. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102二、填空题11.比较大小:23- ____45- (填“>、< 或 =”). 12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.14.若24m n +=,则代数式642m n --的值为_______.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-= ⎪⎝⎭______ 三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 18.数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}20.某工厂第一车间有人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km ):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费元,超过3km 的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含 m,n 的代数式表示地面的总面积;(2)已知 n 1.5=,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 100 元,那么小王铺地砖的总费用为多少元?23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|值.(2)若|x ﹣2|=5,求x 的值是多少?(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,写出求解的过程.答案与解析一、选择题1.下列各数中,其相反数等于本身的是()A. B. 0 C. 1 D.【答案】B【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】A.的相反数是1,故不符合题意;B.0的相反数是0,故符合题意;C.1的相反数是-1,故不符合题意;D.的相反数是-a,当a=0时,符合题意;当a≠0时,不符合题意;故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃【答案】C【解析】试题解析:127-(-183)=127+183=310℃,故选C.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元【答案】D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 【答案】A【解析】分析】根据单项式、多项式、乘方的定义及有理数的大小比较方法逐项分析即可.【详解】A . 315x -不是单项式,正确; B . 没有最大的负有理数,故不正确;C . 432x x +是四次二项式,故不正确;D . 2(4)-中4-是底数,2是指数,故不正确;故选A .【点睛】本题考查了单项式、多项式、乘方的定义及有理数的大小比较方法,熟练掌握各知识点是解答本题的关键.5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 【答案】D【解析】【分析】根据同类项及合并同类项的方法逐项分析即可.【详解】A . 496x x x x -+=,故不正确;B . 2xy xy xy -=-,故不正确;C .x 3与x 2不是同类项,不能合并,故不正确;D . 1122a a a --=-,正确; 故选D .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或5【答案】C【解析】正数的绝对值有两个,且互为相反数,所以|±5|=5. 故选C.7.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 【答案】B【解析】【分析】化简后,根据相反数的定义【详解】A . ∵|3|--=-3,∴3-与|3|--相等,故不符合题意;B . ∵(25)--=25,25-=-25,∴(25)--与25-是互为相反数,故符合题意;C . ∵2(3)-=9,23=9,∴2(3)-与23相等,故不符合题意;D . ∵31-=-1,3(1)-=-1,∴31-或3(1)-相等,故不符合题意;故选B .【点睛】本题考查了相反数、绝对值、乘方的意义,熟练掌握各知识点是解答本题的关键.8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 【答案】C【解析】【分析】由数轴上点的位置,判断出a-b 和b 的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:由数轴上点的位置得:a-b 大于0,b 小于0,∴|a-b|+2|b|-a=a-b-2b-a=-3b ,故选C.【点睛】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 0【答案】B【解析】【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.10. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102【答案】C【解析】试题分析:先根据题中所给的规律,把式子中的1×2,2×3,…,99×100,分别展开,整理后即可求解.解:根据题意可知,3×(1×2+2×3+3×4+…+99×100)=3×[13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+…+13(99×100×101−98×99×100)]=1×2×3−0×1×2+2×3×4−1×2×3+3×4×5−2×3×4+…+99×100×101−98×99×100=99×100×101.故选C.点睛:本题是一道找规律题.解题的关键要找出所给式子的规律,并应用于后面求解的式子中.二、填空题11.比较大小:23-____45-(填“>、< 或=”).【答案】>【解析】【分析】比较两个负数的大小关系,可以比较这两个负数的绝对值,绝对值大的反而小.【详解】解:∵210412, 315515 ==∴24 35 <∴24 35 ->-【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.【答案】千万位【解析】【分析】根据精确度的定义解答即可,近似数的最后一个数字实际在什么位上,即精确到了什么位.【详解】∵16.9亿中的9在千万位上,∴似数16.9亿精确到千万位.故答案为:千万位.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.【答案】或12-【解析】【分析】由||a b a b +=+,可知a 与b 是平行向量,根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分两种情况计算可求得答案.【详解】∵||a b a b +=+,∴a 与b 是平行向量,∴a =5,b =7或a =-5,b =7,∴a b -=5-7=-2或a b -=-5-7=-12.故答案为:或12-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键. 14.若24m n +=,则代数式642m n --的值为_______.【答案】【解析】【分析】把642m n --变形为()622m n -+,将24m n +=代入计算即可.【详解】∵24m n +=,∴642m n --=()622m n -+=6-8=-2.故答案为:-2.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.如果给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.【答案】(0.3b-0.2a)【解析】【分析】首先表示出成本价是0.4a 元,再表示出买了b 份报纸的钱数,和退回的钱数,用卖的钱数+退回的钱数-成本可得赚的钱数.【详解】∵每份0.4元的价格购进了a 份报纸,∴这些报纸的成本是0.4a 元,∵每份0.5元的价格出售,一天共售b 份报纸,∴共卖了0.5b 元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a-b )元,他一天工赚到的钱数为:0.5b+0.2(a-b )-0.4a=0.3b-0.2a (元),故答案为(0.3b-0.2a ).【点睛】此题主要考查了列代数式,关键是正确理解题意,准确表示出各项的钱数.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-=⎪⎝⎭______ 【答案】1;【解析】【分析】根据所给新定义运算的例子求出12019g ⎛⎫ ⎪⎝⎭与(2019)f 的值,代入1(2019)2019g f ⎛⎫-= ⎪⎝⎭计算即可. 详解】∵(1)0f =,(2)1f =,(3)2f =,(4)3f =,…,∴(2019)f =2018. ∵122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,…, ∴12019g ⎛⎫ ⎪⎝⎭=2019, ∴1(2019)2019g f ⎛⎫-= ⎪⎝⎭2019-2018=1. 故答案为:1.【点睛】本题考查了新定义运算,以及有理数的减法,明确新定义的运算方法是解答本题的关键.三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 【答案】(1)-19;(2)113-;(3)24a a - 【解析】【分析】 (1)根据新定义的运算法则计算即可;(2)根据乘方法则计算第一项,根据绝对值计算第二项,根据乘除混合运算法则计算第三项,然后计算加减即可;(3)去括号合并同类项即可.【详解】(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭182021=-+-=19-; (2)原式8114333=-+-=-; (3)原式=()222255226a a a a a a -+--+=222255226a a a a a a --++-24a a =-.【点睛】本题考查了有理数的混合运算、以及整式的加减运算,熟练掌握运算法则是解答本题的关键. 18.在数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【解析】分析:在数轴上表示出各数,再从左到右用“<”连接起来即可.本题解析:如图所示, ,故−1.5<+(−1)<0<2<|−3|.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}【答案】见解析.【解析】【分析】根据有理数的分类方法解答即可.【详解】(1)正整数:{32,… }(2)整数:{4-,0,32 ,... }(3)负分数:{ 3.14-,35,… } (4)有理数:{0.618, 3.14-,4-,35,13-,6%,0,32,…} 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.20.某工厂第一车间有人,第二车间比第一车间人数45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?【答案】(1)9305x-;(2)10x+,4405x-;(3)1505x+【解析】【分析】(1)先表示出调动前第二车间人数,再相加可得;(2)把第一车间的人数加10,第二车间的人数减10即可;(3)将调动后第一车间人数减去第二车间人数可得.【详解】解:(1)调动前第二车间有(45x-30)人,∴两个车间共有x+(45x-30)= (9305x-)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(45x-30-10)=(4405x-)人;(2)根据题意得:(x+10)-(4405x-)= (1505x+)人,则调动后,第一车间的人数比第二车间的人数多(1505x+)人.【点睛】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费元,超过3km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?【答案】(1)在公司的东边10千米处;(2)共耗油4.8升;(3)共收到车费68元.【解析】【分析】(1)由题意把接送批客人的行驶路程相加,并进行计算即可;(2)根据题意先计算出总行驶路程,再乘以出租车每千米耗油0.2升即可求出在这过程中共耗油多少升;(3)根据题意分别计算出各个批次所收到的车费,再进行相加即可.【详解】解:(1)5+2+(-4)+(-3)+10=10(km).由题意可知规定向东为正,向西为负,答:接送完第5批客人后,该驾驶员在公司的东边10千米处.(2)由题意出租车每千米耗油0.2升可得:(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是理解题意并熟练运用正负数的意义进行分析求解.22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;,且客厅面积是卫生间面积的倍,如果铺平方米地砖的平均费用为100元,那么小王(2)已知n 1.5铺地砖的总费用为多少元?【答案】(1)S=6m+2n+18;(2) 铺地砖的总费用4500元【解析】【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m,n 的值代入计算即可.【详解】(1)S=2n+6m+3×4+2×3=6m+2n+18. (2)n=1.5时2n=3根据题意,得6m=8×3=24, ∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?【答案】(1)510;(2)0.9x ;0.830x +;(3)0.1 686a +【解析】【分析】(1)让300元部分按9折付款,剩下的300按8折付款即可;(2)等量关系为:购物款×9折;300×9折+超过300的购物款×8折; (3)两次购物王老师实际付款=第一次购物款×9折+300×9折+(总购物款-第一次购物款-第二次购物款300)×8折,把相关数值代入即可求解.【详解】解:(1)3000.9(600300)0.8510⨯+-⨯=(元).(2)当低于300元但大于100元时,他实际付款:0.9x 元;当大于300元时,他实际付款:300×0.9+(x-300)×0.8=(0.8x+30)元; (3)因为100300a <,所以第一次实际付款为0.9a 元,第二次付款超过300元,超过300元部分为(820300)a --元,所以两次购物王老师实际付款为()0.93000.90.8(820--300)0.1686a a a +⨯+=+元.【点睛】本题考查了列代数式,解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)6;(2) x=﹣3或7 ;(3)整数是﹣2、﹣1、0、1、2、3、4【解析】分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.【详解】(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x-a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。

答案:4或-412. 如果一个数除以3余1,这个数可能是______。

答案:413. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的倒数是1/3,这个数是______。

答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。

答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。

答案:1和7之间17. 一个数的平方根是2,这个数是______。

答案:418. 如果一个数的相反数是它本身,这个数是______。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 等腰三角形的两个底角相等。

()3. 1是质数。

()4. 平行四边形的对角线互相平分。

()5. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 3的平方是______。

3. 1千米等于______米。

4. 等边三角形的每个角都是______度。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 简述平行四边形的性质。

3. 解释负数和正数的区别。

4. 什么是等腰三角形?5. 解释乘法的分配律。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个数加上它的5倍等于30,求这个数。

3. 一个等边三角形的周长是18厘米,求它的边长。

4. 一个数减去7等于10,求这个数。

5. 一个数的平方是64,求这个数。

六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。

七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。

2. 画出一个长方形,并标出它的长和宽。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。

山东省济南市七年级数学上学期期中考试题(含答案)

山东省济南市七年级数学上学期期中考试题(含答案)

山东省济南市七年级数学上学期期中考试题(含答案)本试题分试卷和答题卡两部分,第I 卷共2页,满分为40分;第Ⅱ卷共6页,满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器第I 卷(选择题共40分)注意事项:第I 卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果向东走5米记作+5米,那么-3米表示( ) A .向东5米B .向西5米C .向东走3米D .向西走3米2.2022年上半年国内生产总值约为563000亿元,则数563000用科学记数法可表小为( ) A .356310⨯B .55.6310⨯C .456.310⨯D .65.6310⨯3.下图是由5个相同的小正方体搭成的几何体,其左视图为( )A .B .C .D .4.2022年春季开学后,济南市的天突然降温,2月16的最高'气温是2℃,最低气温是-4℃,那么这天的温差是( ) A .6℃B .-6℃C .2℃D .-2℃5.用一个平面截圆柱,则截面形状不可能是( ) A .圆B .三角形C .长方形D .椭圆6.下列各组数中.值相等的一组是( )A .-3和-(-3)B .13--和-(-3)C .-3和3-D .3和3-7.为了解某校七年级400名学生对烈士纪念日的了解情况,学校组织了烈士纪念日知识测试,并从中随机抽取了100名学生的成绩进行统计分析.下列说法确的是( ) A .400名学生是总体B .100名学生的成绩是样本容量C .被抽取的100名学生是总体的一个样本D .该校七年级每名学生的烈士纪念日测试的成绩是个体8.下列各数:1--,23-,312⎛⎫- ⎪⎝⎭,223⎛⎫- ⎪⎝⎭,()20211--,其中负数有( )A .2个B .3个C .4个D .5个9.如图一条数轴有点A 、B 、C .其中点A 、B 表小的数分别是-14,10,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的离为6,则C 点表示的数是( )A .1B .-3C .1或-5D .1或-410.如图a ,b ,c ,d ,e ,f 均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .-3C .7D .8第Ⅱ卷(非选择题共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等. 不按以上要求作答,答案无效二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.) 11.2022的相反数是______.12.如图,是正方体的一种表面展开图,各面都标有数字,则数字为-4的面与它对面的数字之和是______.13.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为______.14.若x ,y 为有理数,且()2320x y ++-=,则y x =______.15.A 、B 为同一数轴上两点,且A 、B 两点间的距离为3个单位长度,若点A 所表示的数是-1,则点B 所表示的数是______.16.如图,将正整数按此规律排列成数表,则2022分布在表中的第______行.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分6分)在数轴上表示下列各数:5,3.5,122-,-1,并把它们用“<”连接起来. 18.(本小题满分6分) 计算:(1)()1218-- (2)()2617633-+--.19.(本小题满分6分) 计算:()11124263⎛⎫-+⨯-⎪⎝⎭ 20.(本小题满分8分) 计算:()()3322332224⎛⎫÷-+-⨯-- ⎪⎝⎭21.(本小题满分8分)如图是由棱长都为1cm 的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和定视图不变,最多可以再添加块______小正方体.(3)直接出添加最多的小正方体后该几何体的表面积(包含底面).22.(本小题满分8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表小出库)+21,-32,-16,+35,-38,-20(1)经过这6天,仓库里的货品是______(填“增多了”还是“减少了”)(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6人要付多少元装卸费?23.(本小题满分10分)如图,有一个长6m,宽4m的长方形纸板,现要求以其组对边中点所在直线为轴旋转180°,可按两种方案进行操作.方案一:以较长的一组对边中点所在直线为轴旋转.如图1.方案二:以较短的一组对边中点所在直线为轴旋转,如图2.(1)上述操作能形成的几何体是______,这个现象用数学知识解释为______.(2)请通过计算说明哪种方案得到的几何体的体积大.24.(本小题满分10分)某社区调查社区居民双休日的学习状况,采取下列调查方式:(1)下列调查方式最合理的是______(填序号).①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内的200名在校学生.(2)将最合理的调查方式得到的数据制成了如下扇形统计图和条形统计图.①补全条形统计图②在这次调查中的200名居民中,在家学习的有______人.25.(本小题满分12分)某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子x=,请计算哪种方案划算;(1)若100x=,请计算哪种方案划算;(2)若250x=,如果两种方案可以组合使用,请帮助学校设计一种最省钱的方案.(3)若30026.(本小题满分12分)现将偶数个不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排 1 2第二排 4 3M值”,M=-+-=.例如,以上分组方式的“M值”为14234(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”:(2)将4个自然数a,6,7,8按照题目要求分为两排,使其“M值”为6,求a的值.参考答案与评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案DBAABDDCCC11.-2022 12.-7 13.6 14.9 15.2或-4 16.64 三、解答题17.解:正确画出数轴121 3.552-<-<< 18.解:(1)()1218--1218=+ 30=(2)()2617633-+--26(17)(6)(33)=+-+-+- 26(56)=+-30=-19.解:111(24)263⎛⎫-+⨯-⎪⎝⎭111(24)(24)(24)263=⨯--⨯-+⨯- (12)(4)(8)=---+-(12)4(8)=-++- (20)4=-+16=-20.解:()()3322332224⎛⎫÷-+-⨯-- ⎪⎝⎭()1398484⎛⎫⎛⎫=⨯-+-⨯-- ⎪ ⎪⎝⎭⎝⎭9648=-+-928=-+78=21.(1)该儿何体的主视图,左视图和俯视图如下:(2)2. (3)228cm22.解:(1)减少了;(2)21321635382050--+--=-, 46050510+=(吨); (3)213216353820162+++++=吨, 则装卸费为:1625810⨯=元.答:6天前仓库里有货品510吨,这6天要付810元装卸费. 23.解:(1)圆柱体,面动成体; (2)方案一:()233436cm ππ⨯⨯=. 方深:()232424cm ππ⨯⨯=. ∵3624ππ>∴方案一构造的圆柱的体积大 24.解:(1)②; (2)①②12025.解:(1)当100x =时, 方案一:10020020000⨯=(元):方案二:()1002008080%22400⨯+⨯=(元). ∵20000<22400. ∴方案一省钱; (2)当250x =时,方案一:1002001508032000⨯+⨯=(元): 方案二:()1002008025080%32000⨯+⨯⨯=(元), ∵32000=32000.∴方案一和方案二一样省钱: (3)当300x =时、①按方案一购买:1002008020036000⨯+⨯=(元); ②按方案二购买:()1002008030080%35200⨯+⨯⨯=(元):③先按方案购买100张课桌,同时送100把椅子;再按方案二购买200把椅子, 1002008020080%32800⨯+⨯⨯=(元). ∵360003520032800>>,∴先按方案一购买100张桌子,同时送100把椅子; 再按方案二购买200把椅子最省.26.解:(1)将“1,2,3,4”进行如下分组:第一列 第二列 第一排 1 3 第二排42∴以上分组方式的“M 值”为:14324M =--=; (2)①当06a <<时,将4个自然数“a ,6,7,8”按照题目要求进行如下分组:第一列 第二列 第一排 a 6 第二排87∴8766a -+-=. ∴3a =;a>时,②当8将4个自然数“a,6,7,8”按照题要求进行如下分组:第一列第二列第一排 6 7第二排 a 8a-+-=.∴6786a=;∴11a=或11.综上,3。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。

人教版七年级上册数学《期中考试试卷》及答案解析

人教版七年级上册数学《期中考试试卷》及答案解析

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。

初一上学期期中考试(数学)试题含答案

初一上学期期中考试(数学)试题含答案

初一上学期期中考试(数学)(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1. 下列说法正确的是()A. 不相交的两条线段是平行线B. 不相交的两条直线是平行线C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线2.(4分)2. 等于()A.﹣4 B.4 C.±4D.2563.(4分)3.如图,小手盖住的点的坐标可能为()A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)4.(4分)4. 如图,已知∠1=∠2,∠3=71∘,则∠4的度数是( )A. 19∘B. 71∘C. 109∘D. 119∘5.(4分)5. 将如图所示的图案通过平移后可以得到( )A. B. C. D.6.(4分)6. 下列说法中错误的是()A 3a中的a可以是正数、负数或零.B a中的a不可能是负数.C 数a的平方根有两个.D 数a的立方根有一个.7.(4分)7. 如图,两条直线相交于一点O,则图中共有()对邻补角.A.2 B.3 C.4 D.58.(4分)8.在,﹣2,,3.14,,0.020020002中,有理数的个数是()A.2 B.3 C.4D.59.(4分)9. 将点(1,2)向左平移3个单位,再向上平移1个单位,所得的点的坐标是()A.(-2,3)B.(4,3)C.(-2,1)D.(4,1)10.(4分)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 018次运动后,动点P的坐标是()A.(2018,0)B. (2018,1)C. (2018,2)D. (2017,0)二、 填空题 (本题共计7小题,总分28分)11.(4分)11. 的相反数是12.(4分)12. 如图,∠1=∠2,∠A=60°,则∠ADC= 度(第12题图)13.(4分)13. 数轴上离原点距离是 的点表示的数是14.(4分)14.已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a=15.(4分)16. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°, 则∠3= 度25 5(第16题图)16.(4分)17. 在平面直角坐标系中,已知线段AB=3,且AB ∥x 轴,且点A 的坐标 是(1,2),则点B 的坐标是17.(4分)19. 已知m 是的整数部分,n 是的小数部分,则m 2﹣n 2=三、 解答题 (本题共计9小题,总分82分)18.(4分)15. x ﹣2的平方根是±3,2x+y-7的立方根是2,则x 2+y 2的平方根是 19.(4分)18. 现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.20.(4分)20. 如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2 017的坐标为21.(12分)21.算一算:(1) (2)解方程:22.(10分)22.(10分)如图,直线AB 与CD 相交于点O,OE 平分∠BOD,∠AOC=70°,∠DOF=90°.求∠EOF 的度数.23.(10分)23.(10分)如图所示,一块长为18m ,宽为12m 的草地上有一条宽为2m 的曲折的小路,求这块草地的绿地面积.0492=-x 36.03125.021+24.(10分)24.(10分)把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。

湖北省武汉市江汉区2023-2024学年七年级上学期期中数学试题(含答案)

湖北省武汉市江汉区2023-2024学年七年级上学期期中数学试题(含答案)

2023~2024学年度第一学期期中质量检测七年级数学试题(考试时间:120分钟试卷总分:150分)第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.的相反数是()A .B .2023C .D .2.若汽车向东行驶记作,则向西行驶记作()A . B . C . D .3.已知下列各数:.其中负数有()A .1个B .2个C .3个D .4个.4.光盘的质量标准中规定:厚度为的光盘是合格品,则下列经测量得到的数据中,不合格的是()A .B .C .D .5.下列各式中,化简正确的是()A .B .C .D .6.用四舍五入法对0.6457取近似值(精确到百分位),正确的是()A .0.6B .0.64C .0.65D .0.6467.下列各式中运算正确的是()A .B .C .D .8.将写成省略括号和加号的形式是()A .B .C .D .9.已知,则的值是()A .0B .2C .D .710.下列运用等式的性质,变形不正确的是()A .若,则B .若,则C .若,则D .若,则二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接2023-2023-12023-120232km +2km 3km +2km -2km +3km -3km22, 3.5,0,,0.7,113-+--()1.20.1mm ±1.12mm 1.22mm 1.28mm 1.32mm()66-+=-()1717--=-()99+-=()55++=-43m m -=220a b ab -=33323a a a -=2xy xy xy-=-()()()3652--+--+-3652-+--3652--+-3652----3652--++25x y -=-22x y -+3-a b =55a b +=+x y =x y a a=m n =1313m n -=-x y =xc yc =填在答卷指定的位置.11.比较大小:_____.(填“>”,“<”或“=”)12.单项式的系数是______,次数是________;多项式的次数是________.13.根据武汉地铁轨道交通2035远景规划图,武汉地铁建成后总里程将达到1300000米,居于长江中下游地区的绝对领先地位.数1300000用科学记数法表示是_________.14.已知是方程的解,则________.15.某服装店将标价为m 元的上衣打8折出售,则实际售价是________元.16.(古代问题)某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少银币?设这件衣服值x 枚银币,可列一元一次方程是_________.三、解答题(共5小题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分)计算下列各题:(1);(2)18.(本小题10分)计算下列各题:(1);(2).19.(本小题10分)(1)计算:,(2)有理数a ,b ,c 在数轴上的对应位置如图,化简:.20.(本小题10分)某文具店在一周的销售中,盈亏情况如下表(盈利为正,单位:元).星期一星期二星期三星期四星期五星期六星期日合计200138.1188458表中周五,周六的数据缺失.(1)若周五亏损8元,请你算出周六盈利或亏损多少元;(2)若周六比周五多盈利10元,则表中周六缺失的数据是________;(3)若周五亏损,周六盈利,则周六盈利金额应大于_______元.21.(本小题12分)5-7-222x yz -222a ab a b ---2x =-63ax a -=+a =()()()()5629--++---()()1272374⨯---÷22222363x y x x y -+-+224123(2)m m m m ++-+-3221432225⎛⎫⎛⎫-+-⨯-+- ⎪ ⎪⎝⎭⎝⎭a b b c c a -+---27.8-70.3-已知:多项式.(1)化简;(2)当时,的值是__________;(3)若的值与x 的取值无关,求y 的值;第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.已知点P 在数轴上表示数m ,如果把点P 向左移动3个单位,再向右移动5个单位,那么它到原点的距离是6个单位,则________.23.已知,则________.24.如图,把一个周长为100的大长方形分割为五个四边形,其中A 是边长为18的正方形,B ,C ,D ,E 都是长方形,B ,D 的周长分别用b ,d 表示,则的值是_________.25.已知a ,b 为有理数,下列结论:①﹔②互为相反数的两个数的平方相等;③若,则;④若,则;⑤若a 大于b ,则a 的倒数小于b 的倒数.其中正确的是_________.(填序号)五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本小题10分)A ,B 两市盛产柑橘,国庆期间,A 市有柑橘240吨,B 市有柑橘260吨,现将这些柑橘全部运到C ,D 两个市场.C 市场需200吨,D 市场需300吨.从A 市运往C ,D 两个市场的费用分别为20元/吨和30元/吨,从B 市运往C ,D 两个市场的费用分别为24元/吨和32元/吨.设从A 市运往C 市场的柑橘重量为x 吨.(1)请用含x 的式子表示:①从A 市运往D 市场的柑橘重量为________吨;②从B 市运往D 市场的柑橘重量为__________吨;(2)求整个运输所需的总费用(用含x 的式子表示).27.(本小题12分)观察下面三行数.2222,224M x xy y N x xy x =++-=-+-2M N -2,4x y =-=-2M N -2M N -m =25,36,0m n mn ==<m n -=b d +a a >22a b =330a b -=0ab <a b a b +=+,…①,…②3,12,12,48,48,…③(1)第①行第6个数是________,第②行第7个数是_________;第⑤行第7个数是________;(2)已知3072是其中的数,则它是第________行的第_________个数,(3)取每行的第n 个数,若这三个数的和是14336,求n 的值.28.(本小题12分)对于直线上三个点R ,S ,T ,我们规定:如果R ,S 之间的距离等于R ,T 之间的距离的m 倍(m 为正整数),则R 叫做S 到T 的m 点.如图(1),数轴上A ,B ,C ,D 四点表示的数分别为,3,,4,则C 是B 到A 的2点,D 是A 到B 的7点.(1)A 是B 到C 的__________点,B 是A 到D 的________点;(2)若A 到B 的n 点与B 到A 的n 点是同一点E ,则_________,E 表示的数是_________;(3)如图(2),若F 是A 到B 的8点,求点F 表示的数;(4)若P 是A 到B 的k 点,Q 是B 到A 的k 点.直接写出点P ,Q 之间的距离.(用含k 的式子表示)2023~2024学年度第一学期期中考试七年级数学参考答案及评分标准卷I :一、选择题BDCDACDBDB二、填空题11.>12.;5;313.14.15.16.(此方程形式较多,只要和此方程道理相同的皆可,方程化简或者解出方程的不得分,列分式方程不得分)三、解答题17.(1)解:原式3分5分(直接写答案不扣分)(2)解:原式4分.5分2,4,8,16,32---1,2,4,8,16--3-1-n =2-61.310⨯3-0.8m()710212x x +=+5629=---+4=-8474=-+10=-(没有过程只有答案的扣3分)18.(1)解:原式3分5分(直接写答案不扣分)(2)解:原式3分5分(没有过程只有答案的扣3分)19.(1)解:原式3分5分(没有过程只有答案的扣3分)(2)解:原式3分5分(没有过程只有答案的扣3分).20.(1)依题:3分(元)5分答:盈利38元..6分(此题也可以用方程解决,列方程3分,解方程2分,答1分)(2)208分(3)3010分21.(1)解:∵∴1分3分5分(2)188分(3)解:又∵的值与x 的取值无关∴,10分即.12分22(21)(33)6x y x =-+-+26x x =+22412633m m m m =++--+275m m =--12549485=-+⨯+7.5=()b a b c a c =-+---22b a b c a c a b =-+--+=-+()()()45827.870.3200138.18188---------38=2222,224M x y y N x xy x =++-=-+-2222(22)(224)M N x xy y x xy x -=++---+-222244224x xy y x xy x =++--+-+44xy y x =+-()244414M N xy y x y x y-=+-=-+2M N -410y -=0.25y =卷Ⅱ:四、填空题22.4或23.11或24.10025.②④(写对一个得两分,写错或多写不得分)26.(1)①2分②(没有化简扣1分)4分(2)7分(四个式子中写对前三个得2分)(元)10分27.(1)64,64,1923分(2)第3行4分第10或11个(写对一个答案得一分,多写或写错不得分).6分(3)设第二行的第n 个数为x ,则第一行的第n 个数为,当n 为奇数时,解得8分∵7168不是2的整数幂,∴不符合题意,舍去:;当n 为偶数时,解得10分∵,∴,11分∴.12分28.(1)3;6.12分(2)1;0;.4分(3)解:∵F 是A 到B 的8点∴.5分(做错的同学如果写了这一步可得一分,做对了,没有写这一步不扣分)方法一:①若F 在A 、B 之间:则F :7分②若F 在B 的右侧:则F :9分∴点F 表示的数是或(方法二:∵F 是A 到B 的8点,∴5分8-11-240x -60x +()()()2030240242003260x x x x +-+-++213920x =-+2x -2314336x x x -++=7168x =2614336x x x -+-=2048x =-()1122048-=111n -=12n =8FA FB =()3373813---=+()33273817---=-732778FA FB =设F 对应的数为x ,则6分即或 7分解得或9分∴点F 表示的数是或)(此题做对一种情况可得3分,答案没有约分的扣1分)(4)或或 12分(通分化简的结果为)(三个答案一个一分,化不化简皆可,三个结果都对的情况下,多写扣1分)383x x +=-()383x x +=-()383x x +=--73x =277732771261k -+1261k +-66611k k +--+22666666,,111k k k k k k +-+-+-。

初一上学期期中考试数学试卷含答案

初一上学期期中考试数学试卷含答案

2019-2020学年七年级(上学期)期中考试数学试卷一.选择题(共10小题)1.已知在某个时刻时钟的时针与分针所成的最小的角为直角,则这个时刻可能是()A.3:30B.9:00C.12:15D.6:452.在校园艺术节活动中,参加摄影大赛的作品共有98件,比上届参赛作品增加了40%,则上届参赛作品有()A.39件B.60件C.70件D.71件3.一块长方体豆腐切三刀,最多能切成的块数(形状,大小不限)是()A.10B.8C.7D.64.如果一个数的倒数是﹣2,那么这个数的相反数是()A.B.C.2D.﹣25.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数()A.都等于零B.互为倒数C.有一个等于零D.互为相反数且都不等于零6.如果|a﹣3|=3﹣a,下列成立的是()A.a>3B.a<3C.a≥3D.a≤37.下列说法中,正确的是()A.两个有理数的和一定大于每个加数B.3与互为倒数C.0没有倒数也没有相反数D.绝对值最小的数是08.下列说法中,正确的是()A.近似数117.08精确到了十分位B.按科学记数法表示的数5.04×105,其原数是50400C.将数60340精确到千位是6.0×104D.用四舍五入法得到的近似数8.1750精确到了千分位9.A、B两地相距m千米,甲每小时行a千米,乙的速度是甲的1.2倍,那么乙从A地到B地的时间用式子表示为()A.小时B.小时C.小时D.小时10.下列说法正确的是()A.﹣1不是单项式B.2πr2的次数是3C.的次数是3D.﹣的系数是﹣1二.填空题(共14小题)11.把一张长方形纸片剪去一个角后,还剩个角.12.课本从第28页到第75页共有页.13.若一件衣服打八折出售,现价为200元,则这件衣服的原价是元.14.观察下列一组数:,,,,…根据该组数的排列规律,可推出第10个数是.15.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是.16.下列各数﹣4,3,0,﹣1,﹣2中最小的数是.17.比﹣3大的负整数是,比3小的非负整数是.18.绝对值和相反数相等的数.19.若a﹣b=1,则整式a﹣(b﹣2)的值是.20.若a、b互为倒数,c、d互为相反数,则(ab)4﹣3(c+d)3=.21.用科学记数法表示:425000=.22.一桶水,桶和水重a千克.桶重b千克,把水平均分成3份,每份重千克.23.已知x﹣3y=3,则7+6y﹣2x=.24.单项式﹣的系数为,次数是.三.解答题(共5小题)25.(1)(2)﹣24+|6﹣10|﹣3×(﹣1)201926.已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天共耗油多少升?28.某农场有耕地1000亩,分别种植粮食、棉花和蔬菜,其中蔬菜用地a亩,粮食用地比蔬菜用地的6倍还多b亩.(1)请用含a、b的代数式表示棉花的用地;(2)当a=120,b=4时,棉花用地多少亩?29.小明和妈妈玩游戏,小明每次从篮子中拿出8个球,妈妈就放回去3个,篮子中共有108个球.(1)第一次拿出后,篮子中剩下个球.(2)小明要取多少次才能把球全部拿出来?参考答案一.选择题(共10小题)1.已知在某个时刻时钟的时针与分针所成的最小的角为直角,则这个时刻可能是()A.3:30B.9:00C.12:15D.6:45【分析】根据分针在12,时针在3或9时,夹角正好是3个大格,是90°,即直角.【解答】解:3:00或9:00时,时针与分针的夹角为:3×30°=90°,即时针与分针所成的最小的角为直角.故选:B.2.在校园艺术节活动中,参加摄影大赛的作品共有98件,比上届参赛作品增加了40%,则上届参赛作品有()A.39件B.60件C.70件D.71件【分析】设上届参赛作品有x件,由参加摄影大赛的作品共有98件,比上届参赛作品增加了40%,列出方程,求解即可.【解答】解:设上届参赛作品有x件,根据题意可得:(1+40%)x=98,解得:x=70,答:上届参赛作品有70件,故选:C.3.一块长方体豆腐切三刀,最多能切成的块数(形状,大小不限)是()A.10B.8C.7D.6【分析】应该使每刀都同时经过四个面,这样最多可切8块.【解答】解:如图:切三刀,最多切成8块,故选:B.4.如果一个数的倒数是﹣2,那么这个数的相反数是()A.B.C.2D.﹣2【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的倒数是﹣,﹣的相反数是,故选:A.5.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数()A.都等于零B.互为倒数C.有一个等于零D.互为相反数且都不等于零【分析】根据0除以任何不为零的数商为0,结合和为0的两个数互为相反数,即可进行判断.【解答】解:根据0除以任何不为零的数商为0可知,这两个数互为相反数,根据0不能做除数可以得出这两个数的积不为0,所以这两个数都不为0,故选:D.6.如果|a﹣3|=3﹣a,下列成立的是()A.a>3B.a<3C.a≥3D.a≤3【分析】根据|a﹣3|=3﹣a,可得a﹣3≤0,即可求得a的取值范围.【解答】解:∵|a﹣3|=3﹣a,∴a﹣3≤0,解得:a≤3.故选:D.7.下列说法中,正确的是()A.两个有理数的和一定大于每个加数B.3与互为倒数C.0没有倒数也没有相反数D.绝对值最小的数是0【分析】根据有理数、倒数、相反数及绝对值的定义对各小题进行逐一判断.【解答】解:A、若a>0,b<0,则a+b<a,所以两个有理数的和一定大于每个加数说法错误;B、3的倒数是,﹣3的倒数是﹣,所以本选项错误;C、0没有倒数但0的相反数是本身0,所以0没有倒数也没有相反数说法错误;D、∵对于任何有理数a,都有|a|≥0,所以绝对值最小的数是0,故本选项正确;故选:D.8.下列说法中,正确的是()A.近似数117.08精确到了十分位B.按科学记数法表示的数5.04×105,其原数是50400C.将数60340精确到千位是6.0×104D.用四舍五入法得到的近似数8.1750精确到了千分位【分析】根据题目中的说法可以写出正确的结果,单后对照,即可得到哪个选项是正确,本题得以解决.【解答】解:A、近似数117.08精确到百分位,故该选项错误;B、按科学记数法表示的数5.04×105,其原数是504000,故该选项错误;C、将数60340精确到千位是6.0×104,正确;D、用四舍五入得到的近似数8.1750精确到万分位,故该选项错误.故选:C.9.A、B两地相距m千米,甲每小时行a千米,乙的速度是甲的1.2倍,那么乙从A地到B地的时间用式子表示为()A.小时B.小时C.小时D.小时【分析】首先表示出乙的速度,然后利用路程除以速度即可得到时间.【解答】解:甲每小时行a千米,乙的速度是甲的1.2倍,则乙的速度是1.2a千米/小时,则乙从A地到B地的时间用式子表示为.故选:B.10.下列说法正确的是()A.﹣1不是单项式B.2πr2的次数是3C.的次数是3D.﹣的系数是﹣1【分析】直接利用单项式的定义以及单项式的次数与系数确定方法分析即可.【解答】解:A、﹣1是单项式,故此选项错误,不合题意;B、2πr2的次数是2,故此选项错误,不合题意;C、的次数是3,正确,符合题意;D、﹣的系数是﹣,故此选项错误,不合题意;故选:C.二.填空题(共14小题)11.把一张长方形纸片剪去一个角后,还剩3或4或5个角.【分析】剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者边数不变.【解答】解:如图所示,把一张长方形纸片剪去一个角后,可得三角形或四边形或五边形,故还剩3或4或5个角,故答案为:3或4或5.12.课本从第28页到第75页共有48页.【分析】75页﹣开始页数+1=中间页数.【解答】解:75﹣28+1=47+1=48.故答案为:4813.若一件衣服打八折出售,现价为200元,则这件衣服的原价是250元.【分析】根据一件衣服打八折出售,现价为200元,可以设这件衣服的原件为x元,从而可以列出相应的方程,求得这件衣服的原价.【解答】解:设这件衣服的原价为x元,0.8x=200,解得,x=250,即这件衣服的原件是250元,故答案为:250.14.观察下列一组数:,,,,…根据该组数的排列规律,可推出第10个数是.【分析】由分子1,2,3,4,5,…即可得出第10个数的分子为10;分母为3,5,7,9,11,…即可得出第10个数的分母为:1+2×10=21,得出结论.【解答】解:∵分子为1,2,3,4,5,…,∴第10个数的分子为10,∵分母为3,5,7,9,11,…,∴第10个数的分母为:1+2×10=21,∴第10个数为:,故答案为:.15.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是9或﹣7.【分析】所求的点可能在数轴上表示1的点右边,也可能在左边,因此有两种结果,即1+8=9或1﹣8=﹣7.【解答】解:所求的点可能在表示1的点右边,也可能在左边,因此有两种结果,即1+8=9或1﹣8=﹣7.故答案为:9或﹣7.16.下列各数﹣4,3,0,﹣1,﹣2中最小的数是﹣4.【分析】先比较大小,再选出即可.【解答】解:﹣4,3,0,﹣1,﹣2中最小的数是﹣4,故答案为:﹣4.17.比﹣3大的负整数是﹣2,﹣1,比3小的非负整数是0,1,2.【分析】根据有理数的大小比较写出答案即可.【解答】解:比﹣3大的负整数是﹣2,﹣1;比3小的非负整数是0,1,2.故答案为:﹣2,﹣1,0,1,2.18.绝对值和相反数相等的数非正数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,数轴上某个数与原点的距离叫做这个数的绝对值进行分析即可.【解答】解:绝对值和相反数相等的数是非正数,故答案为:非正数.19.若a﹣b=1,则整式a﹣(b﹣2)的值是3.【分析】先化简,再整理,使结果中出现a﹣b的形式,再代入计算即可.【解答】解:a﹣(b﹣2)=a﹣b+2,∵a﹣b=1,∴a﹣b+2=1+2=3.故答案是3.20.若a、b互为倒数,c、d互为相反数,则(ab)4﹣3(c+d)3=1.【分析】两数互为相反数,和为0;两数互为倒数,积为1,由此可解出此题.【解答】解:依题意得:ab=1,c+d=0,所以(ab)4﹣3(c+d)3=1﹣0=1,故答案为:1.21.用科学记数法表示:425000= 4.25×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将425000用科学记数法表示为4.25×105.故答案为:4.25×105.22.一桶水,桶和水重a千克.桶重b千克,把水平均分成3份,每份重千克.【分析】直接根据题意表示出总的质量进而除以3得出答案.【解答】解:∵一桶水,桶和水重a千克.桶重b千克,把水平均分成3份,∴每份重千克.故答案为:.23.已知x﹣3y=3,则7+6y﹣2x=1.【分析】根据等式的性质,可得6y﹣2x的值,再根据有理数的加法,可得答案.【解答】解:x﹣3y=3,方程两边都乘以﹣2,得6y﹣2x=﹣6,方程两边都加7,得7+6y﹣2x=﹣6+7=1,故答案为:1.24.单项式﹣的系数为﹣,次数是3.【分析】根据单项式系数和次数的概念求解即可.【解答】解:单项式﹣的系数为﹣,次数是3,故答案为:﹣,3.三.解答题(共5小题)25.(1)(2)﹣24+|6﹣10|﹣3×(﹣1)2019【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(2)先算乘方,再算乘法,最后算加减法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:(1)=3+50÷4×(﹣)﹣1=3﹣2.5﹣1=﹣0.5;(2)﹣24+|6﹣10|﹣3×(﹣1)=﹣16+4+3=﹣9.26.已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.【分析】各项根据题意,利用绝对值的代数意义求出a与b的值,即可求出a+b的值.【解答】解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天共耗油多少升?【分析】(1)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在南方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油a升,那么乘以a就是一天共耗油的量.【解答】解:(1)根据题意:10+(﹣8)+(+7)+(﹣15)+(+6)+(﹣16)+(+4)+(﹣2)=﹣14,答:A处在岗亭南方,距离岗亭14千米;(2)由已知,把记录的数据的绝对值相加,即10+8+7+15+6+16+4+2=68,已知摩托车每行驶1千米耗油a升,所以这一天共耗油,68a升.答:这一天共耗油68a升.28.某农场有耕地1000亩,分别种植粮食、棉花和蔬菜,其中蔬菜用地a亩,粮食用地比蔬菜用地的6倍还多b亩.(1)请用含a、b的代数式表示棉花的用地;(2)当a=120,b=4时,棉花用地多少亩?【分析】(1)棉花用地=1000﹣蔬菜用地﹣粮食用地,把相关数值代入即可求解;(2)把a=120,b=4代入(1)中得到的式子求值即可.【解答】解:(1)粮食用地为6a+b,∴棉花的用地亩数=1000﹣a﹣(6a+b)=1000﹣7a﹣b;(2)当a=120,b=4时,1000﹣7a﹣b=156.答:棉花用地156亩.29.小明和妈妈玩游戏,小明每次从篮子中拿出8个球,妈妈就放回去3个,篮子中共有108个球.(1)第一次拿出后,篮子中剩下100个球.(2)小明要取多少次才能把球全部拿出来?【分析】(1)根据拿出的小球求出剩下的即可;(2)根据题意列出算式,计算即可求出值.【解答】解:(1)第一次拿出后,篮子中剩下100个球,故答案为:100;(2)(108﹣8)÷(8﹣3)+1=21,则小明要取21次才能把球全部拿出来.。

广东省深圳市深圳高级中学2024-2025学年上学期七年级期中考试数学试卷(含答案)

广东省深圳市深圳高级中学2024-2025学年上学期七年级期中考试数学试卷(含答案)

深圳高级中学2024—2025学年第一学期期中试卷初一数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.第一部分 选择题一、单选题:(每小题3分,共24分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90元,那么亏本70元记作( )A .60元B .70元C .60元D .70元2.为庆祝中华人民共和国成立75周年,10月1日、2日两天深圳举行舰艇开放日活动,市民可以在南山区蛇口邮轮母港参观“国庆回家”的深圳舰,深圳舰被称为“神州第一舰”,该舰经现代化改进后满载排水量达6600吨.数据6600用科学记数法可表示为( )A .66×102B .6.6×103C .6.6×104D .0.66×1053.下列比较大小正确的是( )A .B .C .D .4.如图,用一个平面从不同的位置,沿着不同的方向取截一个圆柱,圆柱的截面不可能是( )A .B .C .D . 5.如果,那么代数式的值是( )A .0B .5C .7D .96.若规定,则的结果为( )A .9B .C .81D .7.长方形窗户上的装饰物(遮光)如图中阴影部分所示,它是由两个半径均为的四分之一圆组成,则该窗户能射进阳光部分的面积是( )+--+±33(3)(2)->-32(2)(2)->-2332-<-(3)3-->--32a b -=-73a b -+1a b a b b -⊗=÷⨯1(9)3-⊗9-81-bA.B .C .D .8.下图是由同样大小的△按一定规律排列而成,其中第①个图形中有4个△,第②个图形中有9个△,第③个图形中有14个△,…,则第⑧个图形中△的个数为( )A .34B .39C .40D .44第二部分 非选择题二、填空题:(每小题3分,共15分)9.若互为倒数,则________.10.若与是同类项,则________.11.按照如图所示的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么________.12.数在数轴上对应的点的位置如图所示,则________.13.如果记,即当时,,那么2π2b 22πab b -2π22ab b -2π24ab b -,a b 2024()ab -=2mx y 34nx y m n +=a b +=,,a b c a c a b b +--+=22()1x f x x =+1x =2211(1)112f ==+________.(结果用含的代数式表示,为正整数)三、解答题:(本大题共7小题,其中第14题8分,第15题7分,第16题8分,第17题7分,第18题8分,第19题11分,第20题12分,共61分)14.计算:(1)(2)15.已知代数式.(1)化简;(2)当,时,求的值.16.某手工作坊计划一天生产50个布娃娃,但由于各种原因,实际每天生产布娃娃数量与计划每天生产布娃娃数量相比有出入.下表是某一周的生产情况(超过计划数量的部分记作正数,不足计划数量的部分记作负数,单位:个):星期一二三四五六日增减(1)根据记录可知前四天共生产布娃娃________个;(2)求该作坊本周实际生产布娃娃的个数;(3)该作坊实行每日计件工资制,每生产一个布娃娃可得20元,若超额完成任务,则超过部分每个另奖8元,若未能完成任务,则少生产一个扣5元,那么该作坊工人这一周的工资总额是多少元?17.劳动技术课程是基础教育的重要课程之一,其根本使命是全面提高未来国民的基本劳动技术素养,培养具有技术知识、创新思维、实践能力的一代新人.我校将利用天台劳动基地展开一系列的劳动实践操作活动.如图所示,天台上有块长为20米,宽为10米的长方形空地,现在将其余三面留出宽都是米的小路,中间余下的长方形部分做菜地.(1)用含的式子表示菜地的周长;(2)当米时,求菜地的周长.18.归纳是发现数学结论、解决数学问题的一种重要策略.“归纳”的过程,即从几种特殊情形出发,进而找到一般规律的过程.在数学的学习过程中,我们经常用这样的策略探究规律.【数学问题】平面图的顶点数、边数与区域数之间存在什么样的数量关系?【问题探究】为了解决这个问题,我们可以从类似于()、()、()、()、()五个图等具体的情形入手,借助表格探索平面图的顶点数、边数与区域数之间的一般规律.111(1)(2)()(3)(()()23f f f f f f n f n+++++++= n n 523()(24)634+-⨯-21423(1)8233---⨯-÷-22(24)2(21)M a ab ab a =+--++M 2a =3b =-M 4-5+3+6-7-12+2-x x 1.2x =a b c d e x y z图顶点数边数区域数331463694851015【问题解决】(1)将表格数据补充完整,________;________;(2)猜想:一个平面图的顶点数、边数、区域数之间的数量关系为:_________;(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中猜想的关系,确定这个图有多少条边?19.规定:是数轴上的三个点,点将线段分成和两部分,若或,则称线段互为二倍伴侣线段.点表示的数为,点所表示的数为且满足.(1)________,________;(2)若点在线段上,且线段互为二倍伴侣线段,则点表示的数为________;(3)点从点出发,同时点从点出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当线段互为二倍伴侣线段时,求的值.20.(12分)七(1)班数学项目小组为解决小琴奶奶家储物问题,计划将闲置纸板箱制作成储物盒.素材1如图1,图中是小琴奶奶家需要设置储物盒的区域,该区域可以近似看成一个长方体,底面尺寸如图2所示.x y z()a ()b ()c ()d m()e nm =n =x y z ,,A B C C AB AC BC 2BC AC =2AC BC =,AC BC A a B b ,a b 2(3)a ++50b -=a =b =C AB ,AC BC C M A N B t ,MB NB t如图是利用闲置纸板箱侧面拆解出的①,②两种宽均为cm (cm )长方形纸板,纸板的厚度忽略不计.长方形纸板①长方形纸板②分别将长方形纸板①和②以不同的方式制作储物盒.长方形纸板①的制作方式长方形纸板②制作方式素材2裁去角上4个相同的小正方形,折成一个无盖长方体储物盒.将纸片四个角裁去4个相同的小长方形,折成一个有盖的长方体储物盒.目标1熟悉材料按照长方形纸板①的制作方式制成的储物盒能够无缝隙的放入储物区域,则长方形纸板宽为________cm .利用目标1计算所得的数据,进行进一步探究.初步应用(1)按照长方形纸板①的制作方式,为了更方便地放入或取出储物盒,盒子四周需要留出1cm 宽度,求储物盒的容积.目标2储物收纳(2)按照长方形纸板②的制作方式制作储物盒,若和两边恰好重合且无重叠部分,如图,是小琴奶奶家里一个玩具机械狗的实物图和尺寸大小,请设计一个各个面均不大于600cm 2的储物盒收纳这只玩具狗.a 50a a a EF HG深圳高级中学2024-2025学年初一数学期中考试参考答案一、选择题(24分)题号12345678答案BBDBDCBB二、填空题(15分)题号910111213答案154三、解答题(61分)14.(1)解:原式=(2)解:原式15.解:(1);(2)当时,.16.(1)198解析:个,故前四天共生产布娃娃198个;(2)解法一:个,答:该厂本周实际生产布娃娃的个数为351个;解法二:个,答:该厂本周实际生产布娃娃的个数为351个;(3)解:(元),该厂工人这一周的工资总额是7085元17.(1)解:依题可得:菜地的周长为: (米)答:菜地的周长是米.(2)解:当米时,菜地周长为:(米),答:当米时,菜地的周长是52.8米.c 12n -523(24)(24)(24)20161818634⨯-+⨯--⨯-=--+=-3439()8921219232=---⨯-⨯=-+-=-2222244222244236M a ab ab a a a ab ab ab =+----=-+---=--2,3a b ==32(3)618612M =-⨯⨯--=-=(4536)504198-++-+⨯=(7122)503198351-+-+⨯+=(45367122)507351-++--+-+⨯=35120(4672)5(5312)87020951607085⨯-+++⨯+++⨯=-+=2(202)2(10)x x -+-404202x x =-+-606x =-(606)x -1.2x =60 1.2652.8-⨯=1.2x =18.解:(1);;(2);(其他答案如:,也可)(3)解:设该平面图有条边,由(2)得,解得:,所以,这个图有1997条边19.解:(1),;(2)或(3)解:当运动时间为秒时,对应的数为,对应的数为,且点在线段之间∴,当时,则,解得:当时,则,∴ 解得:.综上所述或20.目标1: 40解析:储物区域的长为40,由于收纳盒可以完全放入储物区域,则图1中的四角裁去小正方形的边长为(cm ),则收纳盒的宽2小正方形的边长(cm ),目标2:(1)因为四周留出1cm 宽,所以储物盒的长为:(cm ),宽为:(cm ),高为:(cm )所以储物盒的容积为:(cm 3)(2)设裁出的小长方形的宽为cm ,长为cm ,则,所以所以储物盒的长为:(cm ),宽为: cm ,高为:cm当时,储物盒的长为:,宽为,不符合题意,舍去当时,储物盒的长为:,宽为,12m =6n =1x z y +-=1y x z =+-y 9999991y +-=1997y =3a =-5b =13-73t M 33t -+N 5t +B MN 5(33)83,BM t t BN t =--+=-=2BM BN =832t t -=85t =2BN BM =2(83)t t -=166t t -=167t =85t =167t =cm (5040)25-÷=a =+⨯302540=+⨯=40238-=30228-=(5038)26-÷=382866384⨯⨯=x y 2()1002y x y -=-252xy =+10021002(25502x y x -=-+=-(402)x -x 12x =1225312y =+=50123835-=>402121614-⨯=>3816608600S =⨯=>13x =132531.52y =+=50133735-=>4021314-⨯=3714518600S =⨯=<当时,储物盒的长为:,宽为答:可以利用纸板②裁去4个长为31.5cm ,宽为13cm 的小长方形,制作成长为37cm ,宽为14cm ,高为13cm 的储物盒:或裁去4个长为32cm ,宽为14cm 的小长方形,制作成长为36cm ,宽为12cm ,高为14cm 的储物盒,收纳这只玩具狗.14x =1425322y =+=50143635-=>4021412-⨯=3614504600S =⨯=<。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

七年级数学上册期中试卷及答案

七年级数学上册期中试卷及答案

七年级数学上册期中试卷及答案知识的宽度、厚度和精度决定人的成熟度。

每一个人比别人成功,只不过是多学了一点知识,多用了一点心而已。

下面给大家分享一些关于七年级数学上册期中试卷及答案,希望对大家有所帮助。

一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2004,0中,正数有( )A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2004=1是正数,0既不是正数也不是负数,综上所述,正数有3个.故选C.点评:本题考查了正数和负数,主要利用了相反数的定义,绝对值的性质和有理数的乘方,熟记概念是解题的关键.2.下列各式计算正确的是( )A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.故选C.点评:主要考查了乘方里平方的意义.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;解题还要掌握乘方的运算法则.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是( )A.a>1B. b>1C. a<﹣1D. b<0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a<﹣1<0<b<1,< p="">A、a>1,选项错误;B、b>1,选项错误;C、a<﹣1,故选项正确;D、b<0,故选项错误.故选:C.点评:此题考查数轴上点的坐标特点,注意数形结合思想的渗透.4.在,π,0,﹣0.010010001…四个数中,有理数的个数为( )A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.故选B.点评:本题考查有理数的概念. 如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.本题中π是无限不循环小数,故不是有理数.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为( )A. ±2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:根据题意,得,解得:m=﹣2.故选B.点评:本题主要考查了一元一次方程的定义.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是( )A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中移项、合并同类项得:m+2n=1.故选B.点评:本题考查式子的变形,知道一个未知数的值,然后代入化出另外两数的关系.7.下列关于单项式一的说法中,正确的是( )A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.点评:本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.下列每组中的两个代数式,属于同类项的是( )A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可.解答:解:A、中,所含字母相同,相同字母的指数不相等,∴这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,∴这两个单项式是同类项,故本选项正确.故选D.点评:本题考查的是同类项的定义,即所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为( )A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.解答:解:售价为:a(1+25%)(1﹣10%).故选C.点评:本题考查了列代数式,比较简单,理解售价与进价之间的百分比的关系是解题的关键.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是 =2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣.考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .故答案为:5,﹣ .点评:本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为3×108米/秒.考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 000 000用科学记数法表示为3×108.故答案为:3×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.13.比较大小:﹣5 < 2,﹣> ﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣5<2,∵ < ,∴﹣ >﹣ .故答案为:<,>.点评:此题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.点评:主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.15.若|a|=8,|b|=5,且a+b>0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.解答:解:依题意,得= .故答案是: .点评:本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求x、y这两个数的平均数.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+ = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.点评:此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案.解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,故答案为:1或﹣5.点评:本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣+ )×(﹣48)(3)16÷(﹣2)3﹣(﹣)×(﹣4)(4)﹣12﹣(﹣10)÷ ×2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1×(﹣48)﹣×(﹣48)+ ×(﹣48)=﹣48+8﹣36=﹣76;(3)原式=16÷(﹣8)﹣=﹣2﹣=﹣2 ;(4)原式=﹣1﹣(﹣40)+16=﹣1+40+16=55.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;(2)原式=4a3﹣7ab+1+6ab﹣4a3=1﹣ab.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y= 时,原式=51.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项合并得:5x=5,解得:x=1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有10 块,当黑砖n=3时,白砖有14 块.(2)第n个图案中,白色地砖共4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.故答案为6,10,14,4n+2.点评:本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力,难度适中.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?考点:整式的加减.专题:计算题.分析:(1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油;(2)当x=5时,6x2﹣18x=6×52﹣18×5=150﹣90=60(桶),答:当x=5时,便民超市中午过后一共卖出60桶食用油.点评:此题考查的知识点是正式的加减,关键是正确列出算式并正确运算.25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油82×2=164升,则途中至少应补充64升油.点评:本题考查了正数和负数,掌握有理数的加法运算是解题关键,注意不论向哪行驶都耗油.26.如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A 的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(+3 ,+4 ),B→D(+3 ,﹣2 ),C→ D (+1,﹣2 );(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置.分析:(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:点评:本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.27.将长为1,宽为a的长方形纸片( <a<1)如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后剩下的矩形为正方形,则操作终止.< p="">(1)第一次操作后,剩下的矩形两边长分别为a与1﹣a ;(用含a 的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析:(1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a>2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a<2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片( <a<1),< p=""> ∴第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,∴1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a>2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a>2a﹣1.所以,是所求的一个值;②当1﹣a<2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a<2a﹣1.所以,是所求的一个值;所以,所求a的值为或 ;故答案为(1)a与1﹣a;(2) .点评:本题考查了一元一次方程的应用,解题的关键是分别求出每次操作后剩下的矩形的两边的长度,有一定难度.。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008—2009学年第一学期期中考试 初一年级数学试卷(20XX 年11月)一.认真选一选(3′×10=30′)1.在下列各数-(+3)、-22、(-31)2、-432、-(-1)2007、-|-4|中,负数的个数是()A .2B .3C .4D .52.月球的质量约为73400 000 000亿吨,用科学记数法表示这个数是( ). A .734×108亿吨B .73.4×109亿吨C .7.34×1010亿吨D .0.734×1011亿吨 3.下列各题中的两项是同类项的是( ).A .-2ab 与b a 221-B .33xy 与222y x C . 2x 与-2y D .23与35-4.下列各式的值与的a -b -c 值不相等...的是( ) A 、a -(b+c ) B 、a -(b -c ) C 、(a -b )+(-c ) D (-c )-(b -a ) 5.若代数式2x 2+3x +7的值为8,则代数式4x 2+6x -9的值是( ) A .13B .2C .17D .-76.如果12)2(1=-+-a xa 是关于x 的一元一次方程,那么a 的值是 ( ) A .2 B .-2 C .2或-2D .-1或17.若代数式312-m 与321+m 的值互为相反数,则m 的值为( )A .0 B.71- C.1- D.716-8.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:-=+y y 21212?小明想了一想便翻看了书后的答案,此方程的解是35-=y ,很快补好了这个常数,并迅速地完成了作业,同学们你们能补出这个常数吗?它应是( )A . 1B . 2C . 3D .49.观察下面的一列单项式:x 、22x -、34x 、48x -、516x 、…,根据其中的规律,得出的第10个单项式是( ).A .1092x -B .1092xC .992x -D .992x10.已知a 、b 、c 在数轴如图所示 ,那么化简c a bc ---得( )二.细心填一填(每题2分×10=20分)1.某日中午,北方某地气温由早晨的零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地的气温是______℃.2.在数轴上,表示与-1的点距离为5的数是_________. 3.若单项式232m xy -与233-n y x 是同类项,则m-n=________.4.如果|a-1|+(b+2)2= 0,则(a+b )2003+a2004的值为。

5.单项式23ba π-的系数是,次数是。

6.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1,则cd m mba -++3的值是. 7.某校去年初一招收新生x 人,今年比去年增加20%,则今年该校初一学生人数为____________.8、代数式4(x+y)实际意义可以是________________________9.在植树节活动中,A 班有30人,B 班有16人,现要从A 班调一部分人去支援B 班,使B 班人数为A 班人数的2倍,那么应从A 班调出多少人?如设从A 班调x 人去B 班,则根据题意可列方程:10.根据如图所示的程序计算,若输入x 的值为-1,则输出y 的值为.三.解答题(50分)1.计算(3分×3=9分)(1)361)273543(÷-+-(2)]2)32(3[4322--⨯-⨯-(3)()23211421512324--÷-+⨯⎪⎭⎫ ⎝⎛---.…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 学 号______2.化简求值:(5+5=10分)(1)4xy -[( x 2 + 5xy -y 2) - ( x 2+ 3xy - 2y 2)], 其中x= -41y= – 21(2)已知A =a 2-2a-1 ,B = 3a 2-4a +2,求当a =-1时,3A -B 的值。

3.解方程:(3×3=9分)(1) 5(x +8)=4x +4 (2)163242=--+x x (3)4.22.045.05-=+--x x4.已知方程3 (5x -6) = 3-20x 的解也是方程3a -10x = 6a+30x 的解求a 的值(5分)5.若代数式)635()232(222bx x x x x ax ---++-的值与x 无关,试求b a ,的值(4分)6.(6分)用棋子摆下面一组正方形图案(9)……①②③(1)(_____________,第100个图形需要的棋子颗数是_____________. 7.(7分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过15 m 3时,按2元/m 3计费;月用水量超过15 m 3时,其中的15m 3仍按2元/m 3收费,超过部分按2.4元/m 3计费.设每户家庭的用水量为x m 3时,应交水费y 元.;(1)分别求出当150≤≤x 和15>x 时,水费y 的计算公式; (22008—2009学年第一学期期中考试初一年级数学试卷(答案)一.认真选一选(3′×10=30′)1.C2.C3.D4.B5.D6.A7.D8.B9.A 10.C 二.细心填一填(每题2分×12=24分)1. 42. 4或63. 24. 05. 2π-,46. 0或-27. 1.2x 人8.不唯一.9. 2(30-x)=16+x 10. 12三.解答题(50分)1.计算(3分×3=9分)(1)361)273543(÷-+- (2)]2)32(3[4322--⨯-⨯-解:原式=362736353643⨯-⨯+⨯-----1′解:原式=⎥⎦⎤⎢⎣⎡-⨯-⨯-294943-------1′=-27+60-126-----------2′=-()2443--⨯-------2′=-93---------- 3′ =29----------------3′(3) ()23211421512324--÷-+⨯⎪⎭⎫ ⎝⎛---.解:原式=()111811441211⨯-+⨯--------- 1′ =118111--------------------2′=11812----------------------3′2. 化简求值:( 5+5=10分)(1)解:原式=[]22222354y xy x y xy x xy +---+------1′当x= -41 y=21-时, =)2(42y xy xy +---------2 ′原式=2)21()21()41(2---⨯-⨯------4=22y xy - ---------3′=0--------------5′(2)解:原式=)243()12(322+----a a a a ----1′当a=-1时,原式=-2×(-1)-5------4=24336322-+---a a a a ------2′ =-3-------------5′=52--a ----------------3′3.解方程:(3×3=9分)(1)5x+40=4x+4 ------1 ′(2) 3(x+2)-2(2x-3)=12 --------1′5x-4x=4-40--------2 ′3x+6-4x+6=12 --------2 ′ x=-36 --------3 ′x=0-----------3′ (3)5122401055010-=+--x x ---------- 1′2(10x-50)-5(10x+40)=-24----------2′20x-100-50x-200=-24-30x=276x=546-----------3′4. 解:由题意得,15x-18=3-20x--------1′5330653103⨯+=⨯-a a ----3′15x+20x=3+18 3a-6=6a+1835x=21 -3a=24-----4′x=53-------- 2 ′ a=-8------5′ 5.原式=bx x x x x ax 635232222++-++----------1′6 (每空1分)=2)66()62(2+++-x b x a --------------2′∵代数式的取值与 x 无关∴2a-6=0 , a=3; ---------3′4n 400 6+6b=o, b=-1--------4′ (2)四月份:28÷2=143m ---------4,7.(1)当150≤≤x 时,y=2x------1′五月份:2.4x-6 =37.23m15>x 时,y=30+2.4(x-15)x=183m -------5=2.4x-6-------3′六月份:2.4x-6=42,x=203m --------6第二季度共用水:14+18+20=523m --------7。

相关文档
最新文档