《三边成比例的两个三角形相似》同步练习题
27.2.1 第2课时 三边成比例的两个三角形相似
A′
B′
C′
归纳
学案21页归纳
由此得到三角形的判定定理: 三边成比例的两个三角形相似.
典例精析
学案21页交流
例1 判断图中的两个三角形是否相似,并说明理由.
C
D 2.4
3
3.5
E
1.8
2.1 F
A
4
B
解:在△ABC 中,AB>BC>CA,在△DEF中,DE>EF>FD
∴ △ABC∽ △DEF
方法归纳
(3) AB=12, BC EF=20, DF=30.
(注意:大对大,小对小,中对中.)
例2 如图,在△ABC和△ADE中,AB BC AC .
∠BAD=20°,求∠CAE的度数.
AD DE AE
解:∵
∴△ABC∽△ADE(三边成比例的两个三角形相似)
∴∠BAC=∠DAE
∴∠BAC - ∠DAC =∠DAE-∠DAC
A
即 ∠BAD=∠CAE
B
∵∠BAD=20° ∴∠CAE=20°
C
D E
课堂小结
利用三边判定两个三角形相似
三边成比例 的两个三角
形相似
相似三角形的判定定理的运用
当堂练习
学案21页反馈
1.如图,某地四个乡镇 A,B,C,D 之间建有公路,已知 AB = 14 千米,AD = 28 千米,BD = 21 千米,DC = 31.5 千米,公路 AB 与 CD 平行吗?说出你的理由.
所以△ABC∽△A′B′C′. 试利用前面的定理证明该结论.
证明:如图,在AB上截取AD=A′B′ 过点D作DE∥BC交AC于点E ∵ DE∥BC ,∴△ADE∽△ABC
三边成比例的两个三角形相似例题
三边成比例的两个三角形相似例题在数学的世界里,三角形总是充满了惊喜,特别是当我们谈到相似三角形的时候。
想象一下,两个三角形就像是兄弟,一个高一个矮,但无论如何,他们的比例关系总是保持得很好的。
你有没有见过那种双胞胎,一模一样但身高差得很远的?就是这种感觉!你看,一个三角形的边长是另一个的两倍,结果看起来就像是放大镜下的影像。
听起来是不是有点神奇呢?这时候,我们就得聊聊“三边成比例”的事儿了。
嘿,别小看这三边,它们可是相似三角形的灵魂所在。
想象一下,如果三角形A的边长分别是3、4、5,三角形B的边长如果是6、8、10,哇,真是天上掉下来的美好比例!它们就像是搭档,互相扶持着,各有各的风格,却又不离不弃。
这样的搭档可真是相得益彰,分分钟给我们带来惊喜。
咱们先来举个例子吧。
假设你正在外面野营,突然遇到一个巨大的三角形帐篷,旁边还有一个小巧玲珑的三角形帐篷。
仔细一看,它们的边长比例是一样的,真是可爱得让人忍不住想要拍照。
这个时候,帐篷的高度也会让你想到,哦,原来只要比例对了,大小无所谓,品质依旧在线。
就像那些穿着同样衣服的朋友,虽然身高差异,但看起来还是那么和谐,简直就是一幅画!再说了,三边成比例不仅仅是个数学公式,更像是生活中的一条真理。
想想你身边的朋友,每个人都有自己的特点,有的人高冷,有的人热情。
虽然性格各异,但我们总能找到共同点。
比如你们一起去看电影,虽然票价不一样,但分享的快乐才是最重要的嘛。
这种“相似”不仅仅体现在形状上,还体现在心灵的交融上。
学习三角形相似也不是光靠运气的。
咱们得掌握一点点技巧。
想象一下,考试前,你正在复习相似三角形的性质,突然发现“如果两三角形的对应边成比例,且对应角相等,那么它们就是相似的”这句话。
这就像是发现了一把打开知识宝库的钥匙,打开后,哇,里面竟然是满满的惊喜!这个道理简直就是学习数学的小秘密,让我们无畏无惧,勇往直前。
说到这里,咱们再来谈谈如何证明两个三角形相似。
初中数学相似三角形专题练习题-相似三角形的判定和应用
相似三角形的判定【知识梳理】1.相似三角形的概念:如果两个三角形的三个角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形2.相似比:相似三角形对应边的比叫相似比,如果两个三角形的相似比为1,则这两个三角形是全等三角形3.相似三角形的预备定理:平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
4.相似三角形判定定理1:两角对应相等的两个三角形相似5.相似三角形判定定理2:两边对应成比例且夹角相等的两个三角形相似6.相似三角形判定定理3:三边对应成比例的两个三角形相似7.直角三角形相似的判定定理:斜边和一直角边对应成比例的两个直角三角形相似【例题剖析】【例1】在ABC ∆和'''C B A ∆中,有下列条件(1)''''C B BC B A AB =,(2) ''''C B BCC A AC =, (3) '∠=∠A A ,(4) 'C C ∠∠=,如果从中任取两个条件组成一组,那么能判断ABC ∆∽'''C B A ∆的共有几组( )A. 5组B. 4组C. 3组D. 2组【例2】下列命题:(1)三边对应边成比例的两个三角形相似;(2)两边对应成比例且一个角对应相等的两个三角形相似;(3)一个锐角对应相等的两个直角三角形相似;(4)一个角对应相等的两个等腰三角形相似.其中正确的是( )A. (1)(3)B. (1)(4)C. (1)(2)(4)D. (1)(3)(4)【例3】如图,矩形ABCD 是由三个正方形ABEG ,GEFH ,HFCD 组成的, 证明:AEF ∆∽AEC ∆笔记 思考【例4】 已知:如图,在ABC ∆中,CE BD ,分别是AB AC ,边上的高.求证:ABD ∆∽ACE ∆【例5】如图,已知AEACDE BC AD AB ==,试说明CAE BAD ∠=∠【经典习题】(A )组1.下列各组条件中,不能判定△ABC 和△A 1B 1C 1相似的是( )A.11B A AB =11C B BC ,∠A =∠A 1 B. 11B A AB =11C B BC =11C A ACC. ∠C =∠C 1,11C B BC =11C A ACD. ∠B =∠B 1,∠C =∠C 12.下列命题中,正确的是( )A. 所有的矩形都相似B. 所有的直角三角形都相似C. 有一个角是100°的所有等腰三角形都相似D. 有一个角是50°的所有等腰三角形都相似 3.下列命题中,真命题是( )A. 所有直角三角形都相似B. 所有等腰三角形都相似C.所有等腰直角三角形都相似D. 所有菱形都相似笔记 思考4.如图,点D 是ABC ∆边AC 上一点,满足∠CBD =∠A ,则( )A. △CBD ∽△BADB. △CBD ∽△CABC.△ABD ∽△ACBD. 图中没有相似三角形 5.下列命题一定正确的是( )A. 两个等腰三角形一定相似B. 两个等边三角形一定相似C.两个直角三角形一定相似D. 两个含有30°角的三角形一定相似 6.下列说法正确的是()A. 相似三角形是全等三角形B.不相似的三角形可能是全等三角形C.不全等的三角形不是相似三角形 D .全等三角形是相似三角形的特例. 7. 如图,在ABC ∆中,90BAC °∠=,AD BC ⊥,垂足为点D ,ABC ∠的平分线分别交AD .AC 于点E .F ,连结DF ,下列结论中错误的是( )A. ABD ∆∽ADC ∆B.BDF ∆∽DFA ∆C.BDE ∆∽BAF ∆D.ABE ∆∽CBF ∆8. 下列两个三角形不一定相似的是( )A. 有一个角为60°的两个等腰三角形B. 有一个角为80°的两个等腰三角形C.有一个角为90°的两个等腰三角形D. 有一个角为100°的两个等腰三角形9. 如图,已知△ABC 是直角三角形,∠C=90°,DA ⊥AB .欲使△ABC 与△DBA 相似,除了添加角上的条件如∠ABC=∠DBA 外,还可添加一个边上的条件是 .(只需填写一个你认为符合要求的条件)(B ) 组10. 已知:如图,在△ABC 中,∠ACB =90°,CM 是斜边AB 上的中线.过点M 作CM 的垂线与AC 和CB 的延长线分别交于点D 和点E ,求证:△CDM ∽△ABCCBAD笔记 思考11. 已知:如图,△ABC 为等腰直角三角形,∠ACB =90°,点E.F 是AB 边所在直线上的两点,且∠ECF =135° (1)求证:△ECA ∽△CFB(2)若AE =3,设AB =x ,BF =y ,求 y 与x 之间的函数关系式,并写出定义域12.如图,在ABC ∆中,90CAB °∠=,CFG B ∠=∠,过点C 作CE AB ∥,交CAB ∠的平分线AD 于点E(1)不添加字母,找出图中所有相似的三角形,并证明(2)证明:FC ADCG ED=(C)组13.已知:如图,AD 是△ABC 的角平分线,以点B 为圆心,BD 长为半径画弧,交AD 于点E .求证:AB AD AC AE ⋅=⋅ABCDE 笔记 思考14.已知:如图,在△ABC 中,D 为AB 边上一点,∠A=36º,AC=BC ,AC 2=AB·AD .求证:(1)△ABC ∽△CAD ;(2)△BCD 是等腰三角形.15.如图,在直角坐标系内,A (0,6),B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P.Q 移动的时间为t 秒。
4.4第3课时 三边成比例的两个三角形相似
第3课时 三边成比例的两个三角形相似【学习目标】1.掌握三边对应成比例判定两个三角形相似的方法. 2.会选择合适的三角形相似的判定方法解决简单问题. 【学习重点】掌握相似三角形的判定定理:“三边成比例的两个三角形相似”. 【学习难点】会准确运用三角形相似的判定定理来判断、证明及计算.情景导入 生成问题1.两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似. 2.下列说法正确的是( C )A .有一个角相等的两个等腰三角形相似B .所有的直角三角形相似C .有一个锐角对应相等的两个直角三角形相似D .所有的等腰三角形相似3.已知△ABC 如图所示,则与△ABC 相似的是图中的( C ),) ,A ) ,B ) ,C ) ,D )自学互研 生成能力知识模块一 探索三边成比例的两个三角形相似师:我们上两节课学过什么定理?师生共同回忆,在上两节课的探索中,我们知道:三角对应相等、三边对应成比例的两个三角形相似;两角分别相等的两个三角形相似;两边成比例及夹角相等的两个三角形相似.师:那么判定三角形相似还有没有其他条件呢?今天我们再次踏上探索之旅途. 画△ABC 与△A ′B ′C ′,使AB A′B′、BC B′C′和CAC′A′都等于给定的值k . (1)设法比较∠A 与∠A ′的大小.(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由. 改变k 值的大小,再试一试.生:按照上面的步骤进行,这里的k 由自己定,为了节约时间,一个组取一个相同的k 值,不同的组取不同的k 值.内容:学生根据画出的相似三角形的图形及在画相似三角形中的“发现”进行相互交流,教师给予适当的帮助,后由学生展示、讲解画出来的相似三角形,展示自己探索的过程及自己得出的结论.师:经过大家的亲身参与体会,你们得出的结论是什么呢? 生:结论为∠A =∠A ′,△ABC ∽△A ′B ′C ′,理由是:∠A =∠A ′,AB A′B′=CAC′A′. 根据“两边成比例及夹角相等的两个三角形相似”可知:△ABC ∽△A ′B ′C ′. 师:其他组的同学的结论相同吗?生:相同.师:经过大家的探讨,我们又掌握了一种相似三角形的判定方法. 师:(演示课件)判定定理3:三条边成比例的两个三角形相似. 知识模块二 判定定理3的应用1.自学自研教材P 94页的例3. 2.完成教材P 94的随堂练习.师:幻灯片展示:如图,△ABC 与△A ′B ′C ′相似吗?你有哪些判断方法?生:先独立思考,然后小组合作交流. 解:△ABC ∽△A ′B ′C ′.判断方法有:1.三边成比例的两个三角形相似;2.两角分别相等的两个三角形相似;3.两边成比例且夹角相等的两个三角形相似;4.定义法.目的:巩固对本节知识的理解;并让学生将上两节课:相似三角形的判定定理1、2,与本课知识:相似三角形的判定定理3的内容系统的掌握.对应练习:1.教材P 95页习题4.7第1题.解:∵86=43,107.5=43,129=43.∴86=107.5=129,∴这两个三角形相似.2.教材P 95页习题4.7第2题. 答:△ABC ∽△EFG .利用判定定理3.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索三边成比例的两个三角形相似 知识模块二 判定定理3的应用检测反馈 达成目标1.下列条件不能判定△ABC 与△ADE 相似的是( D )A .AE AC =ADAB,∠CAE =∠BAD B .∠B =∠ADE ,∠CAE =∠BAD C .AD AB =AE AC =DE BC D .DE BC =ADAB,∠C =∠E2.下列四个三角形,与右图中的三角形相似的是( B ),A ) ,B ),C ) ,D )3.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试用三边对应成比例的方法说明△ABC ∽△DEF .证明:计算得AC =2,BC =10,AB =4,DF =22,EF =210,ED =8,∴AC DF =BC EF =AB DE=2,∴△ABC ∽△DEF .课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
中考数学《相似三角形》知识点及练习题
相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。
相似比:相似三角形对应边的比叫做相似比。
3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。
两角法:两角分别相等的两个三角形相似。
边角法:两边成比例且夹角相等的两个三角形相似。
三边法:三边对应成比例的两个三角形相似。
4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。
5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。
三角形相似练习题
三角形相似练习题三角形相似练习题在数学中,三角形相似是一个重要的概念。
相似三角形是指具有相同形状但可能不同大小的三角形。
相似三角形之间存在着特殊的比例关系,这对于解决各种几何问题非常有用。
在本文中,我将给出一些三角形相似的练习题,帮助读者熟练掌握这一概念。
练习题一:已知两个三角形ABC和DEF,且∠A=∠D,∠B=∠E,AB/DE=2/3。
问是否可以得出这两个三角形相似?解答:根据相似三角形的定义,我们需要满足两个条件:对应角相等,对应边成比例。
在这个问题中,已经给出∠A=∠D和∠B=∠E,所以只需要验证对应边是否成比例。
已知AB/DE=2/3,我们可以通过交叉相乘的方式得到AB/DE=BC/EF。
由此可得AB/BC=DE/EF=2/3。
因此,根据对应边成比例的条件,我们可以得出三角形ABC和DEF相似。
练习题二:已知三角形ABC和DEF相似,且AB/DE=3/5,AC/DF=4/7。
若BC=8,求EF的长度。
解答:根据相似三角形的定义,我们可以得知AB/DE=BC/EF。
已知AB/DE=3/5,BC=8,所以可以得到3/5=8/EF。
通过交叉相乘的方式可以得到3EF=40,因此EF=40/3。
练习题三:已知三角形ABC和DEF相似,且AC/DF=5/9,AB/DE=3/5,BC=12。
求EF的长度。
解答:根据相似三角形的定义,我们可以得知AC/DF=BC/EF。
已知AC/DF=5/9,BC=12,所以可以得到5/9=12/EF。
通过交叉相乘的方式可以得到5EF=108,因此EF=108/5。
练习题四:已知三角形ABC和DEF相似,且AB/DE=3/5,BC/EF=4/7,AC/DF=6/11。
求三角形ABC和DEF的周长比。
解答:根据相似三角形的定义,我们可以得知AB/DE=BC/EF=AC/DF。
已知AB/DE=3/5,BC/EF=4/7,AC/DF=6/11。
我们可以通过求这些比例的平均值来得到周长比。
《相似三角形的判定》练习题
第 1 页《相似三角形的判定》练习题相似三角形的判定1、定义:对应角相等,对应边成比例的三角形相似2、引理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似3、判定定理1:两角对应相等,两三角形相似4、判定定理2:两对应边成比例且夹角相等,则两三角形相似5、判定定理3:三边对应成比例,则两三角形相似6、直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似一、选择题1、下列各组图形必相似的是()A 、任意两个等腰三角形B 、两条边之比为2:3的两个直角三角形C 、两条边成比例的两个直角三角形D 、斜边和一条直角边对应成比例的两个直角三角形2、如图,CD BC OB OA AOD ,900,那么下列结论成立的是()A 、OAB ∽OCA B 、OAB ∽ODA C 、BAC ∽BDA D 、以上结论都不对3、点P 是ABC 中AB 边上一点,过点P 作直线(不与直线AB 重合)截ABC ,使得的三角形与原三角形相似,满足这样条件的直线最多有()A 、2条B 、3条C 、4条D 、5条4、在直角三角形中,两直角边分别为3、4,则这个三角形的斜边与斜边上的高的比是()A 、1225B 、125C 、45D 、355、ABC 中,D 是AB 上的一点,在AC 上取一点E ,使得以A 、D 、E 为顶点的三角形与ABC 相似,则这样的点的个数最多是()A 、0 B 、1 C 、2D 、无数6、如图,正方形ABCD 中,E 是CD 的中点,FC=BC 41,下面得出的六个结论:(1)ABF ∽AEF ;(2)ABF ∽ECF ;(3)ABF ∽ADE ;(4)AEF ∽ECF ;(5)AEF ∽ADE ;(6)ECF ∽ADE ,其中正确的个数是()A 、1个B 、3个C 、4个D 、5个。
4.4第3课时 三边成比例的两个三角形相似(数学北师大版九年级上册)
A.△ABC与△A1B1C1的三边成比例 B.△ABC∽△A1B1C1 C.△ABC与△A1B1C1的三角分别相等 D.△ABC与△A1B1C1的相似比为3
6.如图,无法保证△ ADE与△ABC相似的条件是 ( B )
A.∠1=∠C B.∠A=∠C C.∠2=∠B D.AADC=AAEB
∵△ABM∽△EFA,∴BAMF =AAME,即65.5=A13E,
∴AE=16.9,∴DE=AE-AD=4.9.
4.如图,∠ ACB=∠ADC=90°,BC=a,AC=b,AB=c,
要使△ABC∽△CAD,只要CD等于( A )
A.bc2 C.acb
B.ba2 D.ac2
5.把△ABC的各边都扩大为原来的3倍,得到△A1B1C1,则
∴AACE=AADB=DBCE.∴△ABC∽△ADE.
10.如图,在梯形ABCD中,AD∥BC,点E是边AD的中点, 连接BE并延长交CD的延长线于点F ,交解:∵AD∥BC,∴△DEF∽△CBF,
∴FFDC=EBDC=13,∴FC=3FD=6, ∴DC=FC-FD=4.
(1)证明:∵四边形ABCD是正方形, ∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF. 又∵EF⊥AM, ∴∠AFE=90°,
∴∠B=∠AFE,∴△ABM∽△EFA.
(2)解:∵∠B=90°,AB=12,BM=5, ∴AM= 122+52=13,AD=12. ∵F是AM的中点,∴AF=12AM=6.5.
∴EBFC=OOEB=OOCF.
∵AC∥DF,∴△ODF∽△OAC,
∴DAFC=OOCF.∴DAEB=EBCF=DAFC.
∴△DEF∽△ABC.
变式训练
最新北师版九年级初三数学上册《三边成比例的两个三角形相似》同步练习题
第3课时 三边成比例的两个三角形相似1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第三个数是 (只需写出一个即可).2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,使△ADE 与原三角形相似,那么AE= 。
3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是 (把你认为正确的说法的序号都填上).6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 或时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(至少写出两个满足条件的点的坐标).7、下列命题中正确的是 ( )①三边对应成比例的两个三角形相似②二边对应成比例且一个角对应相等的两个三角形相似③一个锐角对应相等的两个直角三角形相似④一个角对应相等的两个等腰三角形相似A 、①③B 、①④C 、①②④D 、①③④8、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =9、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是 ( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD,AB=ACD. AD∶AC=AE∶AB10、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A ΔADE∽ΔAEFB ΔECF∽ΔAEFC ΔADE∽ΔECFD ΔAEF∽ΔABF11、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A 1对B 2对C 3对D 4对12、如图,在大小为4×4的正方形网格中,是相似三角形的是()①②③④A.①和②B.②和③C.①和③D.②和④.13、如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是()(A)②③④(B)③④⑤(C)④⑤⑥(D)②③⑥14、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A1B1C1,使ΔA1B1C1与格点三角形ABC相似(相似比不为1).15、如图,ΔABC中,BC=a.(1)若AD 1=31AB ,AE 1=31AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ; (3)若D 2D 3=31D 2B ,E 2E 3=31E 2C ,则D 3E 3= ; ……(4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = .16、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.17、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC , Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
6.4 探索三角形相似的条件---三边成比例的两个三角形相似同步练习 2022-2023学年苏科版数
九年级数学下册同步练习6.4探索三角形相似的条件(三边成比例的两个三角形相似)一、选择题1.下面给出4个结论:①所有的等腰三角形都相似;②所有的直角三角形都相似;③所有的等边三角形都相似;④所有的矩形都相似,其中正确的有A.1个B.2个C.3个D.4个,2,2,△A'B'C'的两边长分别为1,5,要使△ABC∽△A'B'C',则△A'B'C' 2.△ABC的三边长分别为10的第三边长为()3.如图,小正方形的边长均为1,则图中的三角形(阴影部分)与△ABC相似的是()A B C D4.若一个三角形的三边长分别是5cm.6cm.8cm,另一个三角形三边的长分别是24cm.15cm.18cm,则这两个三角形()A.全等B.相似C.不相似D.不一定相似5.下面给出4个结论:①所有的等腰三角形都相似;②所有的直角三角形都相似;③所有的等边三角形都相似;④所有的矩形都相似,其中正确的有()A.1个B.2个C.3个D.4个6.如图,∠AOD=90°,OA=OB=BC=CD,下列结论正确的是()A.△OAB∽△OCA B.△OAB∽△ODAC.△BAC∽△BDA D.△AOC∽△DOA第6题第7题7.如图,若A.B.C.P.Q.甲.乙.丙.丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲.乙.丙.丁四点A.甲B.乙C.丙D.丁二、填空题8.在△ABC中,AB:BC:CA=2:3:4,在△A'B'C'中,A'B'=1,C'A'=2,当B'C'=_____时,△ABC∽△A'B'C'9.在△ABC中,BA=6,AC=8,在△A'B'C'中,A'B'=4,A'C'=3,若BC:B'C'=_____,则△ABC∽△________10.已知:在△ABC中,AB=4,BC=5,CA=6(1)如果DE=10,那么当EF=___,FD=____时,△DEF∽△ABC;(2)如果DE=10,那么当EF=___,FD=____时,△FDE∽△ABC.11.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF,其中正确的结论是______(写出所有正确结论的序号).第11题第12题12.如图,正方形网格的每一个小正方形的边长都是1,则∠A1E2A2+∠A4E2C4+∠A4E5C4=_____.13.在等腰△ABC中,顶角∠A=36°,底角平分线BD交AC于点D,得点D是线段AC的黄金分割点.若AC=10 cm.则AD≈_____cm.三、解答题14.在△ABC和△A’B’C’中,AB=12,BC=15,AC=24,A’B’=25,B’C’=40,C’A’=20.求证:△ABC 和△A’B’C’相似.15.如图,已知O为△ABC内一点,D,E,F分别是OA,OB,OC的中点.(1)求证:△DEF∽△ABC.(2)图中还有哪几对相似三角形?16.如图,在△ABC 和△ADE 中,AE AC DE BC AD AB ==,试说明△ABD ∽△ACE.17.如图,在大小为4×4的正方形方格中,△ABC 的顶点A.B.C 在单位正方的顶点上,请在图中画出一个△A 1B 1C 1,使△A 1B 1C 1∽△ABC (相似比不为1),且点A 1,B 1,C 1都在单位正方形的顶点上.18.如图,已知格点△ABC ,请在图中分别画出与△ABC 相似的格点△A 1B 1C 1和格点△A 2B 2C 2,并使△A 1B 1C 1与△ABC 的相似比等于2,而A 2B 2C 2与△ABC 的相似比等于5.19.已知:如图在△ABC 中,AD 为边BC 上的高,E.F 分别为边AB.AC 上的中点,△DEF 与△ABC 相似吗?说明你的理由.20.如图,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.(1)请判断的值及∠AMB的度数,并说明理由;(2)若∠OBD=15°,AM=4,求AB的长。
相似三角形经典练习题
相似三角形经典练习题一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:23.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为( )A.B.C.D.4.如图,▱ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=( )A.4:3 B.4:7 C.3:4 D.3:75.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.7.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A.B.10C.或10D.以上答案都不对8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A.B.C.D.9.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 .11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.12.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= .13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= .14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .15.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .16.如图,若∠B=∠DAC,则△ABC∽ ,对应边的比例式是 .17.如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ,结论是 .(注:填序号)18.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= .19.如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 度.20.一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 张.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.22.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.25.如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.26.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC 于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.28.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.29.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC 方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.相似三角形经典练习题20161115参考答案与试题解析一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:2【考点】相似三角形的判定与性质.【分析】根据已知及相似三角形的面积比等于相似比的平方,即可求解.【解答】解:∵∠ADC=∠ADB=90°,∠C=∠BAD∴△ACD∽△BAD∵S △CAD =3S △ABD ,且这两三角形高相等∴AB :AC=1:故选C .【点评】本题考查了三角形的面积公式,及相似三角形的判定及性质. 3.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1,S 2,那么的值为( )A .B .C .D .【考点】三角形中位线定理;相似三角形的判定与性质.【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE ∽△ABC ,DE :BC=1:2,所以它们的面积比是1:4,所以=,故选C .【点评】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. 4.(2012秋•桐城市校级月考)如图,▱ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ :CQ=4:3,则AP :PR=( )A .4:3B .4:7C .3:4D .3:7【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用“平行线法”证得△ADQ∽△RCD,则对应边成比例:=;同理,证得△ADP∽△RBP,则=,即=.【解答】解:如图,∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADQ∽△RCD,∴=,即=,∴RC=AD.同理,△ADP∽△RBP,则=,即=,∴==,即AP:PR=4:7.故选:B.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质.平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.【考点】相似三角形的性质.【分析】本题可根据相似三角形的性质求解,已知了∠AED和∠B对应相等,因此AD、AC是对应边,AE、AB是对应边,DE、BC是对应边,根据相似三角形的对应边的比例相等,即可判断哪个选项正确.【解答】解:∵△ADE∽△ACB,且∠AED=∠B∴AD、AE、DE的对应边分别是AC、AB、BC因而有故本题选A.【点评】本题主要考查了相似三角形的性质,找准相似三角形的对应边是解题的关键.6.(2008•安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7.(2012秋•杞县校级期末)如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC 相似,则AE等于( )A.B.10C.或10D.以上答案都不对【考点】相似三角形的性质.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.8.(2009•新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.(2006•大兴安岭)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.【考点】翻折变换(折叠问题).【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.【解答】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,,EB=x;故可得BC=x+x=8;解得x=.故选A.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 ±6 .【考点】比例线段.【分析】根据比例中项的概念,设a、b的比例中项是c,则c2=ab,再利用比例的基本性质计算得到c的值.【解答】解;设a、b的比例中项是c,则c2=ab∵a=4,b=9,∴c2=ab=36,解得:c=±6;故填: 6或6.【点评】此题考查了比例中项,关键是理解比例中项的概念,当比例式中的两个内项相同时,即叫比例中项.11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 ①③④ (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.【考点】相似三角形的判定与性质.【分析】由在△ABC中,∠ACB=90°,CD⊥AB,易证得∠BDC=∠BCA=∠CDA=90°,又由∠A=∠A,∠B=∠B,根据有两角对应相等的三角形相似,即可证得△ACD∽△ABC,△BDC∽△BCA,则可得△ACD∽△CBD,根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意对应线段的对应关系与比例变形.12.(2011春•武侯区校级期末)如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= 6.4 .【考点】相似三角形的判定与性质;勾股定理.【分析】由于AC⊥BC,CD⊥AB,可得一组对应角相等,再加上一对公共角,可证△ACD∽△ABC,利用比例线段可求AD.(可先利用勾股定理求出AB)【解答】解:∵AC⊥BC,CD⊥AB,∴∠ACB=90°,∠ADC=90°,∠A=∠A,∴△ADC∽△ACB,∴=,又∵在Rt△ABC中,AB===10,∴=,AD=6.4.【点评】解答此题不仅用到相似三角形的性质,还要结合勾股定理求出相应的边长,方可进行计算.13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= 8 .【考点】相似三角形的判定与性质;平行线的性质.【分析】根据DE∥AC,证得△BED∽△BCA,再由相似三角形对应线段成比例可得出答案.【解答】解:由DE∥AC可得△BED∽△BCA,∴==,又AC=12,可得DE=8.故填8.【点评】本题考查平行线的知识,注意相似三角形对应线段成比例的性质.14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;根据相似三角形对应边成比例得出①,再证明△BEG ∽△DEA,得出②,等量代换得到,于是得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠FDE,∠EAB=∠EFD,∴△ABE∽△FDE,∴①,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠GBE=∠ADE,∠G=∠DEA,∴△BEG∽△DEA,∴②,由①②可得,,∵AE=4,EG=3,∴EF=.故答案为:.【点评】此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(2012•通州区校级模拟)如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= 5:3:12 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ AP=AC,QC=AC AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.16.(2014秋•肥西县期末)如图,若∠B=∠DAC,则△ABC∽ △DAC ,对应边的比例式是 == .【考点】相似三角形的性质.【分析】根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.【解答】解:在△ABC和△DAC中,∵∠C=∠C,∠B=∠DAC;∴△ABC∽△DAC;∴==【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.17.(2012•牡丹江模拟)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ① ,结论是 ③或④ .(注:填序号)【考点】命题与定理.【分析】根据相似三角形的判定和性质进行分析.【解答】解:因为若∠BAD=∠C,则△ABC∽△DBA,故=,=,条件是①,结论是③或④.【点评】解答此题的关键是要熟知真命题与假命题的概念.真命题:判断正确的命题叫真命题;假命题:判断错误的命题叫假命题.18.(2014春•江都市期末)已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= 8:5 .【考点】平行线分线段成比例.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF即可得出结论.19.(2012秋•桐城市校级月考)如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 90 度.【考点】相似三角形的判定与性质;正方形的性质.【分析】设正方形的边长为1,根据正方形的性质得到∠ABE=45°,BE=,再利用勾股定理计算出CE=,则BE:BD=BC:BE=:2,加上公共角,于是可判断△CBE∽△EBD,则∠BDE=∠BEC,再利用三角形外角性质得∠ABE=∠BEC+∠BCE=45°,然后计算∠ABE+∠ACE+∠ADE.【解答】解:设正方形的边长为1,∵四边形AEFB为正方形,∴∠ABE=45°,BE=,在Rt△AEC中,AC=2∴CE==,∴BE:BD=:2,BC:BE=1:=:2,∴BE:BD=BC:BE,而∠CBE=∠EBD,∴△CBE∽△EBD,∴∠BDE=∠BEC,∵∠ABE=∠BEC+∠BCE=45°,∴∠ABE+∠ACE+∠ADE=45°+45°=90°.故答案为90.【点评】本题考查了相似三角形得判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.20.(2011•连云港一模)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 6 张.【考点】相似三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】设第x张为正方形,如图,△ADE∽△ABC,则=,从而计算出x的值即可.【解答】解:如图,设第x张为正方形,则DE=3,AM=22.5 3x,∵△ADE∽△ABC,∴=,即=,解得x=6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定证△ADE∽△ABC,根据相似三角形的性质求出△ADE的面积,相减即可求出答案.【解答】解:∵,∠A=∠A,∴△ADE∽△ABC,∴=,∵△ABC的面积为60cm2,∴△ADE的面积是×60cm2=cm2,∴四边形BCDE的面积是60cm2 cm2=cm2,答:四边形BCDE的面积是cm2.【点评】本题主要考查对相似三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.22.(2015春•苏州校级期末)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF 离地面的高度AC=1.5m,CD=8m,求树高AB.【考点】相似三角形的应用.【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【解答】解:在△DEF 和△DBC 中,,∴△DEF ∽△DBC ,∴=,即=,解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.23.(2015秋•北京校级期中)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:CF 2=GF•EF .【考点】平行线分线段成比例;平行四边形的性质.【分析】根据平行四边形的性质得AD ∥BC ,AB ∥CD ,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴=,=,∴=,即CF 2=GF•EF .【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据已知条件,先证明△AEM∽△CED,然后利用相似三角形的对应边成比例这一性质求得AM=AB;再来证明△AFM∽△CFN,依据相似三角形的性质求的CN的长度.【解答】解:在△AEM和△CED中,∠CAB=∠DCA(内错角相等),∠AEM=∠CED,∴△AEM∽△CED,∴,∵AE=EF=FC,∴=,∴AM=CD;∵AB=CD,∴AM=AB=14,①;在△AFM和△CFN中,∠FAM=∠FCN(内错角相等),∠AFM=∠CFN(对顶角相等),∴△AFM∽△CFN,∴=2,∴CN=AM②;∵AB=28 ③由①②③解得,CN=7.【点评】本题主要考查了相似三角形的判定定理:两个三角形中,两个对应角相等,则这两个三角形相似,以及相似三角形的性质:对应边成比例.25.(2006•长沙)如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.【考点】切割线定理;相似三角形的判定与性质.【分析】(1)证△CDE∽△CAB,再根据相似三角形的性质得到所求的比例式;(2)根据割线定理即可求得CD•CB的值.根据三角形的三边关系求得BC的取值范围.【解答】(1)证明:∵四边形ABDE内接于⊙O,∴∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴;(2)解:∵直径AE=8,OC=12,∴AC=12+4=16,CE=12 4=8.又∵=,∴CD•CB=AC•CE=16×8=128.连接OB,在△OBC中,OB=AE=4,OC=12,∴故BC的范围是:8≤BC<16.【点评】本题主要考查圆、相似三角形等初中几何的重点知识,考查学生的几何论证能力,属于中等难度题.26.(2009•潍坊)已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.【考点】三角形中位线定理;平行线分线段成比例;相似三角形的判定与性质.【分析】(1)过点F作FM∥AC,交BC于点M.根据平行线分线段成比例定理分别找到AE,CE与FM之间的关系,得到它们的比值;(2)结合(1)中的线段之间的关系,进行求解.【解答】解:(1)过点F作FM∥AC,交BC于点M,∵F为AB的中点,∴M为BC的中点,FM=AC.∵FM∥AC,∴∠CED=∠MFD,∠ECD=∠FMD.∴△FMD∽△ECD.∴.∴EC=FM=×AC=AC.∴.(2)∵AB=a,∴FB=AB=a.∵FB=EC,∴EC=a.∵EC=AC,∴AC=3EC=a.【点评】此类题要注意作平行线,能够根据平行线分线段成比例定理和相似三角形对应边成比例即可求得线段的比.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得到HG∥BC,PD=x,AP=AD x=40 x,再三角形三角形相似的判定得到△AHG∽△ABC,利用相似比可表示出HG=(40 x),然后根据矩形的周长确定y与x的关系;(2)根据矩形的面积公式求解.【解答】解:(1)∵AD⊥BC,四边形EFGH是矩形,∴HG∥BC,PD=x,AP=AD x=40 x,∴△AHG∽△ABC,∴=,即=∴HG=(40 x),∴y=2HE+2HG=2x+2×(40 x)=2x+120 3x=120 x(0<x<40);(2)S=HE•HG=x•(40 x)= x2+60x(0<x<40).【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截得的三角形与原三角形相似;相似三角形对应角相等,对应边的比相等.也考查了矩形得性质.28.(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.【考点】二次函数综合题.【分析】(1)根据P、Q的速度,用时间t表示出OQ和OP的长,即可通过三角形的面积公式得出y,t的函数关系式;(2)先根据(1)的函数式求出y最大时,x的值,即可得出OQ和OP的长,然后求出C点的坐标和直线AB的解析式,将C点坐标代入直线AB的解析式中即可判断出C是否在AB上;(3)本题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进行求解,可根据各自得出的对应成比例相等求出t的值.【解答】解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t,OP=1×t=t.∴OQ=6 t.∴y=×OP×OQ=×t(6 t)= t2+3t(0≤t≤6);(2)∵y= t2+3t,∴当y有最大值时,t=3∴OQ=3,OP=3,即△POQ是等腰直角三角形.把△POQ沿直线PQ翻折后,可得四边形OPCQ是正方形.∴点C的坐标为(3,3).∵A(12,0),B(0,6),∴直线AB的解析式为y= x+6当x=3时,y=≠3,∴点C不落在直线AB上;(3)①若△POQ∽△AOB时,,即,12 2t=t,∴t=4.②若△POQ∽△BOA时,,即,6 t=2t,∴t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.【点评】本题主要考查了直角三角形的性质、图形的翻折变换、相似三角形的判定和性质等知识点.要注意(3)题要根据不同的相似三角形分类进行讨论. 29.(2007秋•安岳县期末)如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?【考点】相似三角形的判定.【分析】此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解.【解答】解:设经过x秒后,两三角形相似,则CQ=(8 2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)【点评】本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y 轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.【考点】相似形综合题.【分析】(1)先根据A、B两点的坐标分别为(40,0),(0,30)得出OA及OB的长,再由EF∥x轴得出EF是△BOA的中位线,再根据三角形的面积公式即可得出结论;(2)用t表示出OE及OP的长,再分△EOP∽△BOA与△EOP∽△AOB两种情况进行讨论.【解答】解:(1)∵A、B两点的坐标分别为(40,0),(0,30),∴OA=40,OB=30.∵动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x 轴),∴t=15时,BE=30 15=15,∵EF∥x轴,∴EF是△BOA的中位线,∴EF=OA=20,∴S△PEF=EF•OE=×20×15=150;(2)∵动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),∴OE=t,OP=40 2t,∴当△EOP∽△BOA时,=,即=,解得t=12(秒);当△EOP∽△AOB时,=,即=.解得t=(秒).综上所述,当t=12秒或t=秒时,△EOP与△BOA相似.【点评】本题考查的是相似形综合题,涉及到三角形中位线定理、三角形的面积公式及相似三角形的判定与性质等知识,在解答(2)时要注意进行分类讨论.。
相似三角形练习题及答案
相似三角形练习题及答案一、选择题1. 若两个三角形的对应角相等,且对应边成比例,则这两个三角形是相似的。
这种说法正确吗?A. 正确B. 错误2. 三角形ABC和三角形DEF相似,AB=6cm,DE=3cm,那么AC的长度是多少?A. 4cmB. 6cmC. 9cmD. 12cm3. 在三角形ABC中,∠A=60°,∠B=40°,那么∠C是多少度?A. 40°B. 60°C. 80°D. 100°二、填空题4. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,BC=8cm,求DE的长度。
5. 在三角形ABC中,若∠A=30°,∠B=70°,求∠C的度数。
三、解答题6. 已知三角形ABC与三角形DEF相似,且AC=4cm,DF=6cm,AB=5cm,求EF的长度。
7. 在三角形ABC中,已知AB=6cm,AC=4cm,BC=8cm,判断三角形ABC 是否为直角三角形,并说明理由。
四、证明题8. 已知三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,证明∠C=∠F。
9. 已知三角形ABC与三角形DEF相似,且AB/DE=2/3,AC/DF=2/3,证明BC/EF=2/3。
五、应用题10. 在平面直角坐标系中,点A(-3,4),B(1,-2),C(5,6),点D(-1,1),E(3,-6),F(7,3),判断三角形ABC与三角形DEF是否相似,并求出相似比。
答案:1. A2. B3. C4. 6cm5. 80°6. 7.5cm7. 是直角三角形,因为AB²+AC²=BC²。
8. 由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等,所以∠C=∠F。
9. 根据相似三角形的性质,对应边的比值相等,所以BC/EF=AB/DE=2/3。
10. 三角形ABC与三角形DEF相似,相似比为3/2。
第二十七章第2节1 第2课时 三边成比例的两个三角形相似习题
27.2.1 第2课时三边成比例的两个三角形相似1.[2018·利辛县模拟]在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()2.如图27-2-20,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()图27-2-20A.ACAD=ABAE B.ACAD=BCDEC.ACAD=ABDE D.ACAD=BCAE3.如图27-2-21,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.图27-2-21求证:(1)△ACB∽△DCE;(2)EF⊥AB.4.如图27-2-22,D,E分别是△ABC的边AC,AB上的点,AD·AC=AE·AB.求证:△AED∽△ACB.图27-2-225.如图27-2-23,在▱ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF与△CDE相似,则BF的长是()图27-2-23A.5 B.8.2C.6.4 D.1.86.如图27-2-24,在△ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD的大小关系;(2)试说明△ABC∽△BDC.图27-2-247.[2018·绍兴一模]如图27-2-25,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1 cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2 cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?图27-2-25参考答案1.D 2.C 3.证明略 4.证明略 5.D6.(1)AD2=AC·CD(2)略7.4秒或8 5秒。
北师版九年级数学上册作业课件(BS) 第四章 图形的相似 第3课时 三边成比例的两个三角形相似
2.(3分)若一个三角形三边之比为3∶5∶7,与它相似的三角形的最长边 的长为21 cm,则其余两边长的和为( A ) A.24 cm B.21 cm C.19 cm D.9 cm 3.(3分)下列论断:①顺次连接三角形各边的中点,所得的三角形与原三 角形相似;②两边长分别是3、4的Rt△ABC与两边长分别是6,8的 Rt△DEF相似;③若两个三角形的边长分别是4,6,8和6,8,10,则这 两个三角形相似;④一个三角形的三边长分别为6 cm,9 cm,7.5 cm, 另一个三角形的三边长分别为8 cm,12 cm,10 cm,则这两个三角形相 似.其中正确的有( B ) A.1个 B.2个 C.3个 D.4个
11.(连云港中考)在如图所示的象棋盘(各个小正方形的边长均相等)中, 根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、 “车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵” 所在位置的格点构成B的三角形相似( ) A.①处 B.②处 C.③处 D.④处
二、填空题(每小题6分,共12分) 12.各顶点都在格点上的三角形叫做格点三角形.如图,在4×8的方格 网中,以M,N为顶点且与△ABC相似的格点三角形共有__4__个.
解:(1)证明:∵D,F 分别是 BC,BA 的中点, ∴DF=12 AC,同理可得 EF=12 BC,DE=12 AB,
则ADCF =CEBF =EADB =12 ,∴△DEF∽△ABC (2)图中与△ ABC 相似的三角形还有△ AFE,△ FBD 和△ EDC
一、选择题(每小题6分,共12分) 10.如图,已知∠AOD=90°,OA=OB=BC=CD,那么下列结论成 立的是( C ) A.△OAB∽△OCA B.△OAB∽△ODA C.△BAC∽△BDA D.以上结论都不成立
《相似三角形》经典练习题(附答案)
《相似三角形》经典练习题(附答案)相似三角形经典练习题(附答案)1. 题目描述:已知∆ABC中,∠ABC = 45°,∠ACB = 90°,D是BC边上的一点,且AD = BC,EF是三角形ABC中点AD上的高线,垂足为H。
求证:∆EFH与∆ABC相似。
2. 题目分析:本题要求证明∆EFH与∆ABC相似。
考察题目中给出的条件,包括∠ABC = 45°,∠ACB = 90°,AD = BC。
通过分析给出的图形,可以发现EF为∆ABC的中位线,并垂直于BC,因此可以猜测∆EFH与∆ABC相似。
接下来,我们将通过推理和证明来验证这一猜想。
3. 解题过程:首先,我们需要证明∆EFH与∆ABC的三个对应角相等。
由于∠ACB = 90°,∠EFH为∆ABC的直角三角形EFH的内角,因此∠EFH = 90°。
我们知道∠ABC = 45°,而∠BAF为∆ABC的直角三角形BAF的内角,因此∠BAF = 90° - ∠ABC = 90° - 45° = 45°。
同理,∠FBH也为∆ABC的直角三角形FBH的内角,∠FBH = 90°- 45° = 45°。
综上,∠EFH = ∠BAF = ∠FBH = 45°。
其次,我们需要证明∆EFH与∆ABC的三个对应边成比例。
根据题目中给出的条件AD = BC,可以得到∆ABC与∆DEF的对应边AD与EF相等。
由于EF为∆ABC的中位线,根据中位线定理可知,EF = 0.5 * BC。
由已知条件AD = BC,可得EF = 0.5 * AD,即EF与AD成比例。
最后,我们可以得出结论,∆EFH与∆ABC相似。
4. 答案验证:为了进一步验证我们的结论,我们可以观察图形,并利用给出的条件进行验证。
根据题目中的图形描述,我们可以画出如下示意图:A/|/ |/ |B───C| |D || |E───F|H根据题目给出的条件:∠ABC = 45°,∠ACB = 90°,AD = BC,我们可以通过实际计算验证∆EFH与∆ABC的相似性。
三边成比例的两个三角形相似证明例题
三边成比例的两个三角形相似证明例题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三边成比例的两个三角形相似证明例题在几何学中,证明两个三角形相似是常见的问题之一。
初中数学例题:《三边成比例的两个三角形相似》
初中数学例题:三边成比例的两个三角形相似
5、已知:正方形的边长为1
(1)如图①,可以算出正方形的对角线为,求两个正方形并排拼成的矩形的对角线长,n个呢?
(2)根据图②,求证△BCE∽△BED;
(3)由图③,在下列所给的三个结论中,通过合情推理选出一个正确的结论加以证明,1.∠BEC+∠BDE=45°;⒉∠BEC+∠BED=45°;
⒊∠BEC+∠DFE=45°
【思路点拨】(1)主要是根据勾股定理寻找规律,容易在数据中找到正确结论;
(2)在每个三角形中,根据勾股定理易求出每条边的长度,可利用三组边对应成比例,两三角形相似来判定;
(3)欲证∠BEC+∠DFE=45°,在本题中等于45°的角有两个,即∠AEB 和∠BEF,所以在证明第三个结论时,需把这两个角想法转移到已知的一个角中去,利用等腰梯形的性质求解即可.
【答案与解析】
解:(1)由勾股定理知,在第一个图形中,对角线长==,第二个图形中,对角线长==,
第三个图形中,对角线长=,
所以第n个图形中,对角线长=;
(2)在△BCE中,BC=1,BE=,EC=,
在△BED中,BE=,BD=2,ED=,
所以,
∴△BCE∽△BED;
(3)选取③,
∵CD∥EF,且CE=DF,
∴四边形CEFD为等腰梯形,
∴∠DFE=∠CEF,
∴∠BEC+∠DFE=∠BEC+∠CEF=45°.
【总结升华】此题主要运用三边对应成比例的两个三角形相似的判定定理、勾股定理的运用、等腰梯形的性质来解决问题的.。
浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(2)+答案解析
浙教新版九年级上册《4.3相似三角形》2024年同步练习卷(2)一、选择题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知∽,相似比为2,则下列说法正确的是()A.是的2倍B.是的2倍C.AB是DE的2倍D.DE是AB的2倍2.下列说法正确的是()A.所有的等腰三角形都相似B.所有的等边三角形都相似C.所有的直角三角形都相似D.两相似三角形必是全等三角形3.如图,点A、B、C、D、E、F、G、H、K都是方格纸中的格点,为使∽,则点M应是F、G、H、K四点中的()A.FB.GC.HD.K4.已知∽,∽,下列关于和关系的结论正确的是()A.全等B.周长相等C.面积相等D.相似二、填空题:本题共5小题,每小题3分,共15分。
5.如图,已知∽,相似比为2:3,则BC:DE的值为______.6.如图,AB,CD相交于O点,∽,OC::3,,则BD的长为______.7.如图,∽,则图中的DE的对应边是______,的对应角是______.8.一个三角形的各边之比为2:5:6,和它相似的另一个三角形的最大边为15cm,则它的最小边长为______9.如图是一个边长为1的正方形组成的网络,与都是格点三角形顶点在网格交点处,并且∽,则与的相似比是______.三、解答题:本题共5小题,共40分。
解答应写出文字说明,证明过程或演算步骤。
10.本小题8分如图,O是内任意一点,,,,那么与相似吗?说明理由.11.本小题8分如图,D,E分别是AB,AC上的点,已知∽,,,,求AE的长.12.本小题8分如图,已知∽,,,垂足分别为E,写出这两个相似三角形对应边的比例式.若,,,求BC的长.13.本小题8分如图,中,D是AB上的一点,∽,且AD::4,,求,的度数;若,求AB的长.14.本小题8分如图,点D、E分别在的边AB、AC上,且,,,若使与相似,求AE的长.答案和解析1.【答案】C【解析】解:∽,相似比为2,,AB是DE的2倍,选项A、B、D说法错误,不符合题意;选项C说法正确,符合题意;故选:根据相似三角形的对应角相等、对应边的比等于相似比判断即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等、对应边的比等于相似比是解题的关键.2.【答案】B【解析】解:所有的等腰三角形不一定相似,只有顶角相等的等腰三角形都相似,所以A选项不符合题意;B.所有的等边三角形都相似,所以B选项符合题意;C.所有的直角三角形不一定相似,只有有一锐角相等的直角三角形相似,所以B选项不符合题意;D.全等三角形必相似,但两相似三角形不一定全等,所以D选项不符合题意.故选:利用等腰三角形的性质和相似三角形的判定方法对A进行判断;利用等边三角形的性质和相似三角形的判定方法对A进行判断;利用直角三角形相似的判定方法对C进行判断;根据相似三角形的性质全等三角形的判定方法对D进行判断.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似;两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了全等三角形的判定、等腰三角形的性质和相似三角形的性质.3.【答案】C【解析】【分析】本题主要考查相似三角形的判定.由图形可知的边,,,当∽时,AB和DE是对应边,相似比是1:2,则AC的对应边是3,则点M的对应点是【解答】解:根据题意,当DE::AC时,∽,,,应是H故选:4.【答案】D【解析】解:∽,,,∽,,,,,∽,故选:先利用相似三角形的性质得到,;,,则,,于是可判断∽,从而可对各选项进行判断.本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.5.【答案】3:2【解析】解:∽,且相似比为2:3,::2,故答案为3:由于∽,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC、DE的比例关系.本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.【答案】4【解析】解:::3,::2,∽,,即,解得:,故答案为:根据OC::3,求得OC::2,根据相似三角形的对应边的比相等列出方程,计算即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.7.【答案】【解析】解:∽,与是对应角,DE与DG是对应边.故答案为:DG,根据相似三角形的对应角相等以及对应角的定义,可以确定的对应角;根据∽,结合字母所在的对应位置,可以得到DE的对应边.本题主要考查相似三角形的对应边与对应角的定义,可以结合定义进行解答.8.【答案】5【解析】解:两三角形相似,三边比:5:6,另一三角形三边比:5:6,设此三角形各边为2x,5x,6x,,解得,根据相似三角形的性质,一个三角形的各边之比为2:5:6,和它相似的另一个三角形的各边之比也是2:5:6,设和它相似的另一个三角形的各边为2x,5x,6x,得到关于x的方程,解即可.本题考查相似三角形的对应边的比相等.9.【答案】【解析】解:由图可知,,与的相似比是:先利用勾股定理求出AC,那么AC:即是相似比.本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.10.【答案】解:∽理由:,∽,同理可得,,,∽【解析】先根据得出∽,故,同理可得,,由此可得出结论.本题考查的是三角形的判定,熟知三组对应边的比相等的两个三角形相似是解答此题的关键.11.【答案】解:∽,,,,,即,解得【解析】直接根据相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.12.【答案】解:;,,,,解得:,【解析】根据∽对应边成比例,直接写出即可;根据∽对应边成比例求出AB,再由勾股定理求出BC即可.本题主要考查了相似三角形的性质、勾股定理,根据相似三角形的对应边成比例列出是解决此题的关键.13.【答案】解:∽,,;而,,,,;又∽,,,即AB的长为【解析】直接利用相似三角形的对应角相等这一性质即可解决问题.直接利用相似三角形的对应边成比例,列出比例式求解即可.本题主要考查了相似三角形的性质及其应用问题;解题的关键是找准相似三角形的对应角和对应边,准确列出比例式.14.【答案】解:①若对应时,,即,解得;②当对应时,,即,解得所以AE的长为2或【解析】由于与相似,但其对应角不能确定,所以应分两种情况进行讨论.本题考查的是相似三角形的性质,即相似三角形的对应边成比例.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1 相似三角形的判定
第2课时 三边成比例的两个三角形相似
1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数
的比例中项,第三个数是 (只需写出一个即可).
2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,
使△ADE 与原三角形相似,那么AE= 。
3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,
那么可添加的条件是
4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件,
使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即
可).
5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所
有等腰直角三角形都相似;④所有的直角三角形都相似.
其中正确的是 (把你认为正确的说法的序号都填上).
6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴
上(C 与A 不重合),当点C 的坐标为 或
时,使得由点B 、O 、C 组成的三角形与
ΔAOB 相似(至少写出两个满足条件的点的坐标).
7、下列命题中正确的是 ( )
①三边对应成比例的两个三角形相似
②二边对应成比例且一个角对应相等的两个三角形相似
③一个锐角对应相等的两个直角三角形相似
④一个角对应相等的两个等腰三角形相似
A 、①③
B 、①④
C 、①②④
D 、①③④
8、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )
A AC AE A
B AD = B FB EA CF CE =
C B
D AD BC D
E = D CB
CF AB EF =
9、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,
下列条件中不能使ΔABE和ΔACD相似的是()
A. ∠B=∠C
B. ∠ADC=∠AEB
C. BE=CD,AB=AC
D. AD∶AC=AE∶AB
10、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=
90°,则一定有()
A ΔADE∽ΔAEF
B ΔECF∽ΔAEF
C ΔADE∽ΔECF
D ΔAEF∽ΔABF
11、如图,E是平行四边形ABCD的边BC的延长线上的一点,
连结AE交CD于F,则图中共有相似三角形()
A 1对
B 2对
C 3对
D 4对
12、如图,在大小为4×4的正方形网格中,是相似三角形的是()
①②③④
A.①和②
B.②和③
C.①和③
D.②和④
.13、如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,
④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是()
(A)②③④(B)③④⑤(C)④⑤⑥(D)②③⑥
14、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点
三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形ABC 相似(相似比不为1).
15、如图,ΔABC 中,BC=a .
(1)若AD 1=31AB ,AE 1=3
1AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=3
1E 1C ,则D 2E 2= ; (3)若D 2D 3=31D 2B ,E 2E 3=3
1E 2C ,则D 3E 3= ; ……
(4)若D n -1D n =31D n -1B ,E n -1E n =3
1E n -1C ,则D n E n = .
16、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,
AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.
17、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC , Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?。