九年级下册中考数学试题及答案
初三数学习题和答案
初三数学试卷及答案一. 选择题(共12小题,第1、2小题每题3分,3~12小题每题4分,共46分) 在每小题给出的四个备选答案中,只有一个是符合题目要求的。
请把正确结论的代号写在题后的括号内。
1. 点A (1,3)关于原点的对称点A ’的坐标为( ) A. (3,1)B. (1,-3)C. (-1,3) D. (-1,-3)2. 函数y x =-2中,自变量x 的取值范围为( )A. x <2B. x £2C. x >2D. x ³2 3. 如图所示,已知点A 在反比例函数的图象上,那么该反比例函数的解析式为( ) A. y x =-9 B. y x =-9 C. y x =-1D. y x =-4. 方程x x 2510++=的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根D. 无法确定根的情况5. 以下命题正确的是( ) A. 圆的切线一定垂直于半径B. 圆的内接平行四边形一定是正方形C. 直角三角形的外心一定也是它的内心D. 任意一个三角形的内心一定在这个三角形内6. 一种药品经过两次降价,由每盒60元调至52元,若设平均每次降价的百分率为x ,则可列出关于x 的方程为( ) A. 601252()-=xB. 601522()-=x C. 601522()+=xD. 52160()+=2x7. 已知抛物线y x =--13432()的部分图象如图所示,那么图象再次与x 轴相交时的坐标为( )A. (5,0)B. (6,0)C. (7,0)D. (8,0)8. 圆O 的半径为4cm ,圆P 的半径为1cm ,若圆P 与圆O 相切,则O 、P 两点的距离( )A. 等于3cm B. 等于5cm C. 等于3cm 或5cm D. 介于3cm 与5cm 之间 9. 如图所示,直线MN 与△ABC 的外接圆相切于点A ,AC 平分ÐM A B ,如果AN=6,NB=4,那么弦AC 的长为( ) A. 4 B. 5 C. 6 D. 9 10. 圆O 1的半径为5,圆O 2的半径为1,若O O 128=,则这两圆的外公切线的长为( ) A. 4 B. 42 C. 43 D. 6 11. 如图所示,在正方形网格中,角α、β、γ的大小关系是( ) A. a b g >> B. a b g => C. a b g <=D. a b g ==12. 一次函数y ax a =++2的图象在-££21x 的一段都在x 轴的上方,那么a 的取值范围一定是( )A. -<<10aB. -<<<<3004a a 或C. -<<12aD. -<<<<1002a a 或二. 填空题(共6个小题,每小题3分,共18分)13. 小明用计算器求得t a n.225°的值约为0.4142,那么c o t .675°的值应为____________。
中考数学试卷(含答案和解析)
中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)﹣5.(3分)函数y=中,自变量x的取值范围是()9.(3分)计算:|﹣|= _________ .10.(3分)分解因式:(2a+1)2﹣a2= _________ .11.(3分)计算:﹣= _________ .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=_________ 度.13.(3分)当x=﹣1时,代数式÷+x的值是_________ .14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= _________ .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_________ cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有_________ 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(_________ ,_________ ),B(_________ ,_________ ),D(_________ ,_________ ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,?ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B 两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= _________ (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)﹣5.(3分)函数y=中,自变量x的取值范围是(),2×4=?10=10(),﹣+9.(3分)计算:|﹣|= .﹣,故答案为:11.(3分)计算:﹣= .=2﹣故答案为:13.(3分)当x=﹣1时,代数式÷+x的值是3﹣2.=+x﹣(2..4,即,解得DE=OE=2CD=2DE=4.,=OE=2,∴CD=2DE=4415.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10 cm2.AE?AF=×5×5=厘米==2?AE?BF=×5×2=5厘米==4AE?DF=×5×4=10故答案为:16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影.表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;=.E.(1)求证:EB=EC;菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 ,),B( 2 ,﹣),D( 1 ,﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.与直线x﹣﹣为中心对称图联立得:得:﹣x=,即;当,,,﹣);,,﹣,为中心对称图形,且双曲线与两直线x k≠)分别联立得:得:﹣=,x=,时,﹣﹣,∴C(﹣),,﹣),=AB=k=两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危BE=CE=x AB=AE+BE=x++1xBE=CE=x∴AE+BE=x++1DF=CF=∴AC=y+﹣﹣﹣AF=×100(一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.三人的花销得O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;y=xx x=﹣,﹣轴的距离都是OP=×2t=t,在抛物线上,则×(×(,在抛物线上,则×(×(t=S==tS=)×﹣×(S=)×1﹣×[1﹣(+S=。
北师大版九年级下册数学中考测试卷(含答案)
北师大数学中考模拟测试卷一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的.)1.(3分)的倒数是()A.2 B.﹣2 C.D.2.(3分)如图所示的物体是一个几何体,其主视图是()A.B.C.D.3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×1054.(3分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.5.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x66.(3分)今年春节期间,我市某景区管理部门随机调查了1000名游客,其中有900人对景区表示满意.对于这次调查以下说法正确的是()A.若随机访问一位游客,则该游客表示满意的概率约为0.9B.到景区的所有游客中,只有900名游客表示满意C.若随机访问10位游客,则一定有9位游客表示满意D.本次调查采用的方式是普查7.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元8.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.9.(3分)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.10.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F11.(3分)正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.212.(3分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.5二、填空题(本题共4小题,每小题3分,共12分).13.(3分)因式分解:ax2﹣4a=.14.(3分)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10cm,BC=8cm,则点D到直线AB的距离是cm.15.(3分)如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.16.(3分)如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OAE的面积为.三、解答题(本题共7小题,其中第17小题6分,第18小题5分,第19小题8分,第20小题8分,第21小题8分,第22小题8分,第23小题9分,共52分.)17.(6分)计算:.18.(5分)解方程:.19.(8分)某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是台.20.(8分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)21.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.(8分)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.23.(9分)已知,如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动,过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)求出S与t的函数关系式.参考答案与试题解析一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的.)1.(3分)(2016•巨野县二模)的倒数是()A.2 B.﹣2 C.D.【解答】解:∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选;B.2.(3分)(2011•深圳)如图所示的物体是一个几何体,其主视图是()A.B.C.D.【解答】解:从物体正面看,看到的是一个等腰梯形.故选C.3.(3分)(2011•深圳)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×105【解答】解:56000=5.6×104.故选B.4.(3分)(2016•历城区二模)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.5.(3分)(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6【解答】解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.6.(3分)(2016•深圳二模)今年春节期间,我市某景区管理部门随机调查了1000名游客,其中有900人对景区表示满意.对于这次调查以下说法正确的是()A.若随机访问一位游客,则该游客表示满意的概率约为0.9B.到景区的所有游客中,只有900名游客表示满意C.若随机访问10位游客,则一定有9位游客表示满意D.本次调查采用的方式是普查【解答】解:根据题意,弄清这样一个抽样调查,从中知道若随机访问一位游客,则该游客表示满意的概率约为0.9,故A是正确的;1000名游客,其中有900人对景区表示满意,故B不正确;由题意知,满意的概率为0.9,这是一个统计数据,不一定随机访问10位游客,就一定有9位游客表示满意,故C不正确;由题意知,本次调查是用样本估计总体,是抽样调查,故D不正确.故选A.7.(3分)(2011•深圳)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选A8.(3分)(2010•深圳)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.9.(3分)(2005•深圳)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.【解答】解:因为20个商标有5个中奖,翻了两个都中奖,所以还剩18个,其中还有3个会中奖,所以这位观众第三次翻牌获奖的概率是.故选B.10.(3分)(2014•深圳)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.11.(3分)(2014•天津)正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.12.(3分)(2016•扬州二模)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.5【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故选A.二、填空题(本题共4小题,每小题3分,共12分).13.(3分)(2015•梧州)因式分解:ax2﹣4a=a(x+2)(x﹣2).【解答】解:ax2﹣4a=a(x2﹣4)=a(x﹣2)(x+2).故答案为:a(x﹣2)(x+2).14.(3分)(2016•深圳二模)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC 于点D,若BD=10cm,BC=8cm,则点D到直线AB的距离是6cm.【解答】解:∵BD=10cm,BC=8cm,∠C=90°,∴DC=6cm,由角平分线定理得点D到直线AB的距离等于DC的长度,故点D到直线AB的距离是6cm;故答案为:6.15.(3分)(2009•本溪)如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC 内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.【解答】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.16.(3分)(2016•深圳二模)如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OAE的面积为2﹣2.【解答】解:过点E作EF⊥x轴,交x轴于点F,∵OD=2,即C横坐标为2,∴把x=2代入反比例解析式得:y=2,即C(2,2),∴CD=OD=2,即△OCD为等腰直角三角形,∵四边形ABCO为菱形,∴OC∥AB,OA=OC=2,∴∠EAF=45°,设EF=AF=x,则有OF=OA+AF=2+x,∴E(2+x,x),把E坐标代入反比例解析式得:x(2+x)=4,解得:x=﹣+(负值舍去),则△OAE面积S=OA•EF=×2×(﹣+)=22.故答案为:2﹣2三、解答题(本题共7小题,其中第17小题6分,第18小题5分,第19小题8分,第20小题8分,第21小题8分,第22小题8分,第23小题9分,共52分.)17.(6分)(2016•深圳二模)计算:.【解答】解:原式=2﹣3﹣1+1﹣2=﹣3.18.(5分)(2016•深圳二模)解方程:.【解答】解:方程两边同乘(x﹣4),得:3+x+x﹣4=﹣1,整理解得x=0.经检验x=0是原方程的解.19.(8分)(2016•深圳二模)某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机240台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是135°;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是55台.【解答】解:(1)由两种统计图可知一月份的销售量为60台,占前四个月销售量的25%,∴60÷25%=240,∴专卖店1~4月共销售这种品牌的手机240台;(2)如图(3)∵×360°=135°∴“二月”所在的扇形的圆心角的度数是135°;(4)排序后一三两月的销量位于中间位置,∴中位数为:(60+50)÷2=55台.20.(8分)(2014•昆明)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴CD=OD=2,∴阴影部分的面积=S△COD﹣S扇形DOE=×2×2﹣=2﹣.21.(8分)(2016•深圳二模)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?【解答】解:(1)设A型花和B型花每枝的成本分别是x元和y元,根据题意得:解得:所以A型花和B型花每枝的成本分别是5元和4元.(2)设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.22.(8分)(2010•茂名)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.【解答】(1)证明:如图所示,∵OA⊥OB,∴∠1+∠2=90°,又∵四边形ABCD是矩形,∴∠BAD=90°,∴∠2+∠3=90°,∴∠1=∠3,∵OA⊥OB,OE⊥OA,∴∠BOA=∠DEA=90°,∴△OAB∽△EDA.(2)解:在Rt△OAB中,AB==5,由(1)可知∠1=∠3,∠BOA=∠DEA=90°,∴当a=AD=AB=5时,△AOB与△EDA全等.当a=AD=AB=5时,可知矩形ABCD为正方形,∴BC=AB,如图,过点C作CH⊥OE交OE于点H,则CH就是点C到OE的距离,过点B作BF⊥CH交CH于点F,则∠4与∠5互余,∠1与∠5互余,∴∠1=∠4,又∵∠BFC=∠BOA,BC=AB,∴△OAB≌△FCB(AAS),∴CF=OA=4,BO=BF.∴四边形OHFB为正方形,∴HF=OB=3,∴点C到OE的距离CH=CF+HF=4+3=7.23.(9分)(2016•深圳二模)已知,如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动,过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)求出S与t的函数关系式.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得:,故抛物线解析式为y=x2﹣x;(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)如图,点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,重叠部分的面积等于△POQ的面积,S=×(2t)×=t2,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.。
2020年春人教版九年级数学下册 2019台湾省中考数学试题(word版,含解析)
2020年春九年级数学下册中考加油!2019年台湾省中考数学试卷一、选择题(本大题共26小题,共78.0分)1.算式--(-)之值为何?( )5316A. B. C. D. ‒32‒43‒116‒492.某城市分为南、北两区,如图为105年到107年该城市两区的人口数量长条图.根据图判断该城市的总人口数量从105年到107年的变化情形为下列何者?( )A. 逐年增加B. 逐年灭少C. 先增加,再减少D. 先减少,再增加3.计算(2x -3)(3x +4)的结果,与下列哪一个式子相同?( )A. B. C. D. ‒7x +4‒7x ‒126x 2‒126x 2‒x ‒124.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A. B. C. D. 4a +2b4a +4b 8a +6b 8a +12b 5.若=2,=3,则a +b 之值为何?( )44a 54b A. 13B. 17C. 24D. 406.民国106年8月15日,大潭发电厂因跳电导致供电短少约430万瓩,造成全台湾多处地方停电.已知1瓩等于1千瓦,求430万瓩等于多少瓦?( )A. B. C. D. 4.3×1074.3×1084.3×1094.3×10107.如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(-3,4)且与y 轴垂直,则L 也会通过下列哪一点?( )第2页,共19页A. AB. BC. CD. D8.若多项式5x 2+17x -12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a +c 之值为何?( )A. 1B. 7C. 11D. 139.公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?( )A. 84B. 86C. 160D. 16210.数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d -5|=|d -c |,则关于D 点的位置,下列叙述何者正确?( )A. 在A 的左边B. 介于A 、C 之间C. 介于C 、O 之间D. 介于O 、B 之间11.如图,将一长方形纸片沿着虚线剪成两个全等的梯形纸片.根据图中标示长度与角度,求梯形纸片中较短的底边长度为何?( )A. 4B. 5C. 6D. 712.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A. 2150B. 2250C. 2300D. 245013.如图,△ABC 中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求∠EAF 的度数为何?( )A. 113B. 124C. 129D.1342020年春九年级数学下册中考加油!14.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以毎次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?( )A. B. C. D. 121325325515.如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系何者正确( )A. ∠1<∠2B. ∠1=∠2C. ∠A +∠2<180∘D. ∠A +∠1>180∘16.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x 公克但没有自备容器,需支付y 元,则y 与x 的关系式为下列何者?( )A. B. C. D. y =295250xy =300250xy =295250x +5y =300250x +517.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?( )A. B. C. D. 21542524748718.图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?( )A. 10B. 20C. D. 15245219.如图,直角三角形ABC 的内切圆分别与AB 、BC 相切于D 点、E 点,根据图中标示的长度与角度,求AD 的长度为何?( )第4页,共19页A. 32B. 52C. 43D. 5320.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?( )参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 2521.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A. B. C. D. 10‒x 10‒y 10‒x +y 10‒x ‒y22.若正整数a 和420的最大公因数为35,则下列叙何者正确?( )A. 20可能是a 的因数,25可能是a 的因数B. 20可能是a 的因数,25不可能是a 的因数C. 20不可能是a 的因数,25可能是a 的因数D. 20不可能是a 的因数,25不可能是a 的因数23.如图,有一三角形ABC 的顶点B 、C 皆在直线L 上,且其内心为I .今固定C点,将此三角形依顺时针方向旋转,使得新三角形A 'B 'C 的顶点A ′落在L 上,且其内心为I ′.若∠A <∠B <∠C ,则下列叙述何者正确?( )#JYA. IC 和平行,和L 平行B. IC 和平行,和L 不平行I 'A 'II 'I 'A 'II 'C. IC 和不平行,和L 平行D. IC 和不平行,和L 不平行I 'A 'II 'I 'A 'II '24.如图表示A 、B 、C 、D 四点在O 上的位置,其中⏜AD=180°,且=,=.若阿超在上取一点P ,在⏜AB⏜BD⏜BC ⏜CD⏜AB⏜BD上取一点Q ,使得∠APQ =130°,则下列叙述何者正确?( )2020年春九年级数学下册中考加油!A. Q 点在上,且⏜BC⏜BQ>⏜QCB. Q 点在上,且⏜BC⏜BQ<⏜QCC. Q 点在上,且⏜CD⏜CQ>⏜QDD. Q 点在上,且⏜CD⏜CQ<⏜QD25.如图的△ABC 中,AB >AC >BC ,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得△APQ 与△PDQ 全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确26.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式y =2的图形交于B 、C 两点,△ABC 为正三角形.若A 点坐标为(-3,0),则此抛物线与y 轴的交点坐标为何?( )A. (0,92)B. (0,272)C. (0,9)D. (0,19)二、解答题(本大题共2小题,共16.0分)27.市面上贩售的防晒产品标有防晒指数SPF ,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF ≥1.SPF ‒1SPF 请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF 应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.28.在公园有两座垂直于水平地面且高度不一的图柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分?(2)若同一时间量得高圆柱落在墙上的影长为150公分,则高图柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.第6页,共19页2020年春九年级数学下册中考加油!答案和解析1.【答案】A 【解析】解:原式=-+=-+==-=-,故选:A.根据有理数的加减法法则计算即可.本题主要考查了有理数的加减法.有理数的减法法则:减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:由图中数据可知:105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,∴该城市的总人口数量从105年到107年逐年增加,故选:A.根据图中数据计算可直接得105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,据此作答.本题考查条形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.3.【答案】D【解析】解:由多项式乘法运算法则得(2x-3)(3x+4)=6x2+8x-9x-12=6x2-x-12.故选:D.由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.4.【答案】C【解析】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.根据已知条件即可得到结论.本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.5.【答案】B【解析】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.根据二次根式的定义求出a、b的值,代入求解即可.本题主要考查了二次根式的定义,熟练掌握定义是解答本题的关键.6.【答案】C【解析】解:430万瓩=4300000瓩,∵1瓩等于1千瓦,∴4300000瓩=4300000千瓦=4.3×106千瓦=4.3×109瓦;故选:C.根据题意将430万瓩化为4.3×109瓦即可解题;本题考查科学记数法;能够将单位进行准确的换算,将大数用科学记数法表示出来是解题的关键.7.【答案】D【解析】第8页,共19页2020年春九年级数学下册中考加油!解:如图所示:有一直线L 通过点(-3,4)且与y 轴垂直,故L 也会通过D 点.故选:D .直接利用点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.8.【答案】A【解析】解:利用十字交乘法将5x 2+17x-12因式分解, 可得:5x 2+17x-12=(x+4)(5x-3). ∴a=4,c=-3, ∴a+c=4-3=1. 故选:A .首先利用十字交乘法将5x 2+17x-12因式分解,继而求得a ,c 的值.此题考查了十字相乘法分解因式的知识.注意ax 2+bx+c (a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一次项b ,那么可以直接写成结果:ax 2+bx+c=(a 1x+c 1)(a 2x+c 2).9.【答案】A【解析】解:3+40×2+1=84.答:步道上总共使用84个三角形地砖. 故选:A .中间一个正方形对应两个等腰直角三角形,从而得到三角形的个数为3+40×2+1.本题考查了等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形.也考查了规律型问题的解决方法,探寻规律要认真观察、仔细思考,善用联想来解决这类问题.10.【答案】D【解析】解:∵c<0,b=5,|c|<5,|d-5|=|d-c|,∴BD=CD,∴D点介于O、B之间,故选:D.根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11.【答案】C【解析】解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=8,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=8,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=8,∴AE=CF=×(20-8)=6,故选:C.根据矩形的性质得出∠A=∠B=90°,AB=DC=8,AD∥BC,根据矩形的判定得出四边形ABFQ是矩形,求出AB=FQ=DC=8,求出EQ=FQ=8,即可得出答案.本题考查了矩形的性质和判定,能灵活运用定理进行推理是解此题的关键.12.【答案】D【解析】解:设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,依题意有,解得2≤x≤3,第10页,共19页2020年春九年级数学下册∵x是整数,∴x=3,350×3+200×(10-3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D.可设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,根据不等关系:①购买10盒蛋糕,花费的金额不超过2500元;②蛋糕的个数大于等于75个,列出不等式组求解即可.本题考查一元一次不等式组的应用,解答此类问题的关键是明确题意,列出相应的一元一次不等式组,注意要与实际相联系.13.【答案】D【解析】解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠DAC=180°-62°-51°=67°,∴∠EAF=2∠BAC=134°,故选:D.连接AD,利用轴对称的性质解答即可.此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【答案】D【解析】解:∵一个盒子内装有大小、形状相同的53+2=55个球,其中红球2个,白球53个,∴小芬抽到红球的概率是:=.故选:D.让红球的个数除以球的总数即为所求的概率.本题考查了概率公式,熟练掌握概率的概念是解题的关键.15.【答案】C【解析】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.16.【答案】B【解析】解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.根据若小涵购买咖啡豆250公克且自备容器,需支付295元,可得咖啡豆每公克的价钱为(295+5)÷250=(元),据此即可y与x的关系式.本题主要考查了一次函数的应用,根据题意得出咖啡豆每公克的单价是解答本题的关键.17.【答案】D【解析】解:如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行2020年春九年级数学下册四边形,从而△DFH≌△EGC,∴S△DFH=S3,∵DE∥BC,∴△ADE∽△ABC,DE=3,BC=7,∴=,∵S△ABC=14,∴S1=×14,∴S△BDH:S=(×4):3=2:3,∴S△BDH=S,∴+S=14-×14,∴S=.故选:D.如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH≌△EGC,利用面积比等于相似比的平方可求.本题是巧求面积的选择题,综合考查了平行四边形,相似三角形的性质等,难度较大.18.【答案】B【解析】解:=20(分钟).所以经过20分钟後,9号车厢才会运行到最高点.故选:B.先求出从21号旋转到9号旋转的角度占圆大小比例,再根据旋转一圈花费30分钟解答即可.本题主要考查了生活中的旋转现象,理清题意,得出从21号旋转到9号旋转的角度占圆大小比例是解答本题的关键.19.【答案】D【解析】解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.设AD=x,利用切线长定理得到BD=BE=1,AB=x+1,AC=AD+CE=x+4,然后根据勾股定理得到(x+1)2+52=(x+4)2,最后解方程即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线长定理.20.【答案】A【解析】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意列出二元一次方程,求出其解.2020年春九年级数学下册本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.21.【答案】D【解析】解:x杯饮料则在B餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10-x-y;故选:D.根据点的饮料和沙拉能确定点了x+y份意大利面,根据题意可得点A餐10-x-y;本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.22.【答案】C【解析】解:正整数a和420的最大公因数为35,则a必须是35的倍数,∵420÷35=12,12=3×4,20=4×5,25=5×5,∴20不可能是a的因数,25可能是a的因数;故选:C.由420÷35=12,12=3×4,20=4×5,25=5×5,即可求解;本题考查有理数的乘法;理解因数的概念,熟练掌握有理数的乘法是解题的关键.23.【答案】C【解析】解:作ID⊥BA'于D,IE⊥AC于E,I'F⊥BA'于F,如图所示:则ID∥I'F,∵△ABC的内心为I,△A'B'C的内心为I′,∴ID=IE=IF,∠ICD-∠ACB,∠I'A'C=∠B'A'C,∴四边形IDFI'是矩形,∴II'∥L,∵∠A<∠B<∠C,∴∠A'<∠B'<∠C,∴∠ICD>∠I'A'C,∴IC和I'A'不平行,故选:C.作ID⊥BA'于D,IE⊥AC于E,I'F⊥BA'于F,由内心的性质得出ID=IE=IF,∠ICD=∠ACB,∠I'A'C=∠B'A'C,证出四边形IDFI'是矩形,得出II'∥L,证出∠ICD>∠I'A'C,得出IC和I'A'不平行,即可得出结论.本题考查了三角形的内心、平行线的判定、旋转的性质;熟练掌握三角形的内心性质和平行线的判定是解题的关键.24.【答案】B【解析】解:连接AD,OB,OC,∵=180°,且=,=,∴∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,∴∠E=AOC=67.5°,∴∠ABC=122.5°<130°,取的中点F,连接OF,则∠AOF=67.5°,∴∠ABF=123.25°<130°,∴Q点在上,且<,故选:B.连接AD,OB,OC,根据题意得到∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,由圆周角定理得到∠E=AOC=67.5°,求得∠ABC=122.5°<130°,取的中点F,连接OF,得到∠ABF=123.25°<130°,于是得到结论.2020年春九年级数学下册本题考查了圆心角,弧,弦的关系,圆内接四边形的性质,圆周角定理,正确的理解题意是解题的关键.25.【答案】A【解析】解:如图1,∵PQ垂直平分AD,∴PA=PD,QA=QD,而PQ=PQ,∴△APQ≌△DPQ(SSS),所以甲正确;如图2,∵PD∥AQ,DQ∥AP,∴四边形APDQ为平行四边形,∴PA=DQ,PD=AQ,而PQ=QP,∴△APQ≌△DQP(SSS),所以乙正确.故选:A.如图1,根据线段垂直平分线的性质得到PA=PD,QA=QD,则根据“SSS”可判断△APQ≌△DPQ,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ为平行四边形,则根据平行四边形的性质得到PA=DQ,PD=AQ,则根据“SSS”可判断△APQ≌△DQP,则可对乙进行判断.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.26.【答案】B【解析】解:设B(-3-m,2),C(-3+m,2),(m>0)∵A点坐标为(-3,0),∴BC=2m,∵△ABC 为正三角形,∴AC=2m ,∠DAO=60°,∴m=∴C (-3+,2)设抛物线解析式y=a (x+3)2,a (-3++3)2=2,∴a=,∴y=(x+3)2,当x=0时,y=;故选:B .设B (-3-m ,2),C (-3+m ,2),(m >0),可知BC=2m ,再由等边三角形的性质可知C (-3+,2),设抛物线解析式y=a (x+3)2,将点C 代入解析式即可求a ,进而求解;本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.27.【答案】解:(1)根据题意得,,SPF ‒1SPF ×100%=90%解得,SPF =10,答:该产品的SPF 应标示为10;(2)文宣内容不合理.理由如下:当SPF =25时,其防护率为:;25‒125×100%=96%当SPF =50时,其防护率为:;50‒150×100%=98%98%-96%=2%,∴第二代防晒乳液比第一代防晒乳液的防护率提高了2%,不是提高了一倍.∴文宣内容不合理.【解析】(1)根据公式列出方程进行计算便可;(2)根据公式计算两个的防护率,再比较可知结果.2020年春九年级数学下册本题是分式方程的应用,根据公式列出方程是解第一题的关键,第二题的关键是根据公式正确算出各自的防护率.28.【答案】解:(1)设敏敏的影长为x 公分.由题意:=,150x 9060解得x =100(公分),经检验:x =100是分式方程的解.∴敏敏的影长为100公分.(2)如图,连接AE ,作FB ∥EA .∵AB ∥EF ,∴四边形ABFE 是平行四边形,∴AB =EF =150公分,设BC =y 公分,由题意BC 落在地面上的影从为120公分.∴=,y 1209060∴y =180(公分),∴AC =AB +BC =150+180=330(公分),答:高图柱的高度为330公分.【解析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)如图,连接AE ,作FB ∥EA .分别求出AB ,BC 的长即可解决问题.本题考查相似三角形的应用,平行投影,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
数学初三下册试题及答案
数学初三下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(1/2)2. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对3. 已知一个等腰三角形的两边长分别为3cm和4cm,那么这个三角形的周长是:A. 10cmB. 11cmC. 14cmD. 无法确定4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个数的立方等于-8,那么这个数是:B. -2C. 2或-2D. 以上都不对6. 已知一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π cm²7. 一个等差数列的前三项依次为2,5,8,那么这个数列的公差是:A. 1B. 2C. 3D. 48. 一个直角三角形的两条直角边长分别为3cm和4cm,那么这个三角形的斜边长是:A. 5cmB. 6cmC. 7cmD. 8cm9. 函数y=x²-4x+3的最大值是:A. 0B. 1C. 2D. 310. 一个数的绝对值是5,那么这个数是:B. -5C. 5或-5D. 以上都不对二、填空题(每题3分,共30分)1. 计算:(2+3)×(2-3) = __________。
2. 一个数的相反数是-8,那么这个数是 __________。
3. 一个数的倒数是1/2,那么这个数是 __________。
4. 一个数的平方等于16,那么这个数是 __________。
5. 一个数的立方等于27,那么这个数是 __________。
6. 计算:√(9) = __________。
7. 计算:(-3)³ = __________。
8. 计算:(-2)×(-4) = __________。
人教版九年级数学 中考数学真题试卷
人教版九年级数学中考数学真题试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×1092.(3分)实数﹣,﹣,2,﹣3中,为负整数的是()A.﹣B.﹣C.2 D.﹣33.(3分)一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<04.(3分)+=()A.3 B.C.D.5.(3分)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A. B.C. D.6.(3分)某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.两直线平行,同旁内角互补C.两直线平行,同位角相等D.内错角相等,两直线平行7.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<08.(3分)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米9.(3分)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30% D.先提价25%,再降价25%10.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)已知是方程3x+2y=10的一个解,则m的值是.12.(4分)二次根式中,字母x的取值范围是.13.(4分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.14.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.15.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.16.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD 都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.18.(6分)计算:(﹣1)2021+﹣4sin45°+|﹣2|.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.21.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.22.(10分)背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.23.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.24.(12分)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.。
初三数学试卷(含答案)
初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。
最新浙教版九年级数学中考试题(含答案)
15.如图,在等腰三角形 中, , , 为 的中点, 为 上任意一点,则 的范围是______.
(2)试探究: 是否是定值?若是,请求出这个值;若不是,请说明理由;
(3)当 是等腰三角形时,请求出所有 的值.
2022年初中毕业升学适应性检测数学试题卷
一、选择题(本题有10小题,每小题3分,共30分)
【1题答案】
【答案】A
【2题答案】
【答案】D
【3题答案】
【答案】D
【4题答案】
【答案】C
【5题答案】
【24题答案】
【答案】(1)见解析(2) 的值为定值,这个值为
(3) 值为 或8
(3)全校有600学生报名参加篮球社团活动
【20题答案】
【答案】(1)见解析(2)见解析
【21题答案】
【答案】(1)80;(2) ;(3)不能,理由见解析.
【22题答案】
【答案】(1)详见解析;(2)
【23题答案】
【答案】(1) ,点D的坐标为(-1,0);
(2)①当 时,m有最大值, ;②存在,当 时点 恰好落在抛物线上
10.如图,平行四边形 的顶点 在 轴的正半轴上,点 在对角线 上,反比例函数 的图像经过 、 两点.已知平行四边形 的面积是 ,则点 的坐标为()
A. B. C. D.
二、填空题(本题有6小题,每小题4分,共24分)
11.因式分解: ______.
中考数学试卷含答案初三九年级数学试题
中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。
2020-2021学年人教版九年级下册数学中考复习试卷1(word版 含答案)
2020-2021学年人教新版九年级下册数学中考复习试卷1 一.选择题(共10小题,满分30分,每小题3分)1.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.如图所示的几何体的从左面看到的图形为()A.B.C.D.3.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1004.下列直线中不能由直线y=2x平移得到的是()A.y=2x﹣1B.y=2(x﹣1)C.y=﹣2x﹣1D.y=2(x+1)5.下列计算正确的是()A.a2+a3=a5B.m5÷m3=m2C.(x2)4=x6D.(a﹣b)2=a2﹣b26.如图,在△ABC中,∠A=90°,CE平分∠ACB,ED垂直平分BC,CE=4,ED=2,则AB的长为()A.5B.6C.10D.127.无论n为何值,直线y=﹣2x+n与y=x﹣3的交点不可能在第()象限.A.一B.二C.三D.四8.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°9.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则⊙O的半径为()A.4B.6C.8D.1210.已知关于x的二次函数y=x2﹣2mx+m2+m+1,其中m为实数,当﹣2≤x≤0时,y的最小值为5,满足条件的m的值为()A.﹣5或B.﹣5或C.0或D.0或二.填空题(共4小题,满分12分,每小题3分)11.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b 的解集是.12.一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为.13.如图,已知双曲线y=(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE =CB,AF=AB,且四边形OEBF的面积为6,则k的值为.14.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题(共11小题,满分78分)15.(5分)计算:﹣8÷2++()﹣1.16.(5分)解方程:﹣=117.(5分)如图,已知△ABC中,∠C=90°,点D在边BC上,请利用尺规作图法在AB 边上求作点E,使△BED∽△BCA.(不写作法,保留作图痕迹)18.(5分)如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.19.(7分)为了让学生更好地掌握疫情防控知识,增强疫情防控意识,某市中学生举行了一次“疫情防控知识竞赛”,共有18000名中学生参加了这次竞赛,为了解本次竞赛成绩情况,从中随机抽取了部分学生的成绩进行统计,得到下表并绘制如图所示不完整的统计图.分组分数段频数频率A50≤x<60400.08B60≤x<70800.16C70≤x<80100aD80≤x<90b0.32E90≤x≤1001200.24根据上面提供的信息,解答下列问题:(1)a=,b=;补全频数分布直方图;(2)被抽取学生的成绩的中位数落在分数段上;(3)若竞赛成绩在70分以上(含70分)的学生为合格.请估计该市参加“疫情防控知识竞赛”成绩为合格的学生人数.20.(7分)近年来,无人机航拍测量的应用越来越广泛.如图无人机从A处观测,测得某建筑物顶点O的俯角为22°,继续水平前行10米到达B处,测得俯角为45°,已知无人机的飞行高度为45米,则这栋楼的高度是多少米?(精确到0.1米)参考数据:sin22°≈,cos22°≈,tan22°≈.21.(7分)富平柿饼,以其加工精细,味香醇厚等优点成为陕西畅销国内外的传统土产之一,小张家的柿子今年喜获丰收,根据经验小张预计可以制作3000盒柿饼,根据市场需求她将制作两种盒装的柿饼放在网站进行销售,每盒单价、制作成本、运输成本如表:每盒单价(元)制作成本(元/盒)运输成本(元/盒)普通盒装3010.59.5精品盒装4014.510.5设销售精品盒装的柿饼x盒,小张所获得的利润为y元.(1)求y与x之间的函数关系式;(2)根据市场需求,精品盒装的数量不多于普通盒装的2倍,求小张销售完这些柿饼最多能获得总利润多少元?22.(7分)甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.23.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.24.(10分)如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中A(﹣2,0),B(4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y>0时,x的取值范围;(3)若要使抛物线与x轴只有一个交点,则需将抛物线向下平移几个单位?25.(12分)在矩形ABCD中,AB=2BC.点E是直线AB上的一点,点F是直线BC上的一点,且满足AE=2CF,连接EF交AC于点G.(1)tan∠CAB=;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=BE;(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H.①EG=FG这个结论是否仍然成立?请直接写出你的结论;②当CF=1,BF=2时,请直接写出GH的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.2.解:从这个几何体的左面看,所得到的图形是长方形,能看到的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此,选项D的图形,符合题意,故选:D.3.解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.4.解:由直线y=2x平移后得到的直线方程应该是y=2x+b的形式,观察选项,只有选项C符合题意.故选:C.5.解:A.a2和a3不能合并,故本选项不符合题意;B.m5÷m3=m2,故本选项符合题意;C.(x2)4=x8,故本选项不符合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不符合题意;故选:B.6.解:∵DE是BC边的垂直平分线,∴BE=EC=5,ED⊥BC,∵CE平分∠ACB,EA⊥AC,∴EA=ED=3,∴AB=AE+EB=ED+EC=5+1=6.故选:B.7.解:∵一次函数y=x﹣3中,k=1>0,b=﹣3<0,∴图象过一、三、四象限,图象不过第二象限,∴直线y=﹣2x+n与y=x﹣3的交点不可能在第二象限.故选:B.8.解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.9.解:连接OA,∵AB=AC,∴∠C=∠ABC,∵∠BAC=120°,∴∠C==30°,∴∠BOA=2∠C=60°,∵OA=OB,∴△AOB为等边三角形,∴OA=AB=4,则⊙O的半径为4.故选:A.10.解:∵二次函数y=x2﹣2mx+m2+m+1=(x﹣m)2+m+1,∴该函数的对称轴为直线x=m,函数图象开口向上,∵当﹣2≤x≤0时,y的最小值为5,∴当m<﹣2时,5=(﹣2﹣m)2+m+1,得m1=﹣5,m2=0(舍去);当﹣2≤m≤0时,m+1=5,得m=4(舍去);当m>0时,5=(0﹣m)2+m+1,得m3=,m4=(舍去);由上可得,m的值是﹣5或,故选:A.二.填空题(共4小题,满分12分,每小题3分)11.解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax >2bx +b 变为﹣bx >b , ∴x >﹣1, 故答案为x >﹣1.12.解:设这个多边形的边数为n .根据题意得:(n ﹣2)×180°+360°=2520°. 解得:n =14.故这个多边形的边数为14. 故答案为:14. 13.解:连接OB , ∵OABC 是矩形,∴S △OAB =S △OBC =S 矩形OABC , ∵E 、F 在反比例函数的图象上, ∴S △COE =S △OAF =|k |,∵∴S △OBE =S △OBF =S 四边形OEBF =3, ∵CE =CB ,即,BE =2CE , ∴S △OCE =S △OBE =×3=|k |,∴k =3(k >0) 故答案为:3.14.解:如图,连接CG 并延长,交AD 于点M ,连接EM ,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.三.解答题(共11小题,满分78分)15.解:原式=﹣4+(﹣3)+3=﹣4.16.解:去分母得:x2+2x﹣8=x2﹣4,解得:x=2,经检验x=2是增根,分式方程无解.17.解:如图所示点E即为所求(作∠EDB=∠A正确也可).18.解:∵∠BCE=∠ACD,∴∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(ASA),∴BC=CD=3.19.解:(1)∵被调查的总人数为40÷0.08=500(人),∴a=100÷500=0.2,b=500×0.32=160,补全图形如下:故答案为:0.2,160;(2)被抽取学生的成绩的中位数是第250、251个数据的平均数,而这两个数据均落在D组,所以被抽取学生的成绩的中位数落在D组,故答案为:D.(3)估计该市参加“疫情防控知识竞赛”成绩为合格的学生人数为18000×(0.2+0.32+0.24)=13680(人).20.解:作OC⊥AB交AB的延长线于点C,作OD⊥AE于点E,∵DA⊥AC,OC⊥AB,OD⊥AE,∴四边形ADOC为矩形,∴AD=OC,同理可得,DE=OH,在Rt△OCB中,∠OBC=45°,∴OC=BC,在Rt△OCA中,tan∠OAC=,∴≈,解得,OC=,∴OH=DE=45﹣=≈38.3,答:这栋楼的高度是约为38.3米.21.解:(1)根据题意可得:y=(40﹣14.5﹣10.5)x+(30﹣10.5﹣9.5)(3000﹣x)=5x+30000;(2)据题意可得:x≤2(3000﹣x),解得:x≤2000,∵在y=5x+30000中,5>0,∴y随x的增大而增大,∴当x=2000时,小张销售完这些柿饼所获得的利润最大,最大利润y=5×2000+30000=40000(元),答:小张销售完这些柿饼最多能获得总利润40000元.22.解:(1)画树状图如图:(2)由(1)得:共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,∴正好由丙将接力棒交给丁的概率为=.23.(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:,∵PD与P B都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED≌△PEF(ASA),∴PD=PD=10,DE=EF,∴BF=PF﹣PB=10﹣6=4,在Rt△DBF中,,∴.24.解:(1)把A(﹣2,0),B(4,0)代入y=﹣x2+bx+c,得,解得,抛物线解析式为y=﹣x2+2x+8;(2)由图象知,当﹣2<x<4时,y>0;(3)∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴抛物线的顶点坐标为(1,9),∴把抛物线y=﹣x2+2x+8向下平移9个单位,抛物线与x轴只有一个交点.25.解:(1)∵矩形ABCD中,∠ABC=90°,AB=2BC,∴tan∠CAB==,故答案为:;(2)①证明:过点E作EH⊥AB,交AC于点H,则∠AEH=90°.∵四边形ABCD是矩形,∴∠B=∠AEH=90°.∴EH∥BF,∴∠EHG=∠FCG,∠HEG=∠CFG,在Rt△ABC和Rt△AEH中,∵AB=2BC,∴tan∠CAB===,∴AE=2EH,∵AE=2CF,∴EH=CF,∴△EHG≌△FCG(ASA),∴EG=FG.②证明:设EH=x,则AE=2x,Rt△AEH中,根据勾股定理得,AH==x,∵EH∥BF,∴=,∴=,∴CH=BE,∵△EHG≌△FCG,∴HG=CG,∴CG=BE.(3)①成立;过点F作FP∥AB交AC于P,如图3所示:则FP∥CD,∠CFP=∠ABC=90°,∴∠CPF=∠CAB,在Rt△CFP和Rt△ABC中,AB=2BC,∴tan∠CPF==tan∠CAB=,∴PF=2CF,∵AE=2CF,∴AE=PF,在△PFG和△AEG中,,∴△PFG≌△AEG(ASA),∴EG=FG;②解:如图3,∵△AEG≌△PFG(AAS),∴AG=PG,∵BF=2,CF=1,∴BC=3,CD=AB=2BC=6,∴AC===3,∵FP∥AB,∴△CPF∽△CAB,∴,∴PC=AC=,PA=AC﹣PC=2,∴AG=PG=PA=,∵FP∥CD,∴△PFH∽△CDH,∴,∴PH=PC=,∴GH=PG+PH=+=.。
初三数学中考试题及答案
初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个圆的半径是3cm,那么它的直径是______。
答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。
答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。
山东省东营市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2020年某某省东营市中考数学试卷一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣6的倒数是()A.﹣6 B.6 C.D.【分析】根据倒数的定义,a的倒数是(a≠0),据此即可求解.【解答】解:﹣6的倒数是:﹣.故选:C.【点评】本题考查了倒数的定义,理解定义是关键.2.(3分)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2 B.2 C.±2D.4【分析】根据科学计算器的使用及算术平方根的定义求解可得.【解答】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握科学计算器的基本功能的使用.4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于()A.159°B.161°C.169°D.138°【分析】直接利用对顶角、邻补角的定义以及角平分线的定义得出∠BOM=∠DOM,进而得出答案.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠B OD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.【点评】此题主要考查了对顶角、邻补角以及角平分线的定义,正确得出∠BOM=∠DOM 是解题关键.5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【分析】找出随机闭合开关K1、K2、K3中的两个的情况数以及能让两盏灯泡L1、L2同时发光的情况数,即可求出所求概率.【解答】解:画树状图,如图所示:随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,则P(能让两盏灯泡L1、L2同时发光)==.故选:D.【点评】此题考查了列表法与树状图法,弄清题中的电路图是解本题的关键.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合进行判断即可.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b =0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.【点评】本题考查二次函数的图象和性质,理解抛物线的位置与系数a、b、c之间的关系是正确解答的关键.7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.1【分析】根据扇形的面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径)即可求出圆锥的底面半径.【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.【点评】本题考查了圆锥的计算、扇形面积的计算,解决本题的关键是掌握扇形面积公式.8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【分析】设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x 里,x里,x里,根据六天共走了378里,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.【点评】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P 运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC 的边AB的长度为()A.12 B.8 C.10 D.13【分析】根据图2中的曲线可得,当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,可得CP=12,根据勾股定理可得AP=5,再根据等腰三角形三线合一可得AB的长.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME(SAS),故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;连接OM,ON,∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.【点评】本题考查正方形的性质、矩形的判定、勾股定理等知识,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.2×10﹣8.【分析】由原数左边起第一个不为零的数字前面的0的个数所决定10的负指数,把较小的数表示成科学记数法即可.【解答】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.【点评】此题考查了科学记数法﹣表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)因式分解:12a2﹣3b2=3(2a+b)(2a﹣b).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15 人数 4 7 4 则该校女子游泳队队员的平均年龄是14 岁.【分析】直接利用加权平均数的定义列式计算可得.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k <0(填“>”或“<”).【分析】设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入代入,得到k和b值,即可得到结论.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,故答案为:<.【点评】本题考查了一次函数图象与系数的关系,利用待定系数法正确的求出k,b的值是解题的关键.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值X围是m≤9.15.【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出m的X围即可.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴△=36﹣4m≥0,解得:m≤9,则m的取值X围是m≤9.故答案为:m≤9.【点评】此题考查了根的判别式,弄清一元二次方程解的情况与根的判别式的关系是解本题的关键.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA =3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=18 .【分析】利用相似三角形的性质求出△PAD的面积即可解决问题.【解答】解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.【点评】本题考查相似三角形的判定和性质,平行四边形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.【点评】本题考查的是切线的性质、勾股定理、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020= 2 .【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,依次求出各点的坐标,观察出每3次变化为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【分析】(1)先计算2cos60°、()﹣2,再化简和﹣|3+2|,最后加减求出值;(2)按分式的混合运算法则,先化简分式,再代入求值.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.【点评】本题考查了二次根式的化简、特殊角的三角函数值、负整数指数幂、绝对值的化简及分式的混合运算.题目综合性较强,是中考热点.熟记特殊角的三角函数值和负整数指数幂的意义是求(1)的关键,掌握分式的混合运算法则,化简分式是解决(2)的关键.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【分析】过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD的长,在直角三角形BCD中,利用锐角三角函数定义求出BC的长,进而求出所求时间即可.【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【点评】此题考查了解直角三角形的应用﹣方向角,熟练掌握锐角三角函数定义是解本题的关键.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好44较好68 0.34一般48 0.24不好40 0.20请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无某某,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【分析】(1)结合扇形统计图与表格确定出调查学生总数即可;(2)分别求出所缺的数据,填写表格即可;(3)根据题意列出算式,计算即可求出值;(4)列表确定出所有等可能的情况数,找出两次抽到的作业本都是“非常好”的情况数,即可求出所求概率.【解答】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好44较好68一般48不好40故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A1A2 B C A1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B (B,A1)(B,A2)﹣﹣﹣(B,C)C (C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.【点评】此题考查了列表法与树状图法,用样本估计总体,理解频数(率)分布表,弄清题中的数据是解本题的关键.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:甲乙型号价格(元/只)项目成本12 4售价18 6 (1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【分析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值X围,找出w 与a的函数关系式,由一次函数的性质可求解.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【分析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).【点评】本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP ,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CA E,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.【点评】本题是三角形的一个综合题,主要考查了等边三角形的判定,三角形的中位线定理,全等三角形的性质与判定,旋转的性质,关键证明三角形全等和运用三角形中位线定理使已知与未知联系起来.。
2020-2021学年九年级数学人教版下册中考复习试卷(word版 含答案)
2020-2021学年人教新版九年级下册数学中考复习试卷一.选择题(共8小题,满分16分,每小题2分)1.下列几何体中,从正面观察所看到的形状为三角形的是()A.B.C.D.2.数据0.000000203用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.203×10﹣7 3.实数a,b,c,d在数轴上对应的点的位置如图所示,正确的结论是()A.a<﹣5B.|a|>|d|C.b+c>0D.bd>04.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50°B.60°C.80°D.70°5.若点A(﹣2020,y1)、B(2021,y2)都在双曲线上,且y1>y2,则a的取值范围是()A.a<0B.a>0C.D.6.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形7.用配方法解一元二次方程x2﹣9x+19=0,配方后的方程为()A.(x﹣)2=B.(x+)2=C.(x﹣9)2=62D.(x+9)2=628.如图,曲线AB是抛物线y=﹣4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C 开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n)在该“波浪线”上,则m+n的最大值为()A.5B.6C.2020D.2021二.填空题(共8小题,满分16分,每小题2分)9.当x的值为时,分式的值为0.10.已知,则x﹣y=.11.如图,已知△ABC中,EF∥AB,=,如果四边形ABEF的面积为25,那么△ABC 的面积为.12.如图,圆O的直径AB过弦CD的中点E,若∠C=39°,则∠D=.13.当x=2时,代数式÷(x﹣1)的值为.14.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口9万人,通过社会各界的努力,2019年底贫困人口减少至1万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意列方程得.15.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买(填“乙”、“丙”、“丁”)商品的可能性最大.三.解答题(共12小题,满分68分)17.(5分)计算:|﹣2|﹣(1﹣π)0+2cos30°+()﹣1.18.(5分)先阅读材料,再解答问题.对三个数x、y、z,规定:M{x,y,z}=;min{x,y,z}表示x、y、z这三个数中的最小数.如M{﹣1,2,3}=,min{﹣1,2,3}=﹣1.解决问题:(1)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(2)①若M{2,x+1,2x}=min{2,x+1,2x},求x的值;②猜想:若M{a,b,c}=min{a,b,c}那么a,b,c大小关系如何?请直接写出结论;③问:是否存在非负整数a,b,c,使得M{2a﹣b+7,3a+2c+1,4c+1}=min{2a﹣b+7,3a+2c+1,4c+1}?若存在,请求a,b,c的值;若不存在,请说明理由.19.(5分)如图,A,B,C三点,请用至少两种方法画出平行四边形ABCD.要求:保留画图痕迹,写出画法;选择任意一种证明画法的合理性.20.(5分)解方程:(1)=;(2)=+1.21.(5分)关于x的方程2x2+(m+2)x+m=0.(1)求证:方程总有两个实数根;(2)请你选择一个合适的m的值,使得方程的两个根都是整数,并求此时方程的根.22.(5分)如图,在矩形ABCD中,AB=3,E在边AD上,且AE=4,点F是CD的中点,EF平分∠BED,求DE的长.23.(6分)如图,△ABC中.∠BCA=90°,以A B为直径的⊙O与∠BAC的平分线交于点D,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠B=30°,⊙O的半径为4,求弧CD,线段CE及切线DE围成的阴影部分面积.24.(6分)已知反比例函数y=的图象在第一、三象限.(1)求m的取值范围;(2)在第一象限的图象上有一点A,点A的横坐标为3,并且点A到两坐标轴的距离相等,求反比例函数表达式;(3)如果P(n,y1),Q(﹣3,y2)是该函数图象上的点,且y1>y2,请直接写出n 的取值范围.25.(6分)临近期末,历史老师为了了解所任教的甲、乙两班学生的历史基础知识背诵情况,从甲、乙两个班学生中分别随机抽取了20名学生来进行历史基础知识背诵检测,满分50分得到学生的分相关数据如下:甲32354623414937413641 37443946464150434449乙2534434635414246444247454234394749484542通过整理,分析数据:两组数据的平均数、中位数、众数如下表:平均数(分)中位数(分)众数(分)甲4141b乙41.8a42历史老师将乙班成绩按分数段(0≤x<30,30≤x<35,35≤x<40,40≤x<45,45x≤50,x表示分数)绘制成扇形统计图如图(不完整).请回答下列问题.(1)a=分.(2)扇形统计图中,40≤x<45所对应的圆心角为度.(3)请结合以上数据说明哪个班背诵情况更好(列举两条理由即可).26.(6分)已知一个二次函数的图象经过点A(﹣1,0)、B(0,3)、C(2,3).(1)求这个函数的解析式及对称轴;(2)如果点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,那么y1 y2.(填“<”或“>”)27.(7分)已知:如图1,∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB作法:①如图2,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②如图3,画一条射线O'A',以点O'为圆心,OC长为半径画弧,交O'A'于点C';③以点C'为圆心,CD长为半径画弧,与②中所画的弧相交于点D';④过点D'画射线O'B',则∠A'O'B'=∠AOB,∠A'O'B'就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C'D'.由作法可知OC=O'C',,,∴△COD≌△C'O'D'.()(填推理依据).∴∠A'O'B'=∠AOB.∴∠A'O'B'就是所求作的角.28.(7分)如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+b交x轴于点B,OB=4,交y轴于点A.直线y=﹣x+8分别交x轴、y轴于E、D两点.(1)求A点坐标;(2)动点P从点B出发沿线段BO向终点O以2个单位/秒的速度运动,连接AP,将AP绕点P逆时针旋转α°角得到线段QP,∠α=∠ABO,点P运动的时间为t秒,设△POQ的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在直线DE上有一点M,平面内有一点N,以A、P、M、N为顶点的四边形为正方形,求出t的值并直接写出N点坐标.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.解:A.从正面看是一个等腰三角形,故本选项符合题意;B.从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意;C.从正面看是一个圆,故本选项不符合题意;D.从正面看是一个矩形,故本选项不符合题意;故选:A.2.解:0.000000203=2.03×10﹣7.故选:B.3.解:由图可知:﹣4>a>﹣5,|a|>|d|,b<0,d>0,∴bd<0,故选:B.4.解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故选:C.5.解:∵点A(﹣2020,y1),B(2021,y2)两点在双曲线y=上,且y1>y2,∴3+2a<0,∴a<﹣,∴a的取值范围是a<﹣,故选:D.6.解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.7.解:∵x2﹣9x+19=0,∴x2﹣9x=﹣19,∴x2﹣9x+=﹣19+,即(x﹣)2=,故选:A.8.解:∵y=﹣4x2+8x+1=﹣4(x﹣1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=(k≠0)的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=﹣4x2+8x+1的图象上,m=﹣4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,∴m+n的最大值为6.故选:B.二.填空题(共8小题,满分16分,每小题2分)9.解:由题意得:x+4=0,且x≠0,解得:x=﹣4,故答案为:﹣4.10.解:,①﹣②得:x ﹣y =1, 故答案为:1 11.解:∵,∴,∵EF ∥AB , ∴△EFC ∽△BAC , ∴=()2=,∴设S △EFC =4x ,S △ABC =9x , ∴四边形ABEF 的面积5x =25, ∴x =5,∴△ABC 的面积=45, 故答案为:45.12.解:∵E 点为CD 的中点, ∴OE ⊥CD , ∴∠AED =90°, ∵∠A =∠C =39°, ∴∠D =90°﹣39°=51°. 故答案为51°. 13.解:÷(x ﹣1)==, 当x =2时,原式==,故答案为:.14.解:设这两年全省贫困人口的年平均下降率为x ,根据题意得: 9(1﹣x )2=1,故答案是:9(1﹣x )2=1.15.解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.16.解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.三.解答题(共12小题,满分68分)17.解:|﹣2|﹣(1﹣π)0+2cos30°+()﹣1==.18.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,(2)①∵M{2,x+1,2x}==x+1=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,③由②可知:,整理得4a+b=6,3a=2c,∵a,b,c是非负整数,∴a=0,b=6,c=019.解:如图,四边形ABCD即为所求.①如图1,作法:分别以点A、C为圆心,BC、AB长为半径画弧,两弧相交于点D,连接AD、DC,四边形ABCD即为平行四边形.证明:由作图过程可知:DC=AB,AD=BC,所以四边形ABCD是平行四边形;②如图2,作法:连接AC,作AC的中点O,连接BO并延长,截取OD=OB,所以四边形ABCD即为平行四边形.证明:根据作图过程可知:OA=OC,OB=OD,所以四边形ABCD是平行四边形.20.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.21.(1)证明:△=(m+2)2﹣4×2×m,=(m﹣2)2,无论m取任何实数,(m﹣2)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m﹣2)2,由求根公式,得x1=,x2=,∴原方程的根为:x1=﹣1,x2=﹣,∵方程的两个根都是整数,∴取m=﹣2,方程的两根为x1=1,x2=﹣1.22.解:如图,延长EF交BC的延长线于点G,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠G,∵∠DFE=∠CFG,DF=CF,∴△DEF≌△CGF(AAS),∴DE=CG;∵EF平分∠BED,∴∠BEF=∠DEF,∴∠DEF=∠BGF,∴∠BEF=∠BGF,∴BE=BG;在Rt△ABE中,由勾股定理得,BE=5,∴BG=5,设DE=x,则BG=4+2x,∴4+2x=5,解得x=所以ED的长为.23.解:(1)如图,连接OD,∵OD=OA,∴∠ODA=∠OAD,∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,OD是⊙O的半径,∴DE是⊙O的切线;(2)连接DC、OC,∵A B是⊙O的直径,∴∠ACB=90°,∴∠BAC=60°,∵OA=OC,∴△OAC是等边三角形,∴∠AOC=∠OCA=60°,∵OD∥AC,∴∠DOC=∠OCA=60°,∵OC=OD,∴△COD是等边三角形,∴DC=OD=4,∠ODC=60°,∵∠ODE=90°,∴∠CDE=30°,∴CE=2,DE=2,∴S阴影=S△DCE﹣(S扇形OCD﹣S△OCD)=CE•DE﹣(﹣OD•DE)=2×2﹣π+4×2=6﹣π.答:弧CD,线段CE及切线DE围成的阴影部分面积为(6﹣π).24.解:(1)∵反比函数y=的图象在第一、三象限,∴2m﹣1>0,解得m>,∴m的取值范围是m>;(2)∵A点在第一象限内,横坐标为3,并且点A到两坐标轴的距离相等,∴A点坐标为(3,3),代入反比例函数解析式可得2m﹣1=9,∴反比例函数表达式为y=;(3)∵函数图象在第一、三象限,∴在每个象限内y随x的增大而减小,∵Q(﹣3,y2),∴Q点在第三象限,且y2<0,当P点在第一象限时,y1>0,满足y1>y2,此时n>0,当P点在第三象限时,∵y1>y2,∴n<﹣3,综上可知当y1>y2时,n的取值范围为n<﹣3或n>0.25.解:(1)∵共20人,∴中位数是第10或11人的平均数,为42分和43分,即:a==42.5,故答案为:42.5;(2)两组中40≤x<45共有7+9=16人,所以40≤x<45的圆心角为×360°=90°,故答案为:90.(3)∵41<41.8∴从平均数角度看乙班成绩好;∵41<42.5,∴从中位数角度看乙班成绩好.26.解:(1)设二次函数的解析式为y=ax2+bx+c(a≠0).根据题意,得,解得.∴二次函数的解析式为y=﹣x2+2x+3,∴抛物线的对称轴为直线x=﹣=1;(2)由(1)可知,抛物线开口向下,对称轴为直线x=1,∵点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,∴y1<y2,故答案为<.27.(1)解:如图,即为补全的图形;(2)证明:连接C'D'.由作法可知:OC=O'C',OD=OD′,CD=CD′,∴△COD≌△C'O'D'.(SSS)(填推理依据).∴∠A'O'B'=∠AOB.∴∠A'O'B'就是所求作的角.故答案为:OD=O'D',CD=C'D',SSS.28.解:(1)∵直线y=x+b交x轴于点B,OB=4,交y轴于点A,∴B(4,0),∴×4+b=0,解得:b=3,∴y=x+3,令x=0,得y=3,∴A(0,3).(2)由题意,得:△AOB是直角三角形,且sin∠AB O=sin∠α=,由旋转,得:QP=AP,∵动点P从点B出发沿线段BO向终点O以2个单位/秒的速度运动,∴P(4﹣2t,0),在Rt△AOP中,AP==,根据三角形面积公式可得:S=AP•PQ•sin∠PAQ,△PAQ∴S=(4t2﹣16t+25)×=,∵点P从点B向O移动,∴0<t<2.(3)如图2,过点M作MH⊥y轴于H,作MQ⊥x轴于Q,过点N作NT⊥y轴于T,作NG⊥x轴于G,∴∠MHA=∠PGN=∠AOP=90°∵四边形AMNP为正方形,∴AP=AM=PN,∠PAM=∠APN=90°,∵∠PAO+∠MAH=90°,∠APO+∠NPG=90°,∠PAO+∠APO=90°,∠AMH+∠MAH =90°∴∠AMH=∠PAO=∠NPG,∴△MAH≌△APO≌△PNG(AAS),∴MH=PG=OA=3,NG=OP=AH,即点M的横坐标为3,∵点M在直线y=﹣x+8上,∴y=﹣3+8=5,∴M(3,5),∴H(0,5),∴AH=OH﹣OA=5﹣3=2,∴NG=OP=2,∵OG=OP+PG=2+3=5,∴N(5,2).。
重庆市西南大学附属中学2023-2024学年 九年级下学期中考第三次诊断性考试数学试题(含答案)
重庆市西南大学附属中学2023-2024学年九年级下学期中考第三次诊断性考试数学试题一、选择题:本大题共10个小题,每小题4分,共40分.请将答题卡上对应题目的正确答案标号涂黑.1.(4分)单项式﹣3πx3的次数是()A.﹣3πB.﹣3C.3D.42.(4分)如图,该几何体由6个大小相同的正方体组成,该几何体的主视图是()A.B.C.D.3.(4分)反比例函数的图象一定经过的点是()A.(﹣3,﹣4)B.(3,4)C.(﹣2,﹣6)D.(2,﹣6)4.(4分)如图,△ABC与△A′B′C′位似,点O为位似中心,若AA′=3OA′,B′C′=5,则BC 的长为()A.15B.20C.10D.55.(4分)下列运用等式的性质变形错误的是()A.若a2=2a,则a=2B.若x=y,则xc=ycC.若x=y,则D.若x=y,则5﹣x=5﹣y6.(4分)估计(2)的值应在()A.5和6之间B.4和5之间C.7和8之间D.6和7之间7.(4分)下列图形都是由大小相同的圆按一定规律组成的,其中第①个图形中有4个圆,第②个图形中有7个圆,第③个图形中有10个圆,…,按此规律排列下去,则第⑨个图形中圆的个数是()A.26B.28C.31D.308.(4分)如图,AB是⊙O的直径,点D,E在⊙O上,连接AD,DE,DB,∠ABD=2∠BDE,过点E 作⊙O的切线EC,交AB的延长线于点C,若⊙O的直径为4,CE=4,则AD的长为()A.B.C.D.9.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,满足BE+DF=AF,若∠BAE=α,则∠EAF=()A.αB.C.60°﹣αD.90°﹣2α10.(4分)已知F(x)=ax2﹣1,G(x)=,T(x)=x2+(b﹣1)x+9.下列说法:①当b=﹣5时,若T(x)•G(x)=0,则x的值为0或3;②当a=﹣2时,若T(x)+F(x)=7,则关于x的方程一定有两个不相等的实数根;③若a=1,b=2,则x=5时,|F(x)﹣T(x)+3x|+|(x﹣3)G(x)+3|有最小值8.其中正确的个数是()A.0B.1C.2D.3二、填空题:本大题共有8个小题,每小题4分,共32分.请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)五一小长假期间,我市作为国内旅游十大热门目的地之一,前三天共接待境内外游客约17350000人次.数据17350000用科学记数法表示为.12.(4分)已知2x﹣y=3,则4x﹣2y﹣3的值为.13.(4分)若一个正多边形的一个内角比一个外角大108°,则这个正多边形的边数是.14.(4分)某班要从小明、小刚、小西、小芳四名学生中选取两人作为毕业晚会的主持人,若每人被选中的概率都相同,则恰好选中小刚和小西的概率是.15.(4分)如图,在平行四边形ABCD中,AC⊥CD,AD=4,以点C为圆心,CD为半径作弧,交CB 于点E,交AD于点F,以点B为圆心,BA为半径作弧,与CB恰好交于点E,则图中阴影部分的面积为.(结果保留π)16.(4分)如图,在矩形ABCD中,F是边BC上一点,将△CDF沿DF翻折,点C的对应点C′恰好落在线段AF上,已知,CD=3,则AC′的长是.17.(4分)若整数a使得关于x的一元一次不等式组的解集为x>1,且使得关于y的分式方程的解为非负整数,则所有满足条件的整数a的值之积为.18.(4分)对于一个四位自然数,若千位上的数字与十位上的数字的差的两倍等于百位上的数字与个位上的数字的和,则称这个四位数为“双差喜数”.将“双差喜数”M的前两位数组成的数记为s,后两位数组成的数记为t,并规定F(M)=s﹣t+2d(d表示个位上的数字),则=;若一个四位数M=2101+1000m+100n+20x+y(0≤m≤7,0≤n≤8,0≤x≤4,0≤y≤8,m,n,x,y均为整数)是“双差喜数”,且F(M)被7除余4,则满足条件的M的最大值为.三、解答题:本大题共8小题,共78分.解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程写在答题卡中对应的位置上.19.(8分)计算:(1)(x﹣2y)2﹣(x﹣y)(x+y);(2)(﹣m+2).20.(10分)在学习了平行线后,小西进行了如下思考,夹在一组平行线间的线段的垂直平分线,与平行线的两个交点和线段两端点所构成的四边形是什么四边形.请根据小西的思路完成以下作图与填空.已知:如图,AD∥BC,连接AC.(1)用直尺和圆规完成以下基本作图:作线段AC的垂直平分线EF,EF分别交BC,AC,AD于点E,O,F,连接AE,CF.(2)求证:四边形AECF是菱形.证明:∵AD∥BC,∴①,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴③,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AE=CE,∴四边形AECF是菱形(一组邻边相等的平行四边形是菱形).在作图过程中,小西进一步研究发现:夹在一组平行线间的线段的垂直平分线,与平行线的两个交点和线段两端点所构成的四边形是.21.(10分)劳动是人生的财富之源,为加强中小学劳动教育,我校开展了劳动知识竞答活动(满分:100分).为了了解知识竞答成绩的情况,现从我校七、八年级中各随机抽取20名学生的竞答成绩,对数据进行整理、描述和分析(成绩得分用x表示,共分成4个等级,其中A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70).下面给出了部分信息:七年级抽取的学生竞答成绩是:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.八年级B组学生的竞答成绩是:81,81,87,82,82,88,82,86.七、八年级抽取的学生竞答成绩统计表年级七年级八年级平均数8080中位数83a众数b82根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)你认为该校七、八年级哪个年级的学生竞答成绩较好?请说明理由(写出一条理由即可);(3)若规定90分及以上为优秀,该校七、八年级共有学生2000人,请估计参加此次活动竞答成绩优秀的学生人数是多少?22.(10分)“阅百十风华,致生涯广大”——我校将迎来办学110周年庆活动,文创产品深受校友们的喜爱.某工厂计划生产文创产品“烟雨伞”10000把,安排甲、乙两车间完成任务,乙车间主产烟雨伞的数量比甲车间生产烟雨伞的数量的2倍少2000把.(1)求甲、乙两车间各生产多少把烟雨伞?(2)在生产过程中,乙车间每天生产烟雨伞的数量是甲车间每天生产烟雨伞数量的1.2倍,两个车间同时生产,结果甲车间比乙车间提前4天完成任务,求甲车间每天生产多少把烟雨伞?23.(10分)如图,在矩形ABCD中,点E在边AD上,且满足∠BCE=45°,AB=4,BC=6,点P从点A出发,沿着折线A→B→C运动,到达点C后停止运动.设点P运动的路程为x,△CEP的面积为y.(1)请直接写出y关于x的函数表达式,并写出对应自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若y1=x+t与y的函数图象有且只有一个交点,请直接写出t的取值范围.24.(10分)旅游旺季,某沙漠景区吸引了大量游客,为了更好的参观,特绘制了沙漠线路的平面示意图.景点B在入口A的正西方向,景点C在景点B的正北方向,景点D在入口A的北偏西30°方向1000米处,景点D在景点C的东南方向1800飞米处.(参考数据:≈1.41,≈1.73)(1)求AB的长度;(结果精确到个位)(2)小明和小华从入口A处进入,约定一起到景点C处看日落.小明选择步行①A﹣D﹣C,步行速度为90米/分钟,在景点D处停留5分钟观赏沙漠中的泉水景观,然后按原速继续向景点C前进.小华选择骑骆驼②A﹣B﹣C,在景点B处不停留,骆驼队伍速度为110米/分钟,若两人同时从入口A出发,请计算说明小明和小华谁先到达景点C?(结果精确到0.1)25.(10分)如图1,在平面直角坐标系中,抛物线过点(2,3),交x轴于点A(﹣4,0)和点B,交y轴于点C,连接AC,BC.(1)求抛物线的解析式;(2)若点P是直线AC下方抛物线上一动点,过点P作PM∥BC交AC于点M,过点P作PN∥y轴交AC于点N,求△PMN周长的最大值及此时点P的坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y′,在新抛物线y′上是否存在一点H,使得∠ABH=2∠BAC.若存在,请直接写出点H的坐标;若不存在,请说明理由.26.(10分)在△ABC中,∠CAB=45°,BD⊥AC交AC于点D,点F在AB边上,CF交BD于点E.(1)如图1,若点E是CF的中点,∠CFB=75°,DE=1,求AB的长;(2)如图2,点E是CF的中点,点F是AB中点,求证CF=CB;(3)如图3,线段BC绕点B顺时针旋转90°得到线段BG,连接AG交BD于点M,N是直线AB上一动点,连接MN,将△MBG沿MN翻折得到△MB′G′,连接AB′,CB′.已知,CD=2,当BG′最大时,请直接写出△AB′C的面积.参考答案一、选择题:本大题共10个小题,每小题4分,共40分.请将答题卡上对应题目的正确答案标号涂黑.1.C;2.B;3.D;4.C;5.A;6.B;7.B;8.D;9.A;10.C;二、填空题:本大题共有8个小题,每小题4分,共32分.请将每小题的答案直接填在答题卡中对应的横线上.11.1.735×107;12.3;13.10;14.;15.﹣;16.;17.﹣15;18.48;7921;三、解答题:本大题共8小题,共78分.解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程写在答题卡中对应的位置上.19.(1)﹣4xy+5y2;(2).;20.∠FAO=∠ECO;O F=OE;菱形;21.81.5;83;40;22.(1)甲车间生产4000把烟雨伞,乙车间生产6000把烟雨伞;(2)甲车间每天生产250把烟雨伞.;23.(1)y=;(2)图象见解析过程,图象的性质:图象有最大值为12;(3)﹣10≤t<0.;24.(1)AB的长度约为1273米;(2)小华先到达景点C.;25.(1)y=x2+x﹣2;(2)△PMN周长的最大值为2+,P(﹣2,﹣3);(3)存在,H(,﹣)或(﹣,).;26.(1)2;(2)证明过程详见解答;(3)25﹣.;。
2023年四川省成都市九年级下册中考数学真题卷
2023年成都市高中阶段教育学校统一招生暨初中学业水平考试数 学注意事项: 1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方. 考试结束,监考人员将试卷和答题卡一并收回.3. 选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5. 保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在3,7 ,0,19四个数中,最大的数是(A )3 (B )7 (C )0(D )192. 2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为(A )8310 (B )9310 (C )10310 (D )113103. 下列计算正确的是 (A )22(3)9x x(B )27512x x x(C )22(3)69x x x(D )22(2)(2)4x y x y x y4. 近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI ):33,27,34,40,26,则这组数据的中位数是 (A )26 (B )27 (C )33 (D )345. 如图,在□ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是 (A )AC BD(B )OA OC(C )AC BD(D )ADC BCDO D CB A6. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是(A )12 (B )13 (C )14 (D )167. 《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为(A )1( 4.5)12x x(B )1( 4.5)12x x(C )1(1) 4.52x x(C )1(1) 4.52x x8. 如图,二次函数26y ax x 的图象与x 轴交于(3,0)A ,B 两点,下列说法正确的是 (A )抛物线的对称轴为直线1x (B )抛物线的顶点坐标为1(,6)2(C )A ,B 两点之间的距离为5(D )当1x 时,y 的值随x 值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 9. 因式分解:23m m ______.10. 若点1(3,)A y ,2(1,)B y 都在反比例函数6y x的图象上,则1y ______2y (填“ ”或“ ”). 12. 如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 依次在同一条直线上.若8BC ,5CE ,则CF 的长为______.CFDEBA13. 如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点'M ;③以点'M 为圆心,以MN 长为半径作弧,在BAC 内部交前面的弧于点'N ;④过点'N 作射线'DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BECE的值为______.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上) 14. (本小题满分12分,每题6分)(102sin 45(3)2π .(2)解不等式组:2(2)5,41 1.3x x x x ①②15. (本小题满分8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有______人,请补全条形统计图; (2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.CEN'M'B DM NA卫生服务宣传劝导项目交通劝导文明宣传敬老服务清洁卫生20%为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16°,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45°时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17. (本小题满分10分)如图,以△ABC 的边AC 为直径作⊙O ,交BC 边于点D ,过点C 作CE ∥AB 交⊙O 于点E ,连接AD ,DE ,B ADE .(1)求证:AC BC ;(2)若tan 2B ,3CD ,求AB 和DE 的长.EE如图,在平面直角坐标系xOy 中,直线5y x 与y 轴交于点A ,与反比例函数ky x的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且△ABC 的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接P A ,以P 为位似中心画△PDE ,使它与△P AB 位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 若23320ab b ,则代数式2222(1)ab b a ba a b的值为______. 20. 一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有______个.第20题图 第21题图 第22题图21. 为继承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳______名观众同时观看演出.(π取3.14,1.73)22. 如图,在Rt △ABC 中,90ABC ,CD 平分ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若73AG GE ,则tan A ______. 23. 定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ,则称这个正整数为“智慧优数”.例如,221653 ,16就是一个智慧优数,可以利用22()()m n m n m n 进行研究.若将智慧优数从小到大排列,则第3个智慧优数是______;第23个智慧优数是______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上) 24. (本小题满分8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情应嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价; (2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.EGFCBDA如图,在平面直角坐标系xOy 种,已知抛物线2y ax c 经过点(4,3)P ,与y 轴交于点(0,1)A ,直线y kx (0k )与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若△ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD ⊥OE 始终成立?若存在,求出m 的值;若不存在,请说明理由.备用图探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt △ABC 中,90C ,AC BC ,D 是AB 边上一点,且1AD BD n(n 为正整数),E 是AC 边上的动点,过点D 做DE 的垂线交直线BC 于点F . 【初步感知】(1)如图1,当1n时,兴趣小组探究得出结论:AE BF ,请写出证明过程. 【深入探究】(2)①如图2,当2n ,且点F 在线段BC 上时,试探究线段AE ,BF ,AB 之间的数量关系,请写出结论并证明; ②请通过类比、归纳、猜想,探究出线段AE ,BF ,AB 之间数量关系的一般结论(直接写出结论,不必证明). 【拓展运用】(3)如图3,连接EF ,设EF 的中点为M.若AB E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示)图1 图2 图3FE DBCAFEDBCA。
初三数学中考试题(带答案)
第9题图第8题图2021年九年级中考模拟考试数 学 试 题一、选择题:(本大题共10小题,每题3分,共30分.)1、下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ ) A .正三角形 B .平行四边形 C .矩形 D .等腰梯形2、计算32)2(b a -的结果是 ( ▲ )A .366b a -B .b a 28-C .362b a -D .368b a - 3、若,则22a b -的值为 ( ▲ )A .-21B .21C .-10D .1042是同类二次根式的是 ( ▲ ) A 4 B 6 C .12 D .185、已知直角三角形ABC 的一条直角边AB=4cm ,另一条直角边BC=3 cm ,则以AB 为轴旋转一周,所得到的圆锥的侧面积是 ( ▲ )A .230cm πB .215cm πC .212cm πD .220cm π6、在某校“我的中国梦”演讲比赛中,有15名学生参加决赛,他们决赛的最终成绩各不相同。
其中的一名学生想要知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的 ( ▲ ).A .众数B .方差C .平均数D .中位数7、 若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是A .m = 3B .m >3C .m ≥ 3D .m ≤ 3 ( ▲ )8、如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( ▲ )A .PA ,PB ,AD ,BC B .PD ,DC ,BC ,AB C .PA ,AD ,PC ,BC D .PA ,PB ,PC ,AD9、如图,在直角坐标系中放置一个边长为2的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 第三次回到x 轴上时,点A 运动的路线与x 轴围成的图形的面积和为( ▲ )A .ππ+2B .22+πC .ππ323+D .66+π第15题第18题第17题10.如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是( ▲ ) A .6 B .2 6 C .2 5 D .22+2二、填空(本大题共8小题,每题2分,共16分) 11、函数xy -=11中自变量x 的取值范围是 ▲ .12、我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 ▲ 元.13、已知点A (x 1,y 1)、B (x 1―3,y 2)在直线y =―2x +3上,则y 1 ▲ y 2 (用“>”、“<”或“=”填空)14、若关于x 的二次方程032=+++a ax x 有两个相等的实数根,则实数a = ▲ 15、如图,点A 在双曲线x y 3=上,点B 在双曲线xy 5=上,且AB∥x 轴,C 、D 在x 轴上,若四边形ABCD 为平行四边形,则它的面积为 ▲16、如图,方格纸中有三个格点A 、B 、C ,则点A 到BC 的距离为= ▲ .17、如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为_ _▲__18、如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3n-2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,第2016次电子跳蚤能跳到的圆圈内所标的数字为___▲__三、解答题(本大题共10小题,共76分.解答应写出必要的过程、推理步骤或文字说明)19.(5分)计算:()020211915⎛⎫--+- ⎪⎝⎭11121098765432120.(5分)解不等式组() 312215233x xx x+<+⎧⎪⎨-≤+⎪⎩21.(6分)某校数学兴趣小组就“最想去的苏州市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.22.(6分)某学校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?23.(8分)如图,已知点E,F分别是□ABCD 的边BC,AD上的点,且CE=AF.(1)证明:△ABE≌△CDF;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.24.(8分)在一个不透明的口袋里装有3个球,3个球分别标有数字1,2,3,这些球除了数字以外完全相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是.(2)进行摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.25.(8分)如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y = 的图象在第一象限的图象经过点D,交BC于点E.(1)当点E的坐标为(3,n)时,求n和k的值;(2)若点E是BC的中点,求OD的长.26.(10分)如图,四边形ABCD内接于圆,延长AD,BC相交于点E,点F在BD的延长线上,且AB = AC.(1)求证:DE平分∠CDF;(2)若AC = 3 cm,AD = 2 cm,求DE的长.27.(10分)如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C 和AD相交于点E,连结B′D.试解决下列问题:(1)在图1中,①B′D和AC的位置关系为 _________ ;②将△AEC剪下后展开,得到的图形是 _________ .(2)若图1中的矩形变为平行四边形(AB≠BC),如图2所示,①(1)中的结论①和结论②是否成立?若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;②若∠B = 30°,AB = 4\sqrt3,当△AB′D恰好为直角三角形时,求BC的长度.28.(10分)如图,抛物线y = ax2 + bx过点B(1,- 3),对称轴是直线x = 2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.答案及评分标准一、选择题:(本大题共10小题,每题3分,共30分.)二、填空(本大题共8小题,每题2分,共16分)11、x<1 12、6.8810 13、 < 14、6或-215、2 16、 55917、21-2 18、10。
2023九年级数学下册中考专题训练——圆的切线的证明【含答案】
2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册期末模拟试题数 学亲爱的同学:你好!答题前,请仔细阅读以下说明: 1.本试卷共10页,分第 I 卷和第 II 卷两部分.第 I 卷(1-2页)为选择题,第 II 卷(3-10页)为非选择题.试卷满分120分.考试时间120分钟.2.请清点试卷,并将答题卡和第Ⅱ卷密封线内的考生信息填写完整.3.第Ⅰ卷的答案用2B 铅笔涂在答题卡上.第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上.不要求保留精确度的题目,计算结果保留准确值.希望你能愉快地度过这120分钟,祝你成功!第 I 卷 (选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为A .8.0×102 B. 8.03×102 C. 8.0×106 D. 8.03×1062.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80°3.计算()201020092211-⨯⎪⎭⎫ ⎝⎛-的结果是 A .-2 B .-1 C .2 D .3 4.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 5.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为A .9㎝B .12㎝C .15㎝D .18㎝6.化简a a b a b -÷⎪⎭⎫ ⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-7.右图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 A .5 B .6 C .7D .88.已知1=-b a ,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .09.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEB .∠A =∠EDAAE ADBE左视图主视图C .BC =2AD D .BD ⊥AC 10.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 A .24 B .4 C .33D .5211.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是A .21B .31C .41D .5112.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为 A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛ C .2008495⎪⎭⎫⎝⎛ D .4018235⎪⎭⎫⎝⎛第 II 卷 (非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分. 只要求填出最后结果)13.在函数x y -=3中,自变量x 的取值范围是 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .CA BDOC﹙第14题图﹚AB15.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C16.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .17.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是 .18.从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .三、解答题(本大题共7小题,共66分)19.(7分) 解不等式组:(第15题图)图 ①图 ②(第16题图)图 ②图 ①a图 ③BC(第18题图) >-3, ≤()342-x .20.(7分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(1)共抽取了 名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?2 4 6 12 8 10 1422.(10分)如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x m y =和一次函数b kx y +=(2) 连接OA ,OC .求△AOC 的面积.23.(10分)如图,在□ABCD 中,∠DAB =60°,AB =15㎝.已知⊙O 的半径等于3㎝,AB ,AD 分别与⊙O 相切于点E ,F .⊙O 在□ABCD 内沿AB 方向滚动,与BC 边相切时运动停止.试求⊙O 滚过的路程.A24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1.﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C 1C =∠B 1BC .﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.﹙3﹚写出问题﹙2﹚中与△A 1FC 相似的三角形 .AB (A 1) CB 1C 1图 ②EA1 C 1CAB (B 1)图 ③FA 1B 1C 1AB C(图①)25.(12分) (1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚ABDCMN图 ①备用图C图 ②ABDMF EG参考解答及评分意见评卷说明:1.第一大题(选择题)和第二大题(填空题)的每小题,只有满分和零分两个评分档,不给中间分.2.第三大题(解答题)每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.部分试题有多种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611+. 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分解不等式②,得x ≥-2. ………………………………………………………………6分因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分解这个方程,得x =2.4. …………………………………………………………………6分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80;…………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分 22.(本小题满分10分)解:(1)∵ 反比例函数x m y =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10.∴ 反比例函数的表达式为x y 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上,∴ 2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , …………………………………………………5分 ∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分)解:连接OE ,OA .……………………1分 ∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°, ∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE=3tan tan 30OE OAE ︒==∠. …………………………………5分∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分 设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分同理可得 BN =3㎝. ……………………………………………………………9分 ∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分 24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分 ﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分理由如下:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2. ∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC =∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分AB (A 1)C B 1C 1 图 ② E 14 32 56 7A 1C 1CB (B 1)图 ③F36 45 1 27 8∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ). ∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚ 25.(本小题满分12分)﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NFAB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE , ∴ △DAH ≌△EBK . ∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21, ∴ S △ABM = S △ABG . …………………………………………………………………3分﹙2﹚答:存在. …………………………………………………………………………4分解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y . 又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k .∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分 当2=m 时,PF =3-2=1,EF=1+2=3.A BD C M N 图 ①E F HC图 ②A B D M F E G K∴ E 点坐标为(2,3).同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分 ②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分 当2173+=m 时,E 点的纵坐标为2171221733+-=-+-; 当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分 ﹙其他解法可酌情处理﹚。