有关长方体和正方体的奥数题
长方体与正方体奥数题及答案
1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。
80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。
78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。
长方体正方体奥数题精编版
25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。
五年级下册数学长方体与正方体奥数练习题1
长方体和正方体(二)【例题11有一个长方体形状的零件,中间挖去一个正方体的孔(如图) 积吗?(单位:厘米)练习1:1 .有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)2 .有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是 体积和表面积各是多少?【例题2】一个正方体和一个长方体拼成了一个新的长方体, 的表面积增加了 100平方厘米。
原正方体的表面积是多少 厘米?练习2:1 .一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的 表面积减少了多少平方厘米?2 .把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为 2厘米的正方体若干块,表面积增 加多少厘米?练习3:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方 体的表面积之和少多少平方厘米?,你能算出它的体积和表面1厘米的正方体后,剩下物体的拼成的长方体的表面积比原来的长方体平方【例题4】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习4:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题5】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?练习5:1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?练习4:1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
4月1日五年级奥数题
图27—4五年级(长方体和正方体) 1、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是 立方厘米.2(1)有一个正方体,如果高增加4cm ,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm ,求原正方体的体积。
(2)一个长方体的高如果增加2cm ,就成为一个正方体,这时表面积就比原来增加了48平方cm 。
原来长方体的体积是( )?3.一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是( ) 4、一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm 的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm 的正方形(见右图)。
求挖洞后木块的体积( )。
6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是( )立方厘米?7.一个长方体的棱长总和是48cm ,己知长是宽的1.5倍,宽是高的2倍,求它的体积( )。
8.一个正方体木块的表面积是96平方cm ,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是 ( )9..从一棱长10厘米正方体木块上挖去一长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是( )10..把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?11.把19个棱长为3厘米的正方体重叠起来,如下右图图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
12..在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?13.在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
小学奥数教程:长方体与正方体(一)全国通用(含答案)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?左面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),1 4⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体 【难度】4星 【题型】解答【关键词】迎春杯【解析】 截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体【难度】3星【题型】解答【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为2cm.56cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm)⨯=.【答案】168【例12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】 10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
长方体正方体奥数题练习题
长方体正方体奥数题练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
长方体和立方体奥数题
长方体和立方体班级:姓名:得分:一、填空。
1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。
2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。
这个长方体的表面积是(),体积是()。
3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。
4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。
5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。
6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。
7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。
8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。
9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。
则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。
原来长方体的体积是()立方厘米。
二、判断。
1、正方体是特殊的长方体。
()2、一个长方体可能有8条棱的长度都相等。
()3、棱长是6分米的正方体,它的表面积和体积相等。
()4、正方体的棱长缩小一半后,体积比原来少一半。
()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。
()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。
五年级奥数《长方体与正方体的表面积》练习题
第七讲:长方形与正方形的表面积(必做与选做)1.一个正方体木箱,棱长4分米。
做一个这样的木箱至少要用木板()平方分米。
A. 64B. 16C. 96D. 192解析:要求做一个这样的木箱至少要木板多少平方分米,就是求它的表面积。
正方体的表面积=棱长×棱长×6,所以木箱的表面积=4×4×6=96(平方分米)。
选C。
2.一个长方体纸盒(有盖),长12厘米,宽9厘米,高8厘米,它的表面积是()平方厘米。
A. 552B. 58C. 348D. 864解析:长方体的表面积=长×宽×2+宽×高×2+长×高×2,所以长方体纸盒的表面积=12×9×2+12×8×2+9×8×2=552(平方厘米)。
选A。
3.一个长16厘米、宽12厘米、高8厘米的长方体纸盒(有盖),它的表面积是()平方厘米。
A. 1536B. 832C. 144D. 416解析:长方体的表面积=长×宽×2+宽×高×2+长×高×2,所以长方体纸盒的表面积=16×12×2+12×8×2+16×8×2=832(平方厘米)。
选B。
4.做3个不带盖的正方体铁盒,棱长12厘米,至少要用铁皮()平方厘米。
A. 216B. 2592C. 2160D. 288解析:做一个无盖的立方体铁盒,要用的铁皮的面积就是立方体减去一个面的面积,所以做3个不带盖的正方体铁盒,至少需要铁皮12×12×5×3=2160(平方厘米)。
选C。
5.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃()平方米。
B. 0.59C. 0.03D. 0.49解析:做一只无盖的长方形鱼缸,要用的玻璃的面积就是长方体除去上面后其他面的面积和,所以一只无盖的长方形鱼缸,至少需要玻璃0.4×0.25+0.25×0.3×2+0.4×0.3×2=0.49(平方米)。
长方体正方体奥数题
For personal use only in studyand research; not forcommercial use25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
有关长方体和正方体的奥数题
仅供个人参考For personal use only in study and research; not forcommercial use长方体和正方体(一)姓名:1.一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?3. 把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
4.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)5.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)评价:6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?7. 把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
8. 一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
9. 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?10. 一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、5分米,求正方体体积。
不得用于商业用途仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文不得用于商业用途。
五年级奥数举一反三专题 第13周 长方体和正方体(一)
第13周长方体和正方体(一)专题简析在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1,必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2,2,依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3,求一些不规则的物体体积时,可以通过变形的方法来解决。
例题1 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)分析(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。
因此,此零件的表面积就是(10×6+10×4+2×2)×2=232(平方厘米)。
想一想:你还能用别的方法来计算它的体积吗?练习一1,一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?2,把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
3,有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?例题2 有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)分析(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去了一个孔,所以体积减少了2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米);(2)长方体完整的表面积是(8×5+8×6+6×5)×2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(2×2)平方厘米的面,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+2×2×4=252(平方厘米)。
小学五年级长方体正方体的奥数题
小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
五年级奥数举一反三专题 第15周 长方体和正方体(三)
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
长方体正方体奥数举一反三
长方体正方体奥数举一反三集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#长方体和正方体(二)例题1 有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米【思路导航】由于后来两个水箱里的水面的高度一样,我们可以这样思考:把两个水箱并靠在一起,水的体积就是(甲水箱的底面积+乙水箱的底面)×水面的高度。
这样,我们只要先求出原来甲水箱中的体积:40×32×20=25600(立方厘米),再除以两只水箱的底面积和:40×32+30×24=2000(平方厘米),就能得到后来水面的高度。
练一练1:有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少解:设两个池中水面的高度为x米,由题意得8×6×x+4×4×x=8×6×3 48x+16x=144 64x=144 x=.答:水面的高度是米.计算法:总水量是8×6×3=144立方分米甲的底面积是8×6=48平方分米乙的底面积是4×4=16平方分米两者水面高度是:144÷(48+16)=(分米)答:水面的高度是米.练一练2:有一个长方体水箱,从面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高多少厘米水箱的底面积是:40×30=1200(平方厘米)水的体积是:1200×10=12000(立方厘米)正方体铁块的底面积是:20×20=400(平方厘米)水箱放入正方体铁块后,底面积变成了 1200-400=800(平方厘米)现在水面高:12000÷800=15(厘米)答:这时水面高15厘米。
五年级奥数长方体和正方体
长方体和正方体一【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
2.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?练习3:1.把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?1 / 6 - 1 -2.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?3.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题4】把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
练习4:1.一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?2.一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
3.有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
【例题5】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习5:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?2.一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。
小学五年级长方体正方体的奥数题
小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
五年级下册数学长方体与正方体奥数练习题
五年级下册数学长方体与正方体奥数练习题第一篇:五年级下册数学长方体与正方体奥数练习题长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。
二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习2:1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?体积为4^3-1^3=64-1=63立方厘米表面积不变,大小为6×4²=96平方厘米【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?练习3:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习4:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?依题意长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3 长方体的体积是11*5*3=165立方厘米。
(完整)三年级长方体和正方体的表面积奥数题训练
(完整)三年级长方体和正方体的表面积奥数题训练三年级长方体和正方体的表面积奥数题训练- 题目一:长方体的长、宽和高分别为6厘米、4厘米和3厘米,求其表面积。
解答:长方体的表面积可以通过公式2*(长*宽 + 长*高 + 宽*高)来求得。
带入具体数值,表面积=2*(6*4 + 6*3 + 4*3) = 2*(24 + 18 + 12) = 2*(54) = 108平方厘米。
- 题目二:正方体的边长为5厘米,求其表面积。
解答:正方体的表面积可以通过公式6*边长^2来求得。
带入具体数值,表面积=6*5^2 = 6*25 = 150平方厘米。
- 题目三:长方体的表面积为96平方厘米,其中长为8厘米,宽和高之积为12平方厘米,求宽和高的值。
解答:假设宽为x,高为y,则由题意得 x*y = 12。
长方体的表面积可以用公式2*(长*宽+ 长*高+ 宽*高)来表示。
带入具体数值,96 = 2*(8*x + 8*y + x*y) = 2*(8*x + 8*y + 12) = 16x + 16y + 24。
化简得 16x + 16y = 96 - 24 = 72。
又由 x*y = 12 得 x = 12/y,代入上式,16*(12/y) + 16y = 72,化简得 192 + 16y^2 - 72y = 0,移项得 16y^2 - 72y + 192 = 0,化简得 y^2 - 4.5y + 12 = 0。
利用求根公式,得y ≈ 2.61 或y ≈ 1.84。
根据题意,宽和高的值应为正数,所以取y ≈ 2.61。
代入x = 12/y ≈ 4.59。
因此,宽和高的值约为4.59和2.61。
以上是关于三年级长方体和正方体的表面积奥数题训练的解答。
来源:数学奥数题。
小学奥数:长方体与正方体(一).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面上面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1例题精讲长方体与正方体(一)个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为 5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),1 2⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体【难度】4星【题型】解答【关键词】迎春杯【解析】截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求. 剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2⨯=.563168(cm)【答案】168【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体(一)
姓名:
1.一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
2.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?
3. 把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
4.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
5.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)评价:
6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?
7. 把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
8. 一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
9. 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?
10. 一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、5分米,求正方体体积。