聚氯乙烯热稳定剂的几个理论问题

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚氯乙烯热稳定剂的几个理论问题

李杰刘芳夏菲

摘要本文试图从原子结构理论说明,硫醇有机锡比羧酸有机锡有更优异的热稳定性;金属皂初期着色性差异及有机锡长期热稳定性;纯稀土热稳定剂性能的理论分析,并归纳了影响PVC 透明性的因素。

1、概述

热稳定剂是PVC树脂能变成有实用价值的塑料不可缺少的助剂,几十年来,对PVC热分解机理及热稳定剂化作用的研究,均有很大的发展,但热稳定剂的一些理论问题,如常用的金属皂类热稳定剂,为何锌、镉、铝类的皂在PVC里初期着色性很小,而钡、钙、锶初期着色性就较大?同为Sn、Sb热稳定剂为何有机羧酸盐热稳定剂初期着色性就大?而其相应硫醇盐类的初期着色性就小?等等问题却很少见报道,作者试着用原子结构理论对一些问题进行理论分析,对从事生产和应用热稳定剂的同仁或有所补益。

2、有机锡比羧酸有机锡有更优良热稳定性

同样的烷基,硫醇锡比羧酸锡初期热稳定性更优异。其原因是由于与锡相联的硫和氧的原子结构不同所造成的。氧和硫元素在元素周期中同为第六族元素,它们区别在于其电子结构不同。

表1 氧和硫原子的电子结构及原子特性[1]

Tab1:Electric structure and atomic character of oxygen and sulfur

由表1可以看出:硫原子比氧原子多一层电子,因而电子的屏蔽作用较大,使硫原子核原子共价半径较大,电离势及电负性比氧小。电负性它表示元素吸引电子(不是获得电子)倾向性的大小。总之原子结构决定了硫原子对外层电子吸引力较氧小。在外因作用下(如热、光及极性分子的诱导效应等)硫醇中的硫原子(SΘ)较羧基中与锡相联的氧原子(OΘ)更容易与PVC中不稳定氯原子相对应的碳原子(C?)形成配位键,最终取代PVC中不稳定氯原子。从根本上防止PVC脱HCL的降解反应发生。

在这里笔者要强调的是:热稳定剂起稳定化反应的几种类型中,只有消除聚氯乙烯中不稳定氯原子的反应以及抗氧化反应是从根本的上预防聚氯乙烯的降解、交联,其它的如吸收氯化氢、破坏正碳离子以及双键加成反应均是在聚氯乙烯已经分解较严重以后(已经脱HCL,形成了一些双键以后)的补救方法,因而能消除不稳定氯原子的热稳定剂都有良好的初期色相(没有或较少地形成双键)。

热稳定剂消除PVC中不稳定氯原子的前提是两个,其一稳定剂中金属离子有较强的与不稳定氯

原子络合能力;其二是有机阴离子有较强的与碳?(C?)络合能力,只有二者络合能力均较强聚氯乙烯的初期着性才较小。(接近无色,而硫醇锡二者均较强,所以硫醇锡作PVC的热稳定剂,PVC 色相均优异,色相保持时间也较长)。

3、金属皂初期着色差异及有机锡长期热稳定性

3.1属皂初期着色性

笔者在工作中发现一个有意思的现象,Mg皂的性质与Ca皂很相似(初期着色性严重,但长期热稳定性较好),而Al皂与Zn皂很相似(优良的初期色相及严重的“锌烧”现象);Mg、Ca、Sr、Ba均属元素周期中第二主族元素,它们性质相似,好理解,但Al是第三主族元素,而Zn、Cd是第二副族元素,它们的化学性质为何很相似呢?当然元素周期律中有对角线原理可以说明这一现象,但元素化学性质的异同,其根本原因是其原子结构的异同,其外在表征是原子核中质子对外层电子的束搏力异同性,这个差异性很复杂,但最简便的似近方法是比较元素的电负性,下面列了一些元素的电负性[2]

表2 一些元素的电负性

Tab2:Electronegativity of some elements

由上表可知,第二主族元素Mg到Ba的电负性比较小并且很接近,说明它们吸引电子能力近似并比较弱,它们不能与PVC树脂中不稳定氯原子(ClΘ)形成配位键,因而不能使金属皂的阴离子取代不稳定氯原子从而使PVC脱HCl并形成双键;当PVC体系有相当数量的HCl以后,它们只能吸收HCl,所以它们的有机酸盐作为热稳定剂,初期着色较重;而Zn、Cd、Al、Pb、Sn、Sb的电负性较大(约大50%以上)吸引电子能力较强,能与PVC树脂中不稳定氯原子(ClΘ)形成配位键,因而能使金属皂的阴离子取代不稳定氯原子,能预防PVC分解HCl形成双键反应,所以它们的有机酸盐作为热稳定剂都有较好的初期色相,当然前面提到的有机阳离子与PVC中不稳定氯原子相对应的碳?(C?)形成配键的能力的大小亦影响初期着色性。

现代量子化学指出:Zn原子有4P6个空能级,Al原子有3P5个空能级,Cd有5P6个空能级,Pb有6P4个空能级,Sn有5P4个空能级,这些元素的离子在外力作用下(热、光、极性化合物诱导效应等)能形成SP杂化轨道,可以与相应的碳?(C?)结合不稳定氯原子(ClΘ)形成配位键,稳定剂的阴离子进而取代不稳定氯原子,预防PVC因分解HCl形成双键,所以用这些原子为阳离的热稳定剂初期着色相均较浅。

3.2有机锡类长期热稳定性原因

有机锡热稳定剂在参加热稳定化反应后生成的R2SnCl2仍有一定的热稳定作用,这是因为:一方面锡是典型的金属,它的烷基化物锡碳键是共价键,远不如锡氯典型离子键稳定,另一方面二

价锡不如四价锡稳定(事实上,二价锡在空气中常温就转化为四价锡,所以在有HCl存在条件下R2SnCl2能继续吸收HCl变成SnCl4)。

4、热稳定剂影响PVC透明度的几个因素

作者认为热稳定剂对PVC透明度的影响由以下几个因素所决定。

4.1稳定剂的折射率

热稳定剂与PVC树脂的可见光折射率1.52~1.55相同或近似,则PVC制品透明度就较好,反之则透明度就较低。

4.2稳定剂分子(分子团)的线性长度

热稳定剂分子(或分子团)线性长度小于可见光波长400~735nm折射光较少,透明度较高,反之透明度较低。

4.3热稳定剂在PVC中的“溶解度”,即相容性

所谓相容性系指两种或多种物质混合时的相互亲和力。相容性好即有可能达到分子级分散。热稳定剂在熔融状态下与PVC树脂相容性好。形不成两相,也就是没界面或界面不明显,折射光较少,PVC制品的透明度较高。液体稳定剂比相应的固体金属皂在PVC中相容性好,分子线性长度亦较小,因而PVC的透明度较高。

液体有机锡热稳定剂透明度最好,这是因为无论是未参加热稳定化反应的热稳定剂本身,还是已参加稳定化反应后生成的R2SnCl2在PVC树脂中均有很好的相容性。而Ba/Zn、Ba/Cd、Ca/Zn 的硬脂酸皂在PVC中有一定的相容性,透光率亦比较高,但因其相容性有限,分子线性长又较大,参加热稳定化后的生成物是典型的金属盐类如CaCl2、BaCl2等,与PVC的相容性较差,因而用量大时因有较多折射光,影响其透光率而变混浊。

相容性极差的三碱式硫酸铅、二碱式亚磷酸铅,分子团又比较大,因而PVC制品不透明。而硬脂酸铅因有一定的相容性,用量少时则为半透明。

5、稀土稳定剂性能及特点的理论分析

5.1稀土热稳定剂的性能与特点

本文所指稀土热稳定剂是未经人工复合其它金属热稳定剂的纯稀土热稳定剂。

稀土元素镧、铈的离子本身无毒、无色,通过选择适当无毒有机组份可以做成无毒高透明高热稳定效率耐候性优良的热稳定剂。

稀土热稳定剂的特点是具有独特的“偶联性”。由于这个特点使其在加工时显现为具有加工助剂及内润滑剂的特征,促进树脂塑化;在成品中显出优异的抗冲性剂功效,增加PVC韧性,提高制品力学性能;在与含氧填料如CaCO3等作用时,表现为“增容”作用,在不影响力学性能的条件下,可以提高CaCO3的用量。

相关文档
最新文档