2018年云南省初中学业水平考试数学试题(一)

合集下载

云南省昆明市2018年中考试数学试题(原卷版).docx

云南省昆明市2018年中考试数学试题(原卷版).docx

2018年昆明市初中学业水平考试数学试题卷(全卷共三个大题,共23个小题,共8页;满分120分,考试时间120分钟)一、填空题:(每小题3分,共18分。

请将答案写在相应题号后的横线上。

)1.在实数-3,0,1中,最大的数是。

2.共享单车进入昆明已两年,为市民的的低碳出行带来了方便。

据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学计数法表示为。

3.如图,过直线AB上一点O作射线OC,∠BOC=29018',则AOC的度数为。

4.若13mm+=,则221mm+=5.如图,点A的坐标为(4,2)。

将点A绕坐标原点O旋转900后,再向左平移1个单位长度得到点A',则过点A'的正比例函数的解析式为。

6.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为。

(结果保留根号和π)。

第3题图第5题图第6题图二、选择题:(每小题4分,共 32 分,在每小题给出的四个选项中,只有一个是正确的,请将正确选项的代号填在相应的括号内。

)7.下列几何体的左视图为长方形的是()A.B. C. D.8.关于x 一元二次方程x 2-x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A.m <3B.m >3C.m ≤3D.m ≥39.你估算1的值( )A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间 10.下列判断正确的是( )A.甲乙两组学生身高的平均值均为1.58,方差分别为S 2 =2.3,S 2 =1.8,则甲组学生的身高更整 齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事 件11.在∆AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( ) A.900 B.950 C.1000 D.1200第11题图12.下列运算正确的是()A.(-13)2=9B.20180-38-=-1C.3a3∙2a-2 =6a(a≠0)D.18126-=13.甲乙两船从相距300km的A,B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.18012066x x=+- B.18012066x x=-+ C.1801206x x=+ D.1801206x x=-14.如图,点A在双曲线y=kx(x>0)上,过点A作AB⊥x轴,垂足为点B。

2018年云南省中考数学试卷及答案

2018年云南省中考数学试卷及答案

机密★2018年云南省学业水平考试试题卷数学一、填空题(共 小题,每小题 分,满分 分).( 分)﹣ 的绝对值是 ..( 分)已知点 ( , )在反比例函数 的图象上,则 ..( 分)某地举办主题为 不忘初心,牢记使命 的报告会,参加会议的人员 人,将 用科学记数法表示为..( 分)分解因式: ﹣ ..( 分)如图,已知 ∥ ,若 ,则 ..( 分)在△ 中, , ,若 边上的高等于 ,则 边的长为 .二、选择题(共 小题,每小题 分,满分 分 每小题只有一个正确选项) .( 分)函数 的自变量 的取值范围为(). ≤ . ≤. ≥ . ≥.( 分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是().三棱柱 .三棱锥.圆柱 .圆锥.( 分)一个五边形的内角和为(). .. ..( 分)按一定规律排列的单项式: ,﹣ , ,﹣ , ,﹣ , ,第 个单项式是(). .﹣.(﹣ ) .(﹣ ).( 分)下列图形既是轴对称图形,又是中心对称图形的是().三角形 菱形.角 .平行四边形.( 分)在 △ 中,∠ , , ,则∠ 的正切值为() . .. ..( 分) 年 月 日,以 数字工匠 玉汝于成, 数字工坊 溪达四海 为主题的 一带一路数学科技文化节 玉溪暨第 届全国三维数字化创新设计大赛(简称 全国 大赛 )总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是().抽取的学生人数为 人 . 非常了解 的人数占抽取的学生人数的 . .全校 不了解 的人数估计有 人.( 分)已知 ,则 (). . . .三、解答题(共 小题,满分 分).( 分)计算:﹣ ﹣()﹣ ﹣( ﹣ ).(分)如图,已知 平分∠ , .求证:△ ≌△ ..( 分)某同学参加了学校举行的 五好小公民 红旗飘飘 演讲比赛, 名评委给该同学的打分(单位:分)情况如下表:评委评委评委评委评委评委评委评委打分( )直接写出该同学所得分数的众数与中位数;( )计算该同学所得分数的平均数.( 分)某社区积极响应正在开展的 创文活动 ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 倍,并且甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,乙工程队每小时能完成多少平方米的绿化面积?.( 分)将正面分别写着数字 , , 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 .( )用列表法或树状图法(树状图也称树形图)中的一种方法,写出( , )所有可能出现的结果.( )求取出的两张卡片上的数字之和为偶数的概率 ..( 分)已知二次函数 ﹣ 的图象经过 ( , ), (﹣ ,﹣)两点.( )求 , 的值.( )二次函数 ﹣ 的图象与 轴是否有公共点,求公共点的坐标;若没有,请说明情况..( 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 , 两种商品,为科学决策,他们试生产 、 两种商品 千克进行深入研究,已知现有甲种原料 千克,乙种原料 千克,生产 千克 商品, 千克 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)商品商品设生产 种商品 千克,生产 、 两种商品共 千克的总成本为 元,根据上述信息,解答下列问题:( )求 与 的函数解析式(也称关系式),并直接写出 的取值范围;( ) 取何值时,总成本 最小?.( 分)如图,已知 是⊙ 上的点, 是⊙ 上的点,点 在 的延长线上,∠ ∠ .( )求证: 是⊙ 的切线;( )若∠ , ,求图中阴影部分的面积..( 分)如图,在平行四边形 中,点 是 的中点,点 是 边上的点, ,平行四边形 的面积为 ,由 、 、 三点确定的圆的周长为 .( )若△ 的面积为 ,直接写出 的值;( )求证: 平分∠ ;( )若 , , ,求 的值.年云南省中考数学试卷参考答案与试题解析一、填空题(共 小题,每小题 分,满分 分).( 分)﹣ 的绝对值是 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ ﹣ ,∴﹣ 的绝对值是 .【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 的绝对值是 ..( 分)已知点 ( , )在反比例函数 的图象上,则 .【分析】接把点 ( , )代入反比例函数 即可得出结论.【解答】解:∵点 ( , )在反比例函数 的图象上,∴ ,∴ .故答案为:【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键..( 分)某地举办主题为 不忘初心,牢记使命 的报告会,参加会议的人员 人,将 用科学记数法表示为 × .【分析】科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值大于 时, 是正数;当原数的绝对值小于 时, 是负数.【解答】解: × ,故答案为: × .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数,表示时关键要正确确定 的值以及 的值..( 分)分解因式: ﹣ ( )( ﹣ ).【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..( 分)如图,已知 ∥ ,若 ,则.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ ∥ ,∴△ ∽△ ,∴ ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型..( 分)在△ 中, , ,若 边上的高等于 ,则 边的长为 或 .【分析】△ 中,∠ 分锐角和钝角两种:①如图 ,∠ 是锐角时,根据勾股定理计算 和 的长可得 的值;②如图 ,∠ 是钝角时,同理得: , ,根据 ﹣ 代入可得结论.【解答】解:有两种情况:①如图 ,∵ 是△ 的高,∴∠ ∠ ,由勾股定理得: ,,∴ ;②如图 ,同理得: , ,∴ ﹣ ﹣ ,综上所述, 的长为 或 ;故答案为: 或 .【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共 小题,每小题 分,满分 分 每小题只有一个正确选项).( 分)函数 的自变量 的取值范围为(). ≤ . ≤ . ≥ . ≥【分析】根据被开方数大于等于 列式计算即可得解.【解答】解:∵ ﹣ ≥ ,∴ ≤ ,即函数 的自变量 的取值范围是 ≤ ,故选: .【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( )当函数表达式是整式时,自变量可取全体实数;( )当函数表达式是分式时,考虑分式的分母不能为 ;( )当函数表达式是二次根式时,被开方数非负..( 分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是().三棱柱 .三棱锥 .圆柱 .圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选: .【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是: 主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等 ..( 分)一个五边形的内角和为(). . . .【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式: ×( ﹣ ) ,答:一个五边形的内角和是 度,故选: .【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式..( 分)按一定规律排列的单项式: ,﹣ , ,﹣ , ,﹣ , ,第 个单项式是(). .﹣ .(﹣ ) .(﹣ )【分析】观察字母 的系数、次数的规律即可写出第 个单项式.【解答】解: ,﹣ , ,﹣ , ,﹣ , ,(﹣ ) .故选: .【点评】考查了单项式,数字的变化类,注意字母 的系数为奇数时,符号为正;系数字母 的系数为偶数时,符号为负..( 分)下列图形既是轴对称图形,又是中心对称图形的是().三角形 .菱形 .角 .平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解: 、三角形不一定是轴对称图形和中心对称图形,故本选项错误;、菱形既是轴对称图形又是中心对称图形,故本选项正确;、角不一定是轴对称图形和中心对称图形,故本选项错误;、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选: .【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转 度后与原图重合..( 分)在 △ 中,∠ , , ,则∠ 的正切值为(). . . .【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在 △ 中,∠ , , ,∴∠ 的正切值为 ,故选: .【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键..( 分) 年 月 日,以 数字工匠 玉汝于成, 数字工坊 溪达四海 为主题的 一带一路数学科技文化节 玉溪暨第 届全国三维数字化创新设计大赛(简称 全国 大赛 )总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是().抽取的学生人数为 人. 非常了解 的人数占抽取的学生人数的..全校 不了解 的人数估计有 人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为 (人),故 正确,非常了解 的人数占抽取的学生人数的 ,故 正确,× ,故正确,全校 不了解 的人数估计有 × (人),故 错误,故选: .【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 分)已知 ,则 (). . . .【分析】把 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 两边平方得:( ) ,则 ,故选: .【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 小题,满分 分).( 分)计算:﹣ ﹣()﹣ ﹣( ﹣ )【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 ﹣ ×﹣ ﹣﹣【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点..( 分)如图,已知 平分∠ , .求证:△ ≌△ .【分析】根据角平分线的定义得到∠ ∠ ,利用 定理判断即可.【解答】证明:∵ 平分∠ ,∴∠ ∠ ,在△ 和△ 中,,∴△ ≌△ .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 定理是解题的关键..( 分)某同学参加了学校举行的 五好小公民 红旗飘飘 演讲比赛, 名评委给该同学的打分(单位:分)情况如下表:评委评委评委评委评委评委评委评委打分( )直接写出该同学所得分数的众数与中位数;( )计算该同学所得分数的平均数【分析】( )根据众数与中位数的定义求解即可;( )根据平均数的定义求解即可.【解答】解:( )从小到大排列此数据为: , , , , , , ,数据 出现了三次最多为众数,处在第 位为中位数;( )该同学所得分数的平均数为( × × )÷ .【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 总数÷个数..( 分)某社区积极响应正在开展的 创文活动 ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 倍,并且甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 平方米的绿化面积,则甲工程队每小时能完成 平方米的绿化面积,根据工作时间 总工作量÷工作效率结合甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,即可得出关于 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 平方米的绿化面积,则甲工程队每小时能完成 平方米的绿化面积,根据题意得:﹣ ,解得: ,经检验, 是分式方程的解.答:乙工程队每小时能完成 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. .( 分)将正面分别写着数字 , , 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 .( )用列表法或树状图法(树状图也称树形图)中的一种方法,写出( , )所有可能出现的结果.( )求取出的两张卡片上的数字之和为偶数的概率 .【分析】( )首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;( )由( )中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:( )画树状图得:由树状图知共有 种等可能的结果:( , )、( , )、( , )、( , )、( , )、( , );( )∵共有 种等可能结果,其中数字之和为偶数的有 种结果,∴取出的两张卡片上的数字之和为偶数的概率 .【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 所求情况数与总情况数之比..( 分)已知二次函数 ﹣ 的图象经过 ( , ), (﹣,﹣)两点.( )求 , 的值. ( )二次函数 ﹣ 的图象与 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( )把点 、 的坐标分别代入函数解析式求得 、 的值;( )利用根的判别式进行判断该函数图象是否与 轴有交点,由题意得到方程﹣ ,通过解该方程求得 的值即为抛物线与 轴交点横坐标. 【解答】解:( )把 ( , ), (﹣ ,﹣)分别代入 ﹣,得,解得;( )由( )可得,该抛物线解析式为: ﹣ .△ () ﹣ ×(﹣)×> ,所以二次函数 ﹣ 的图象与 轴有公共点.∵﹣的解为: ﹣ ,∴公共点的坐标是(﹣ , )或( , ).【点评】考查了抛物线与 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系..( 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 , 两种商品,为科学决策,他们试生产 、 两种商品 千克进行深入研究,已知现有甲种原料 千克,乙种原料 千克,生产 千克 商品, 千克 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)商品商品设生产 种商品 千克,生产 、 两种商品共 千克的总成本为 元,根据上述信息,解答下列问题:( )求 与 的函数解析式(也称关系式),并直接写出 的取值范围;( ) 取何值时,总成本 最小?【分析】( )根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;( )利用一次函数增减性进而得出答案.【解答】解:( )由题意可得: ( ﹣ ) ﹣ ,,解得: ≤ ≤ ;( )∵ ﹣ ,∴ 随 的增大而减小,∴ 时, 最小,则 ﹣ × (元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键..( 分)如图,已知 是⊙ 上的点, 是⊙ 上的点,点 在 的延长线上,∠ ∠ .( )求证: 是⊙ 的切线;( )若∠ , ,求图中阴影部分的面积.【分析】( )连接 ,易证∠ ∠ ,由于 是直径,所以∠ ,所以∠ ∠ ∠ , 是⊙ 的切线( )设⊙ 的半径为 , ,由于∠ ,∠ ,所以可求出 ,∠ , ,由勾股定理可知: ,分别计算△ 的面积以及扇形 的面积即可求出影响部分面积【解答】解:( )连接 ,∵ ,∴∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ,∵ 是直径,∴∠ ,∴∠ ∠ ∠∴∠∵ 是半径,∴ 是⊙ 的切线( )设⊙ 的半径为 ,∴ ,∵∠ ,∠ ,∴ ,∠∴ ,∴ ,∠∴ ,∴由勾股定理可知:× ×易求△扇形∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识..( 分)如图,在平行四边形 中,点 是 的中点,点 是 边上的点, ,平行四边形 的面积为 ,由 、 、 三点确定的圆的周长为 .( )若△ 的面积为 ,直接写出 的值;( )求证: 平分∠ ;( )若 , , ,求 的值.× × 得 ,即可得【分析】( )作 ⊥ 于点 ,由△出答案;( )延长 交 延长线于点 ,先证△ ≌△ 得 、 及 ,结合 得∠ ∠ ,根据∠ ∠ 即可得证;( )先证∠ 得出 ( ﹣ ) ( ) ( ) ,据此求得 的长,从而得出 的长度,再由 、 知 ⊥ ,即 是△ 的外接圆直径,从而得出答案.【解答】解:( )如图,作 ⊥ 于点 ,× × ,则 ,则△∴平行四边形 的面积为 ;( )延长 交 延长线于点 ,∵四边形 是平行四边形,∴ ∥ ,∴∠ ∠ ,∠ ∠ ,∵ 为 的中点,∴ ,∴△ ≌△ ,∴ 、 ,∴ ,由 和 得 ,∴∠ ∠ ,又∵∠ ∠ ,∴∠ ∠ ,∴ 平分∠ ;高三地理期末试题( )连接 ,∵ 、 ,∴ ,∴∠ ∠ ,∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ∠ ∠ ,即∠ ∠ ,由四边形 是平行四边形得∠ ∠ ,∴∠ ,∴ ( ﹣ ) ( ) ( ) ,解得: ,∴ ,∵ 、 ,∴ ⊥ ,∴ 是△ 的外接圆直径,∴△ 的外接圆的周长 .【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

云南省昆明市2018年中考试数学试题(原卷版)-真题卷

云南省昆明市2018年中考试数学试题(原卷版)-真题卷

2018年昆明市初中学业水平考试数学试题卷(全卷共三个大题,共23个小题,共8页;满分120分,考试时间120分钟)题号第一题第一题第一题总分得分一、填空题:(每小题3分,共18分。

请将答案写在相应题号后的横线上。

)1.在实数-3,0,1中,最大的数是。

2.共享单车进入昆明已两年,为市民的的低碳出行带来了方便。

据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学计数法表示为。

3.如图,过直线AB上一点O作射线OC,∠BOC=29018',则AOC的度数为。

4.若13mm+=,则221mm+=5.如图,点A的坐标为(4,2)。

将点A绕坐标原点O旋转900后,再向左平移1个单位长度得到点A',则过点A'的正比例函数的解析式为。

6.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为。

(结果保留根号和π)。

第3题图第5题图第6题图二、选择题:(每小题4分,共 32 分,在每小题给出的四个选项中,只有一个是正确的,请将正确选项的代号填在相应的括号内。

)7.下列几何体的左视图为长方形的是()A.B. C. D.8.关于x 一元二次方程x 2-x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) A.m <3B.m >3C.m ≤3D.m ≥39.是一个很奇妙的数,大量应用与艺术、建筑和统计决策等方面。

请你估算1的值( )A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间 10.下列判断正确的是( )A.甲乙两组学生身高的平均值均为1.58,方差分别为S 2 =2.3,S 2 =1.8,则甲组学生的身高更整 齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查, 这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事 件11.在∆AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( ) A.900 B.950 C.1000 D.1200第11题图12.下列运算正确的是( )A.(-13)2=9B.20180-38-=-1C.3a 3•2a -2=6a (a ≠0)D.18126-=13.甲乙两船从相距300km 的A ,B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h ,若甲、乙两船在静水中的速度均为xkm /h ,则求 两船在静水中的速度可列方程为( ) A.18012066x x =+- B.18012066x x =-+ C.1801206x x =+ D.1801206x x =-14.如图,点A在双曲线y=kx(x>0)上,过点A作AB⊥x轴,垂足为点B。

18年昆明市初中学业水平考试数学试、答题卡、答案

18年昆明市初中学业水平考试数学试、答题卡、答案

2018年昆明市初中学业水平考试数学试、答题卡、答案2018年昆明市初中学业水平考试数学试题卷班级姓名分数一、填空题 1.在实数?3,0,1,最大的数是. 2.共享单车进入昆明市已两年,为市民的低碳出行带来方便。

据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学计数法表示为. 3.如图,过直线AB上一点O 做射线OC,?BOC?29?18’,则?AOC的度数为. 4.若m?11?3,则m2?2?. mm5.如图,点A的坐标为,将点A绕坐标原点O旋转90?后,再向左平移一个单位长度得到A’,则过点A’的正比例函数的解析式为. 6.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为. y A x O 29?18’ 第5题第3题二、选择题7.下列几何体的左视图为长方形的是8.关于x的一元二次方程x?23x?m?0有两个不相等的实数根,则实数m的取值范围是?3?3?3?3 9.黄金分割数25?1是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5?1的值2A.在和之间 B.在和之间 C.在和之间 D.在和之间10.下列判断正确的是22A.甲乙两组学生身高的平均数均为,方差分别为S甲=,S乙=,则甲组学生的身高较整齐。

B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000。

C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分参赛队个数9 8 6 4 3 则这30个参赛队决赛成绩的中位数是。

D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件。

11.在?AOC中,OB交AC于点D,量角器的摆放如图所示,则?CDO 的度数为? ? ? ? 12.下列运算正确的是0?1?A.???=9?3?8=?1 ?3??2a3? 2?6a(a?0)?12?6 13.甲、乙两船从相距300km的A,B两地同时出发相向而行。

(完整版)2018年云南省中考数学试卷及答案.doc

(完整版)2018年云南省中考数学试卷及答案.doc

机密★2018 年云南省学业水平考试试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按一定律排列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)下列形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下面两幅.下列四个的是()A .抽取的学生人数为 50 人B.“非常了解”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不了解”的人数估计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品 2.5 3.5 200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确定的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参考答案与试题解析一、填空题(共 6 小题,每小题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比例函数y=的图象上,则ab= 2.【分析】接把点 P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为: 2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为 3.451×103 .【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤ | a| <10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 3451=3.451×103,故答案为: 3.451×103.a×10n的形式,其中 1 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【分析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,根据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,根据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种情况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8 小题,每小题 4 分,满分 32 分.每小题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,故选: B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)下列 形是某几何体的三 (其中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【分析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【分析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:根据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按一定 律排列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 10 4.00 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【分析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)下列 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【分析】 根据 称 形与中心 称 形的概念求解.【解答】 解: A 、三角形不一定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不一定是 称 形和中心 称 形,故本 ;D 、平行四 形不一定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的概念:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt △ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3B .C .D .【分析】 根据锐角三角函数的定义求出即可.【解答】 解:∵在 Rt △ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为= =3,故选: A .【点评】 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00 分) 2017 年 12 月 8 日,以 “[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海 ”为主题的 2017 一带一路数学科技文化节 ?玉溪暨第 10 届全国三维数字化创新设计大赛(简称 “全国 3D 大赛 ”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 1300 名 学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下 面两幅统计图.下列四个选项错误的是( )A .抽取的学生人数为 50 人B . “非常了解 ”的人数占抽取的学生人数的 12%C .a=72°D .全校 “不了解 ”的人数估计有 428 人【分析】 利用图中信息一一判断即可解决问题;【解答】 解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解 ”的人数占抽取的学生人数的 =12%,故 B 正确,α =360×° =72°,故正确,全校 “不了解 ”的人数估计有1300× =468(人),故 D 错误,故选: D .【点评】 本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 4.00 分)已知x+ =6,则 x 2+ =( )14A .38B .36C .34D . 32【分析】 把 x+ =6 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,故选: C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【分析】根据角平分线的定义得到∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 平分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】( 1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+7× 2+8×3)÷ 7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 =总数÷个数.18.(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间 =总工作量÷工作效率结合甲工程队完成300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据题意得:﹣=3,解得: x=50,经检验, x=50 是分式方程的解.答:乙工程队每小时能完成50 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】( 1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,∴取出的两张卡片上的数字之和为偶数的概率P= =.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 =所求情况数与总情况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( 1)把点 A 、 B 的坐标分别代入函数解析式求得b、 c 的值;( 2 )利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x2 + x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线解析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,所以二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答下列问题:3 2 1202.53.5 200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,根据上述信息,(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【分析】( 1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.【分析】( 1)连接 OC,易证∠ BCD= ∠ OCA,由于 AB 是直径,所以∠ ACB=90°,所以∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,由于∠ D=30°,∠OCD=90°,所以可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴阴影部分面积为 ﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确定的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【分析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延长 AE 交 BC 延长线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,结合 AF=AD +FC 得∠ FAE=∠CHE ,根据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 平分∠ DAF ;(3)连接 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

2018年云南省中考数学试卷及复习资料

2018年云南省中考数学试卷及复习资料

机密★2018年云南省学业水平考试试题卷数学一、填空题(共6小题,每小题3分,满分18分)1.(3分)﹣1的绝对值是.2.(3分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3分)分解因式:x2﹣4= .5.(3分)如图,已知AB∥CD,若=,则= .6.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1C.x≥0 D.x≥18.(4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱 B.三棱锥C.圆柱 D.圆锥9.(4分)一个五边形的内角和为()A.540° B.450°C.360° D.180°10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a nC.(﹣1)n+1a n D.(﹣1)n a n11.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B.菱形C.角 D.平行四边形12.(4分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C. D.13.(4分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D 大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72°D.全校“不了解”的人数估计有428人14.(4分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A 商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.生产成本(单位:元)甲种原料(单位:千克)乙种原料(单位:千克)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360°D.180°【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D 大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2=×2×1=易求S△AOCS扇形OAC==∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,即可得出答案;【分析】(1)作EG⊥AB于点G,由S△ABE(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S=×AB×EG=30,则AB•EG=60,△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

云南省2018届初中学业考试数学样卷

云南省2018届初中学业考试数学样卷

云南省2018届初中学业考试数学样卷
说明:1、本卷共3个大题,共23个小题,全卷满分120分,考试时间120分钟.
2、本卷加设附加题试卷原始值满分为50分,考试时间30分钟,附加题不计入学业水平考试成绩。

是否增设附加题以及附加分数的使用,由各州市决定,学生可自行选择是否参加附加题考试。

3、本卷分试题卷和答题卷,答案要写在答题卷上,不得在试卷上作答,否则不给分.
一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个正确答案,请将正确答案
的序号填在题后的括号内)
1.下列各数中,负数是( )
A .(12)-- B. 11-- C. (1)- D. 21-
2.下列各等式成立的是( )
A.752a a a =+
B.236()a a -=
C.21(1)(1)a a a -=+-
D.222()a b a b +=+
3. 如图所示的几何体的俯视图是( )
A

B .
C .
D .
4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )
A.当AB=BC 时,它是菱形
B.当AC ⊥BD 时,它是菱形
C.当∠ABC=90°时,它是矩形
D.当AC=BD 时,它是正方形
5.某企业1~5月份利润的变化情况图所示,以下说法与图中
反映 的信息相符的是( )
A .1~2月份利润的增长快于2~3月份分利润的增长
B .1~4月份利润的极差与1~5月份利润的极差不同
C .1~5月份利润的的众数是130万元
D .1~5月份利润的中位数为120万元
6.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,
第3题图。

(完整版)云南省中考数学试卷及答案

(完整版)云南省中考数学试卷及答案

机密★2018 年云南省学业水平考试一试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比率函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)以下形是某几何体的三(此中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按必定律摆列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)以下形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校认识学生次大的认识程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并依据采集到的信息行了,制了下面两幅.以下四个的是()A .抽取的学生人数为 50 人B.“特别认识”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不认识”的人数预计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 均分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲竞赛, 7 名评委给该同学的打分(单位:分)状况以下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的均匀数18.(6 分)某社区踊跃响应正在展开的“创文活动”,组织甲、乙两个志愿工程队对社区的一些地区进行绿化改造.已知甲工程队每小时能达成的绿化面积是乙工程队每小时能达成的绿化面积的 2 倍,而且甲工程队达成 300 平方米的绿化面积比乙工程队达成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能达成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其余方面完整同样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,反面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)全部可能出现的结果.(2)求拿出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴能否有公共点,求公共点的坐标;若没有,请说明状况.21.(8 分)某驻村扶贫小组为解决当地贫穷问题,率领大家致富.经过检查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决议,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本以下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,依据上述信息,解答以下问题:(1)求 y 与 x 的函数分析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延伸线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中暗影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确立的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 均分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参照答案与试题分析一、填空题(共 6 小题,每题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【剖析】第一步列出绝对值的表达式;第二步依据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【评论】本题考察了绝对值的性质,要求掌握绝对值的性质及其定义,并能娴熟运用到实质中间.绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比率函数y=的图象上,则ab= 2.【剖析】接把点 P(a,b)代入反比率函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比率函数y=的图象上,∴b=,∴ab=2.故答案为: 2【评论】本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.3.(3.00 分)某地举办主题为“不忘初心,切记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为×103 .【剖析】科学记数法的表示形式为 a× 10n的形式,此中 1≤ | a| <10, n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解:×103,故答案为:×103.a×10n的形式,此中 1 【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时重点要正确确立 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【剖析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【评论】本题考察了平方差公式因式分解.能用平方差公式进行因式分解的式子的特色是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【剖析】利用相像三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【评论】本题考察平行线的性质,相像三角形的判断和性质等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【剖析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,依据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,依据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种状况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【评论】本题考察了勾股定理的运用,娴熟掌握勾股定理是重点,并注意运用了分类议论的思想解决问题.二、选择题(共8 小题,每题 4 分,满分 32 分.每题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【剖析】依据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,应选: B.【评论】本题考察了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)以下 形是某几何体的三 (此中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【剖析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【剖析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:依据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按必定 律摆列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【剖析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)以下 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【剖析】 依据 称 形与中心 称 形的观点求解.【解答】 解: A 、三角形不必定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不必定是 称 形和中心 称 形,故本 ;D 、平行四 形不必定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的观点:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt△ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3 B.C.D.【剖析】依据锐角三角函数的定义求出即可.【解答】解:∵在 Rt△ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为==3,应选: A.【评论】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解本题的重点.13.(4.00 分) 2017 年 12 月 8 日,以“[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海”为主题的2017 一带一路数学科技文化节?玉溪暨第 10 届全国三维数字化创新设计大赛(简称“全国3D 大赛”)总决赛在玉溪圆满谢幕.某学校为认识学生对此次大赛的认识程度,在全校1300 名学生中随机抽取部分学生进行了一次问卷检查,并依据采集到的信息进行了统计,绘制了下面两幅统计图.以下四个选项错误的选项是()A .抽取的学生人数为50 人B.“特别认识”的人数占抽取的学生人数的12%C.a=72°D.全校“不认识”的人数预计有 428 人【剖析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故 A 正确,“特别认识”的人数占抽取的学生人数的=12%,故 B 正确,α =360×°=72°,故正确,全校“不认识”的人数预计有1300×=468(人),故 D 错误,应选: D.【评论】本题考察条形统计图、扇形统计图等知识,解题的重点是娴熟掌握基本观点,属于中考常考题型..(分)已知x+ =6,则 x 2+ =()14A .38 B.36 C.34D. 32【剖析】把 x+ =6 两边平方,利用完整平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,应选: C.【评论】本题考察了分式的混淆运算,以及完整平方公式,娴熟掌握运算法例及公式是解本题的重点.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【剖析】本题波及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【评论】本题主要考察了实数的综合运算能力,是各地中考题中常有题型.解决此类题目的重点是娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值、特别角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 均分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【剖析】依据角均分线的定义获取∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 均分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【评论】本题考察的是全等三角形的判断、角均分线的定义,掌握三角形全等的 SAS 定理是解题的重点.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲竞赛, 7 名评委给该同学的打分(单位:分)状况以下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的均匀数【剖析】( 1)依据众数与中位数的定义求解即可;(2)依据均匀数的定义求解即可.【解答】解:(1)从小到大摆列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的均匀数为(5+6+7× 2+8×3)÷ 7=7.【评论】本题考察了均匀数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大挨次摆列,把中间数据(或中间两数据的均匀数)叫做中位数.均匀数 =总数÷个数.18.(6.00 分)某社区踊跃响应正在展开的“创文活动”,组织甲、乙两个志愿工程队对社区的一些地区进行绿化改造.已知甲工程队每小时能达成的绿化面积是乙工程队每小时能达成的绿化面积的 2 倍,而且甲工程队达成 300 平方米的绿化面积比乙工程队达成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能达成多少平方米的绿化面积?【剖析】设乙工程队每小时能达成 x 平方米的绿化面积,则甲工程队每小时能达成2x 平方米的绿化面积,依据工作时间 =总工作量÷工作效率联合甲工程队达成300 平方米的绿化面积比乙工程队达成300 平方米的绿化面积少用 3 小时,即可得出对于x 的分式方程,解之经查验后即可得出结论.【解答】解:设乙工程队每小时能达成 x 平方米的绿化面积,则甲工程队每小时能达成 2x 平方米的绿化面积,依据题意得:﹣=3,解得: x=50,经查验, x=50 是分式方程的解.答:乙工程队每小时能达成50 平方米的绿化面积.【评论】本题考察了分式方程的应用,找准等量关系,正确列出分式方程是解题的重点.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其余方面完整同样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,反面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)全部可能出现的结果.(2)求拿出的两张卡片上的数字之和为偶数的概率P.【剖析】( 1)第一依据题意画出树状图,而后由树状图即可求得全部等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的状况,而后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,此中数字之和为偶数的有 2 种结果,∴拿出的两张卡片上的数字之和为偶数的概率P= =.【评论】本题考察的是用列表法或画树状图法求概率.注意列表法或画树状图法能够不重复不遗漏地列出全部可能的结果,列表法合适于两步达成的事件,树状图法合适两步或两步以上达成的事件.注意概率 =所讨状况数与总状况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴能否有公共点,求公共点的坐标;若没有,请说明状况.【剖析】( 1)把点 A 、 B 的坐标分别代入函数分析式求得b、 c 的值;( 2 )利用根的鉴别式进行判断该函数图象能否与x 轴有交点,由题意获取方程﹣x2 + x+3=0,经过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线分析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,因此二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【评论】考察了抛物线与 x 轴的交点,二次函数图象上点的坐标特色.注意抛物线分析式与一元二次方程间的转变关系.21.(8.00 分)某驻村扶贫小组为解决当地贫穷问题,率领大家致富.经过检查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决议,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本以下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答以下问题:3 2 120200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,依据上述信息,(1)求 y 与 x 的函数分析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【剖析】( 1)依据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组从而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【评论】本题主要考察了一次函数的应用以及不等式的应用,正确利用表格获取正确信息是解题重点.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延伸线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中暗影部分的面积.【剖析】( 1)连结 OC,易证∠ BCD= ∠ OCA,因为 AB 是直径,因此∠ ACB=90°,因此∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,因为∠ D=30°,∠OCD=90°,因此可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连结 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴暗影部分面积为 ﹣【评论】本题考察圆的综合问题,波及圆的切线判断,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵巧运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确立的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 均分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【剖析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延伸 AE 交 BC 延伸线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,联合 AF=AD +FC 得∠ FAE=∠CHE ,依据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延伸 AE 交 BC 延伸线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 均分∠ DAF ;(3)连结 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【评论】本题主要考察圆的综合问题,解题的重点是掌握平行四边形的性质、矩形的判断与性质、全等三角形的判断与性质及等腰三角形的性质、勾股定理等知识点.。

2018年云南省曲靖市初中学业水平考试数学试卷含答案

2018年云南省曲靖市初中学业水平考试数学试卷含答案

云南省曲靖市2018年中考数学试卷一、选择题<共8个小题,每小题3分,共24分)1.<3分)<2018•曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该地A.﹣10℃B.﹣6℃C.6℃D.10℃考点:有理数的减法.分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:8﹣<﹣2)=8+2=10℃.故选D.点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.A.a2•a5=a10B.C.<﹣a3)6=a18D.考点:二次根式的性质与化简;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方、算术平方根定义即可作出判断.解答:解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.点评:本题考查了同底数的幂的乘法法则以及幂的乘方、算术平方根定义,理解算术平方根的定义是关键.< )A.B.C.D.考点:由三视图判断几何体;几何体的展开图分析:由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.与人口数n根据题意有:=;故,的实际意义Q=∴=,∴又∵>3个单6.<3分)<2018•曲靖)实数a、b在数轴上的位置如图所示,下列各式成立的是< )析:法运算对各选项分析判断后利用排除法求解.A、<0,正确,故本选项正确;O,过点O 作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是< )RTCrpUDGiT点评:此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是< )5PCzVD7HxAA .射线OE是∠AOB的平分线B.△COD是等腰三角形C .C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD<SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.9.<3分)<2018•曲靖)﹣2的倒数是.根据倒数定义可知,﹣2的倒数是﹣.的倒数是﹣.填“<”或°,OA平分∠COE,则∠AOE= 40°.xHAQX74J0X12.<3分)<2018•曲靖)不等式和x+3<x﹣1)<1的解集的公共部分解:解不等式的值是时,=时,==2故,使2018支“穿心箭”是..故答案为:n′1、n′2、n′3所得到的三角形和△ABC的对称关系是关于旋转点成中心对称.LDAYtRyKfE°,∠C=45°,AD=1,BC=4,则CD= 3.Zzz6ZB2Ltk=,CD=3.17.<6分)<2018•曲靖)计算:2﹣1+|﹣|++<)0.+18.<10分)<2018•曲靖)化简:,并解答:<1)当x=1+时,求原代数式的值.=[﹣•﹣=,x=1+=;<2)若原式的值为﹣1,即=﹣1,人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样解得:7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:rqyn14ZNXI<2)判断谁出现次品的波动小.<3)估计乙加工该种零件30天出现次品多少件?天出现次品件数.量众数中位数平均数方差数人甲 2 2 2乙 1 1 11 2 3 4 5 6 7天数人甲 2 2 0 3 1 2 4 乙 1 0 2 1 1 0 2 <2)∵S甲2=,S乙2=,点评:此题考查了折线统计图,用到的知识点是平均数、众数、中位数、方差的意义、用样本估计总体;读懂折线统计图和图表,从统计图中得到必要的信息是解决问题的关键.<除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.EmxvxOtOco<1)求暗箱中红球的个数.<2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,考点:列表法与树状图法;概率公式.专题:图表型.分析:<1)设红球有x个,根据概率的意义列式计算即可得解;<2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:<1)设红球有x个,根据题意得,=,解得x=1;<2)根据题意画出树状图如下:一共有9种情况,两次摸到的球颜色不同的有6种情况,所以,P<两次摸到的球颜色不同)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.6ewMyirQFL <1)求证:△DCF≌△ADG.<2)若点E是AB的中点,设∠DCF=α,求sinα的值.×2a==a ADG==,=23.<10分)<2018•曲靖)如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.kavU42VRUs<1)求证:DF⊥AF.<2)求OG的长.,根据∵∵=,BD=.与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.y6v3ALoS89<1)求抛物线的解读式.<2)当DE=4时,求四边形CAEB的面积.<3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.。

最新2018年云南省中考数学试卷及答案

最新2018年云南省中考数学试卷及答案

机密★12018年云南省学业水平考试试题卷2数学345一、填空题(共6小题,每小题3分,满分18分)61.(3分)﹣1的绝对值是.72.(3分)已知点P(a,b)在反比例函数y=的图象上,则ab= .83.(3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,9将3451用科学记数法表示为.4.(3分)分解因式:x2﹣4= .10115.(3分)如图,已知AB∥CD,若=,则= .126.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,13则BC边的长为.14二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)157.(4分)函数y=的自变量x的取值范围为()16A.x≤0 B.x≤117C.x≥0 D.x≥1188.(4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),19则这个几何体是()20A.三棱柱 B.三棱锥C.圆柱 D.圆锥21229.(4分)一个五边形的内角和为()A.540° B.450°2324C.360° D.180°2510.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()2627A.a n B.﹣a n28C.(﹣1)n+1a n D.(﹣1)n a n2911.(4分)下列图形既是轴对称图形,又是中心对称图形的是()30A.三角形 B.菱形31C.角 D.平行四边形3212.(4分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()33A.3 B.34C. D.3513.(4分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主36题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全37国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘3839制了下面两幅统计图.下列四个选项错误的是()40A.抽取的学生人数为50人 B.“非常了解”的人数占抽取的学生人数4142的12%C.a=72° D.全校“不了解”的人数估计有4284344人4514.(4分)已知x+=6,则x2+=()46A.38 B.36 C.34 D.3247三、解答题(共9小题,满分70分)4815.(6分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0495051525354555616.(6分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.57585960616217.(8分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该63同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7打分 6 8 7 8 5 7 8(1)直接写出该同学所得分数的众数与中位数;6465(2)计算该同学所得分数的平均数6667686970717218.(6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社73区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完74成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米75的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?76777879808182838485868788899019.(7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、91质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗92匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片9394上的数字为y.95(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能96出现的结果.97(2)求取出的两张卡片上的数字之和为偶数的概率P.989910010110210310410510610710810911011120.(8分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.112(1)求b,c的值.113(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,114请说明情况.11511611711811921.(8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们120121决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种122商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克123A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.生产成本(单位:元)甲种原料(单位:千克)乙种原料(单位:千克)A商品 3 2 120B商品 2.5 3.5 200124设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信125息,解答下列问题:126(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;127(2)x取何值时,总成本y最小?12812913013113213313413513613713822.(9分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠139BCD=∠BAC.140(1)求证:CD是⊙O的切线;141(2)若∠D=30°,BD=2,求图中阴影部分的面积.14214314414514614723.(12分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,148平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.149(1)若△ABE的面积为30,直接写出S的值;150(2)求证:AE平分∠DAF;151(3)若AE=BE,AB=4,AD=5,求t的值.1521531541551562018年云南省中考数学试卷157参考答案与试题解析158一、填空题(共6小题,每小题3分,满分18分)1591.(3.00分)﹣1的绝对值是 1 .160【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.161【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.162【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到163实际当中.164绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的165绝对值是0.1661672.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= 2 .168【分析】接把点P(a,b)代入反比例函数y=即可得出结论.169【解答】解:∵点P(a,b)在反比例函数y=的图象上,170∴b=,171∴ab=2.故答案为:2172173【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的174坐标一定适合此函数的解析式是解答此题的关键.1751763.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 177人,将3451用科学记数法表示为 3.451×103.178【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 179的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当180原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,181182故答案为:3.451×103.183【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其184中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1851864.(3.00分)分解因式:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.187188【解答】解:x2﹣4=(x+2)(x﹣2).189故答案为:(x+2)(x﹣2).190【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点191是:两项平方项,符号相反.1925.(3.00分)如图,已知AB∥CD,若=,则= .193【分析】利用相似三角形的性质即可解决问题;194【解答】解:∵AB∥CD,195∴△AOB∽△COD,∴==,196197故答案为.198【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.1992002016.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1 .202203【分析】△ABC中,∠ACB分锐角和钝角两种:204①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.205206【解答】解:有两种情况:①如图1,∵AD是△ABC的高,207208∴∠ADB=∠ADC=90°,209由勾股定理得:BD===5,CD===4,210211∴BC=BD+CD=5+4=9;212②如图2,同理得:CD=4,BD=5,213∴BC=BD﹣CD=5﹣4=1,214综上所述,BC的长为9或1;215故答案为:9或1.216217218【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨219论的思想解决问题.220221二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)2227.(4.00分)函数y=的自变量x的取值范围为()223A.x≤0 B.x≤1 C.x≥0 D.x≥1224【分析】根据被开方数大于等于0列式计算即可得解.225【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,226227故选:B.228【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整229式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)230当函数表达式是二次根式时,被开方数非负.2318.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视232233图),则这个几何体是()234235A.三棱柱B.三棱锥C.圆柱D.圆锥236【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,237238故选:D.239【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的240投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.2412429.(4.00分)一个五边形的内角和为()243A.540°B.450°C.360°D.180°244【分析】直接利用多边形的内角和公式进行计算即可.245【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,246答:一个五边形的内角和是540度,247故选:A.248【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.24925010.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()251252A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.253254【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.255故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数256257字母a的系数为偶数时,符号为负.25811.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()259260A.三角形B.菱形C.角D.平行四边形261【分析】根据轴对称图形与中心对称图形的概念求解.262【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;263B、菱形既是轴对称图形又是中心对称图形,故本选项正确;264C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;265266故选:B.267【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋268269转180度后与原图重合.27012.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()271272A.3 B.C.D.273【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,274275∴∠A的正切值为==3,277【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题278的关键.27928013.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”281为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简282称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,283在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了284统计,绘制了下面两幅统计图.下列四个选项错误的是()285286A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%287288C.a=72°289D.全校“不了解”的人数估计有428人290【分析】利用图中信息一一判断即可解决问题;291【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,292“非常了解”的人数占抽取的学生人数的=12%,故B正确,293α=360°×=72°,故正确,294全校“不了解”的人数估计有1300×=468(人),故D错误,【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,296297属于中考常考题型.29814.(4.00分)已知x+=6,则x2+=()299300A.38 B.36 C.34 D.32301【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,302303则x2+=34,304故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是305306解本题的关键.307308三、解答题(共9小题,满分70分)30915.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0310【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计311算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.312【解答】解:原式=3﹣2×﹣3﹣1313=2﹣4314【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题315目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数316值等知识点.31731816.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.319【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.320321【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,322323在△ABC和△ADC中,324,325∴△ABC≌△ADC.326【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定327理是解题的关键.32832917.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委330给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7打分 6 8 7 8 5 7 8(1)直接写出该同学所得分数的众数与中位数;331332(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;333334(2)根据平均数的定义求解即可.335【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,3363377处在第4位为中位数;338(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.339340【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次341数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把342中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.34334418.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队345对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时346能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平347方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?348【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿349350化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解351之经检验后即可得出结论.352【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成3532x平方米的绿化面积,354根据题意得:﹣=3,355解得:x=50,356经检验,x=50是分式方程的解.357答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.35835936019.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大361小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)362洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩363下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡364片上的数字为y.365(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能366出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.367368【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;369(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.370371【解答】解:(1)画树状图得:372373由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);374375376(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.377378【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不379重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.38038120.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两382点.383(1)求b,c的值.384(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,385请说明情况.386【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;387(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣388x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.389【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得390,391解得;392393(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.394△=()2﹣4×(﹣)×3=>0,395所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.396∵﹣x2+x+3=0的解为:x1=﹣2,x2=8397∴公共点的坐标是(﹣2,0)或(8,0).398【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析399式与一元二次方程间的转化关系.40040140221.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,403他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B 404两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.405生产成本(单位:元)甲种原料(单位:千克)乙种原料(单位:千克)A商品 3 2 120B商品 2.5 3.5 200406设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信407息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;408409(2)x取何值时,总成本y最小?410【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进411而得出答案;412(2)利用一次函数增减性进而得出答案.413【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,414,415解得:72≤x≤86;416417(2)∵y=﹣80x+20000,∴y随x的增大而减小,418419∴x=86时,y最小,则y=﹣80×86+20000=13120(元).420421【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信422息是解题关键.42342422.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,425∠BCD=∠BAC.426(1)求证:CD是⊙O的切线;427(2)若∠D=30°,BD=2,求图中阴影部分的面积.428【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB= 429430∠BCD+∠OCB=90°,CD是⊙O的切线431(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,432BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响433部分面积434【解答】解:(1)连接OC,435∵OA=OC,436∴∠BAC=∠OCA,437∵∠BCD=∠BAC,438∴∠BCD=∠OCA,439∵AB是直径,∴∠ACB=90°,440441∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90° 442∵OC 是半径, 443∴CD 是⊙O 的切线 444(2)设⊙O 的半径为r , 445∴AB=2r , 446∵∠D=30°,∠OCD=90°, 447∴OD=2r ,∠COB=60° 448∴r+2=2r , 449∴r=2,∠AOC=120° 450∴BC=2, 451∴由勾股定理可知:AC=2452易求S △AOC =×2×1= 453 S 扇形OAC ==454 ∴阴影部分面积为﹣ 455 456【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形457的性质,等边三角形的性质等知识,需要学生灵活运用所学知识. 45845923.(12.00分)如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,460AF=AD+FC ,平行四边形ABCD 的面积为S ,由A 、E 、F 三点确定的圆的周长为t .461(1)若△ABE的面积为30,直接写出S的值;462(2)求证:AE平分∠DAF;463(3)若AE=BE,AB=4,AD=5,求t的值.464465【分析】(1)作EG⊥AB于点G,由S△ABE =×AB×EG=30得AB•EG=60,即可得出答案;466(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,467结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;468(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得469FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,470从而得出答案.471【解答】解:(1)如图,作EG⊥AB于点G,472则S△ABE =×AB×EG=30,则AB•EG=60,473∴平行四边形ABCD的面积为60;474475(2)延长AE交BC延长线于点H,476477∵四边形ABCD是平行四边形,478∴AD∥BC,479480∴∠ADE=∠HCE,∠DAE=∠CHE,481∵E为CD的中点,482∴CE=ED,483∴△ADE≌△HCE,484∴AD=HC、AE=HE,485∴AD+FC=HC+FC,486由AF=AD+FC和FH=HC+FC得AF=FH,487∴∠FAE=∠CHE,又∵∠DAE=∠CHE,488489∴∠DAE=∠FAE,490∴AE平分∠DAF;491492(3)连接EF,493∵AE=BE、AE=HE,494∴AE=BE=HE,495∴∠BAE=∠ABE,∠HBE=∠BHE,496∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,497498由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,499∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,500501解得:FC=,∴AF=FC+CH=,502503∵AE=HE、AF=FH,504∴FE⊥AH,∴AF是△AEF的外接圆直径,505506∴△AEF的外接圆的周长t=π.507【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判508定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.509510511。

2018年云南曲靖市初中学业水平考试数学试卷含答案

2018年云南曲靖市初中学业水平考试数学试卷含答案

云南省曲靖市2018年中考数学试卷一、选择题<共8个小题,每小题3分,共24分)1.<3分)<2018•曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的时,≠,故选项错误;时,4.<3分)<2018•曲靖)某地资源总量Q一定,该地人均资源享有量与人口数n的函数关系图象是< )根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,nn=,是><EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是< )C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是< )9.<3分)<2018•曲靖)﹣2的倒数是.的倒数是﹣.10.<3分)<2018•曲靖)若a=1.9×10,b=9.1×10,则a >b<填“<”或∠COE,则∠AOE=40°.12.<3分)<2018•曲靖)不等式和x+3<x﹣1)<1的解集的公共部分是x,得13.<3分)<2018•曲靖)若整数x满足|x|≤3,则使为整数的x的值是﹣2 <时,=3时,=2故,使心箭”是.个图象相同是故答案为:15.<3分)<2018•曲靖)如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是关于旋转点成中心对称.AD=1,BC=4,则CD= 3.∴cosC==∴CD=3.17.<6分)<2018•曲靖)计算:2﹣1+|﹣|++<)0.+18.<10分)<2018•曲靖)化简:,并解答:<1)当x=1+时,求原代数式的值.=[﹣﹣=,x=1+=1+,即可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能解得:每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:<2)判断谁出现次品的波动小.<3)估计乙加工该种零件30天出现次品多少件?,=均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.<1)求暗箱中红球的个数.<2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸=,=.CF⊥DE于F,过点A作AG∥CF交DE于点G.<1)求证:△DCF≌△ADG.<2)若点E是AB的中点,设∠DCF=α,求sinα的值.据锐角的正弦等于对边比斜边求出∠ADG的正弦,即为α的正弦.∴AE=在Rt△ADE中,DE===a,=,∴sinα=.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.<1)求证:DF⊥AF.<2)求OG的长.,根据,可得∠CAD=∠DAB=30°,∠ABD=60°,从而可得,=,∴OG=BD=.于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.<1)求抛物线的解读式.<2)当DE=4时,求四边形CAEB的面积.<3)连接BE,是否存在点D,使得△D BE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.,=×2×6+<6+4)×2﹣×2×4=12.BD=OC=mmBD=申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年云南省初中学业水平考试数学试题一

2018年云南省初中学业水平考试数学试题一

2018年云南省初中学业水平考试数学试题(一)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1. -的倒数是________.2. 云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八,394000用科学记数法表示为____________.3. 不等式组的解集是______________.4. 如图,直线a∥b,直线c与直线a、b分别交于A、B两点,AC⊥b于点C,若∠1=43°,则∠2=________.第4题图5. 若(x-1)2=2,则代数式2x2-4x+5的值为________.6. 如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列实数中最小的数是()A. -2B. -C.D. -8. 下列计算正确的是()A. 3-1=-3B. -=C. a6÷a2=a4D. (-)0=09. 下面四个立体图形中,主视图与左视图不同的是()10. 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是() 姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A. 众数是110B. 方差是16C. 平均数是109.5D. 中位数是10911. 关于x的一元二次方程x2-2x-4=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年云南省初中学业水平考试数学试题(一)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回. 一、填空题(本大题共6个小题,每小题3分,共18分)1. -14的倒数是________.2. 云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八,394000用科学记数法表示为____________.3. 不等式组⎩⎪⎨⎪⎧x -2<03x +5>0的解集是______________.4. 如图,直线a ∥b ,直线c 与直线a 、b 分别交于A 、B 两点,AC ⊥b 于点C ,若∠1=43°,则∠2=________.第4题图5. 若(x-1)2=2,则代数式2x2-4x+5的值为________.6. 如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列实数中最小的数是()A. -2B. - 5C. 13 D. -138. 下列计算正确的是()A. 3-1=-3B. 5-2= 3C. a6÷a2=a4D. (-12)0=09. 下面四个立体图形中,主视图与左视图不同的是()10. 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A. 众数是110B. 方差是16C. 平均数是109.5D. 中位数是10911. 关于x的一元二次方程x2-2x-4=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. 一个扇形的圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半径为( )A. 2 3 cmB. 3 cmC. 6 cmD. 3 cm 13. 如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =kx 的图象上,OA =5,OC =1,则△ODE 的面积为( )A. 2.5B. 5C. 7.5D. 10第13题图14. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,再顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2,…,以此类推,则第六个正方形A 6B 6C 6D 6的周长是( )A. 12B. 13C. 14 D. 1第14题图三、解答题(本大题共9个小题,共70分) 15. (本小题满分6分)化简求值:(x 2x -3+93-x )·xx 2+6x +9,其中x =-2.16. (本小题满分6分)如图,E 、F 是线段BD 上的两点,且DF =BE ,AE=CF,AE∥CF,求证:AD∥BC.第16题图17. (本小题满分7分)某水果批发市场香蕉和苹果某天的批发价与市面零售价如下表所示:水果经营户老王用了470元从水果批发市场批发,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?18. (本小题满分7分)甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6,先从甲袋中随机取一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x,y分别作为A点的横坐标、纵坐标.(1)用适当的方法(列表或画树状图)写出点A(x,y)的所有情况;(2)求点A在第二象限的概率.19. (本小题满分7分)如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40 m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)第19题图20. (本小题满分8分)为迎接云南国际英语大赛暨国际文化交流大使选拔赛,某校举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.第20题图根据以上信息解决下列问题:(1)本次共随机抽查了________名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.21. (本小题满分8分)某果园苹果丰收,首批采摘46吨,计划租用A、B 两种型号的汽车共10辆,一次性运往外地销售.A、B两种型号的汽车的满载量和租车费用如下:设租A型汽车x辆,总租车费用为y元.(1)求y与x之间的函数关系式;(2)总租车费用最少是多少元?并说明此时的租车方案.22. (本小题满分9分)如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5 cm,AB=8 cm.(1)求EC的长;(2)作∠BCD的平分线交AB于点F,求证:四边形AECF为平行四边形.第22题图23. (本小题满分12分)如图,直线y=-23x+2与x轴、y轴分别相交于点A、B,经过A、B的抛物线与x轴的另一个交点为C(1,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使△PBC周长最小?若存在,求出点P的坐标;若不存在,请说明理由;(3)在线段AB上是否存在点Q,使△ACQ与△AOB相似?若存在,求出点Q 的坐标;若不存在,请说明理由.第23题图答案三、解答题(本大题共9个小题,共70分) 15. 解:原式=(x 2x -3-9x -3)·x(x +3)2=x2-9x-3·x(x+3)2=(x+3)(x-3)x-3·x(x+3)2=xx+3,(4分)当x=-2时,原式=-2-2+3=-2.(6分)16. 证明:∵DF=BE,∴DF-EF=BE-EF,∴DE=BF,(2分)∵AE∥CF,∴∠AED=∠CFB,∵AE=CF∴△AED≌∠CFB(SAS),(5分)∴∠D=∠B,∴AD∥BC.(6分)17. 解:设批发的香蕉是x千克,苹果是y千克,则卖完香蕉的利润是(5-3)x元,卖完苹果的利润是(7-4)y元,由题意得,(5分)解得:X=50,y=80答:这天他批发的香蕉为50千克,苹果为80千克.(7分)18. 解:(1)列表如下:或画树状图如解图:第18题解图由上可知,点A共有9种等可能的情况;(4分)(2)由(1)知点A的坐标共有9种等可能的情况,点A 在第二象限(事件A)共有(-7,1),(-7,6),(-1,1),(-1,6)4种情况,(6分)∴P(A )=49.(7分)19. 解:(最优解)在Rt △CBE 中,∵BECE =tan ∠BCE ,∴40CE =tan 30°,(1分) ∴40CE =33, ∴CE =40 3 m , ∴BD =40 3 m ,(3分) 在Rt △ACE 中, ∵AECE=tan ∠ACE , ∴AE 403=tan 45°,(5分) ∴AE 403=1, ∴AE =40 3 m ,(6分) ∴AB =AE +BE =(403+40) m .答:公寓楼与矿业大厦间的水平距离BD 的长度为40 3 m ;矿业大厦AB 的高度为(403+40) m .(7分)20.解:(1)100;(2分) 补全频数分布直方图如解图:第20题解图(4分)【解法提示】本次共随机抽查学生人数为:10÷10%=100(人)或15÷15%=100(人),D 组有:100×30%=30(人),E 组有100×20%=20(人);(2)被抽查学生听写正确的个数的平均数为:1100×(10×10+30×15+50×25+70×30+90×20)=57(个);(5分)(3)3000×10+15+25100=1500(人).答:这所学校本次竞赛听写不合格的学生人数约有1500人.(8分)21. 解:(1)y 与x 之间的函数关系式为:y =800x +600(10-x)=200x+6000;(3分)(2)由题意可得:5x+4(10-x)≥46,∴x≥6,(5分)∵y=200x+6000,∴当x=6时,y最小=7200(元),此时租车的方案为:A型车6辆,B型车4辆,总租车费用最少为7200元.(8分)22. (1)解:∵AE平分∠BAD,∴∠1=∠3,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠3=∠2,∴∠1=∠2,(2分)又∵AD=5 cm,∴DE=5 cm,∵AB=8 cm,∴EC=8-5=3 cm;(4分)(2)证明:如解图,∵四边形ABCD是平行四边形,第22题解图∴∠DAB=∠DCB,CD∥AB,∵AE 平分∠BAD , ∴∠3=12∠DAB ,(5分)∵CF 平分∠DCB ,∴∠ECF =12∠DCB =12∠BAD ,∴∠3=∠ECF ,(7分) ∵∠2=∠3,∴∠2=∠ECF , ∴AE ∥CF ,∴四边形AECF 为平行四边形.(9分)23. 解:(1)对于直线y =-23x +2,当x =0时,y =2;当y =0时,x =3.∴A (3,0),B (0,2).(1分)由抛物线经过点A (3,0),C (1,0),B (0,2),所以可设抛物线的解析式为y =ax 2+bx +c ,代入A 、B 、C 三点可得:⎩⎪⎨⎪⎧9a +3b +c =0a +b +c =0c =2,解得⎩⎪⎨⎪⎧a =23b =-83c =2,∴抛物线的解析式为y =23x 2-83x +2;(4分) (2)存在.∵y =23x 2-83x +2=23(x -2)2-23,由抛物线的对称性得C 的对称点为A ,则直线AB 与对称轴直线x =2的交点P 为所求,此时△PBC 的周长最小.由⎩⎪⎨⎪⎧x =2y =-23x +2,解得:⎩⎪⎨⎪⎧x =2y =23. ∴在抛物线的对称轴上存在一点P ,使△PBC 周长最小,此时点P 的坐标为P(2,23);(8分) (3)存在.①如解图,过点C 作x 轴的垂线交AB 于点Q 1,此时∠Q 1CA =∠BOA =90°,∠Q 1AC =∠BAO ,∴△ACQ 1∽△AOB ,∵C (1,0),∴对于直线y =-23x +2,当x =1时,y =43, ∴Q 1(1,43);(10分)第23题解图②如解图,过点C 作CQ 2⊥AB 于点Q 2,此时∠CQ 2A =∠BOA =90°,∠Q 2AC =∠OAB ,∴△ACQ 2∽△A B O ,过Q 2作Q 2M ⊥AC 于点M ,则△CMQ 2∽△Q 2MA , ∴CM Q2M =Q2M AM,即Q 2M 2=CM ·AM ,设点Q 2(x ,-23x +2),则CM =x -1,AM =3-x ,Q 2M =-23x +2, ∴(-23x +2)2=(x -1)(3-x),解得:x 1=3(与A 点重合,舍去),x 2=2113, ∴Q 2(2113,1213), 综上,存在点Q 1(1,43)、Q2(2113,1213)使△ACQ 与△AOB相似.(12分)。

相关文档
最新文档