(完整版)人教版小升初数学知识点归纳
人教版六年级小升初数学总复习知识点全套整理

人教版六年级小升初数学总复习知识点全套整理小升初数学总复知识整理一、数的认识1.数的分类按不同的标准划分,数的分类也会不同。
例如按正、负数分,数分为正数、负数;按整数与分数分,数分为整数、分数(小数)等。
1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的,没有最小的整数,也没有最大的整数。
2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。
一个物体也没有,用0表示,也是自然数。
自然数的个数是无限的,最小的自然数是1,没有最大的自然数。
自然数是整数的一部分,正整数和0都是自然数。
3)分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,表示这样一份的数就是这个分数的分数单位。
一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。
带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。
4)百分数:表示一个数是另一个数百分之几的数叫做百分数,也叫百分率或百分比。
百分数的计数单位是1%,通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。
5)分数和百分数的关系:分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体的数。
分数后面可以带单位名称,而百分数后面不能带单位名称。
例如:59/100可以表示59∶100,也可以表示一个数量,如米、吨等,而59%只表示一个数和另一个数的关系,后面不能带单位名称。
1.把多位数改写成以“万”或“亿”为单位的数,小数点放在万位或亿位后面,省略小数部分末尾的数字,并在后面加上“万”或“亿”,用“=”连接。
2.把尾数省略成近似数:用“四舍五入”法省略万位或亿位后面的尾数,并在这个数的后面写上“万”或“亿”字,中间用“≈”连接。
6.对于小数的近似数,要求把小数保留到指定位数,然后用“四舍五入”法省略后面的数字,中间用“≈”连接。
人教版小升初数学总复习:常考的基础知识点总结

人教版小升初数学总复习:常考的基础知识点总结1、出勤率表示出勤人数占总人数的百分之几。
2、合格率表示合格件数占总件数的百分之几。
3、成活率表示成活棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息。
九、利息= 本金×利率×时间十、应得利息-利息税= 实得利息十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
十二、1、原价×折扣=现价2、现价÷原价=折扣3、现价÷折扣=原价十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
二、一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
三、一个数最小的因数是1,最大的因数是它本身。
一个数因数的个数是有限的。
四、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。
2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
五、是2的倍数的数叫做偶数。
不是2的倍数的数叫做奇数。
六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
八、在1—20这些数中:(1既不是素数,也不是合数)奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。
(共8个,和为77。
)合数:4、6、8、9、10、12、14、15、16、18、20。
(共11个,和为132。
人教版数学小升初知识点汇总

人教版数学小升初知识点汇总一、数与代数。
1. 数的认识。
- 整数。
- 整数的意义:像 -3、-2、-1、0、1、2、3……这样的数统称为整数。
整数包括正整数、0和负整数。
- 整数的读法和写法:读数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零;写数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。
- 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
- 小数的读法和写法:读小数时,整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字;写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位,依次类推。
- 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
- 分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
- 分数的分类:分数分为真分数(分子小于分母)和假分数(分子大于或等于分母),假分数可以化成带分数或整数。
- 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
- 分数的大小比较:同分母分数相比较,分子大的分数大;同分子分数相比较,分母小的分数大;异分母分数比较大小,先通分再比较。
- 百分数。
- 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”。
(完整版)小升初数学必考知识点

小升初数学必考知识点(一)倍数、约数1.概念:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
2.常见的倍数特征2的倍数特征:个位上是0、2、4、6、8的数,都能被2整除。
3的倍数特征:一个数的个位上的数的和能被3整除,这个数就能被3整除。
5的倍数特征:个位上是0或5的数,都能被5整除。
7的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被7整除,这个数就能被7整除。
9的倍数特征:一个数个位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的一定能被3整除。
11的倍数特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除,这个数就能被11整除。
13的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除,这个数就能被13整除。
4(或25)的倍数特征:一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
8(或125)的倍数特征:一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(二)奇数与偶数一个自然数,不是奇数就是偶数。
偶数:能被2整除的数叫做偶数(包括0)奇数:不能被2整除的数叫做奇数最小的偶数是:0最小的奇数是:1(三)质数与合数1.概念:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1.不是质数也不是合数,自然数除了1外,不是质数就是合数。
2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
人教版小升初数学知识点汇总

人教版小升初数学知识点汇总这篇文档旨在全面总结人教版小学六年级数学知识点,帮助同学们系统复习,为顺利升入初中打下坚实的基础。
内容涵盖数与代数、图形与几何、统计与概率三大模块,并配以例题讲解和练习题,力求做到深入浅出,通俗易懂。
一、数与代数1. 数的认识:• 整数: 包括自然数(0, 1, 2, 3…)和负整数(-1, -2, -3…)。
理解整数的意义、大小比较、数位和计数单位,掌握整数的读写方法。
熟练运用数轴表示整数。
• 小数: 理解小数的意义、计数单位,掌握小数的读写方法,能进行小数的比较大小、加减乘除运算。
理解小数的意义与分数的关系,能进行小数与分数的互化。
• 分数: 理解分数的意义,掌握分数的基本性质,能进行约分、通分、比较大小、加减乘除运算。
理解分数与小数的关系,能进行分数与小数的互化。
• 百分数: 理解百分数的意义,能进行百分数与分数、小数的互化,并能解决相关的实际问题。
例如,求一个数的百分之几是多少,求百分率等。
• 比和比例: 理解比的意义和性质,会求比值,能解决比例问题。
理解比例的意义,会判断成比例线段,会解比例。
掌握比例尺的计算和应用。
• 数的整除: 理解整除的意义,掌握约数、倍数、质数、合数、质因数的概念,能进行质因数分解。
掌握最大公约数和最小公倍数的求法,并能解决相关的实际问题。
例题1: 一个数由3个亿、5个千万、7个万和2个百组成,这个数写作________,读作________。
例题2: 把分数 35 化成小数是________,把小数 0.75 化成分数是________。
例题3: 求 12 和 18 的最大公约数和最小公倍数。
练习题1:1. 写出下列各数:三千零五万零八百; 二亿零五百万。
2. 将下列分数化成小数:14,38,523. 将下列小数化成分数:0.25,0.6,1.254. 求 24 和 36 的最大公约数和最小公倍数。
5. 一个长方形的长是 15cm ,宽是 10cm ,它的周长是多少?面积是多少?2. 代数初步:•用字母表示数:理解用字母表示数的意义,能用字母表示数量关系和计算公式。
小升初数学复习知识点大全

小升初数学复习知识点大全
一、整数运算
1.整数的概念
2.整数的加法、减法
3.整数的乘法、除法
4.整数的大小比较
5.整数的绝对值
二、分数运算
1.分数的概念
2.分数的加法、减法
3.分数的乘法、除法
4.分数的化简
5.分数的大小比较
三、小数运算
1.小数的概念
2.小数的加法、减法
3.小数的乘法、除法
4.小数的大小比较
5.小数与分数的相互转换
四、数字的性质
1.奇数、偶数的概念及判断方法
2.能被2整除的性质
3.能被3整除的性质
4.能被5整除的性质
5.能被9整除的性质
五、算式的变形与意义
1.加减法的结合律、交换律、分配律
2.乘除法的意义与性质
3.乘除法的结合律、交换律
4.简单算式的变形与计算
六、数与代数
1.数的概念及分类
2.自然数、整数、分数、小数等的互相转换
3.代数式的概念及构成
4.代数式的计算
七、常见几何图形
1.点、线、线段、射线的概念
2.直角、钝角、锐角的概念
3.正方形、长方形、三角形、菱形、梯形的定义、性质及判断方法
4.圆的定义、性质及计算
八、面积、体积、容量
1.长方形、正方形、三角形、圆形的面积计算
2.立方体、长方体、圆柱体的体积计算
3.比较两个面积或体积的大小
4.容积的计算
九、时刻、时区
1.时间的概念及表示方法
2.24小时制与12小时制的互换
3.时分数与分数的互换
4.时区的概念与计算
十、逻辑问题
1.推理与判断
2.常见逻辑问题的解答方法。
人教版小升初数学基础知识点整理

人教版小升初数学基础知识点整理
本文将介绍人教版小学数学基础知识点,用于小学生小升初考试复备考。
数的认识
自然数
1. 自然数的概念
2. 自然数的认识
3. 自然数的顺序
整数
1. 整数的概念
2. 整数的加减法
分数
1. 分数的概念
2. 分数的加减法(同分母、异分母)
3. 分数的乘除法
小数
1. 小数的概念
2. 小数的加减法
3. 小数的乘除法
计算
算式
1. 算式的组成
2. 算式的性质
整数四则运算
1. 整数加减法
2. 整数乘除法
分数四则运算
1. 分数加减法
2. 分数乘除法
小数四则运算
1. 小数加减法
2. 小数乘除法
除法中的整除和余数
1. 除法中的基本概念
2. 除法中的整除和余数概念
3. 整除和余数的应用
几何
图形的认识
1. 点、线、面的概念
2. 常见图形的认识:三角形、矩形、正方形、圆
长度
1. 长度的概念
2. 常用长度单位
面积
1. 面积的概念
2. 常见图形的面积公式:三角形、矩形、正方形、圆容积和质量
1. 容积的认识和常用容积单位
2. 质量的认识和常用质量单位
数据统计
统计图表
1. 直方图的认识
2. 条形图的认识
3. 折线图的认识
数据的处理
1. 数据的收集和整理
2. 数学中的平均数:平均数的概念和计算方法
以上是人教版小升初数学基础知识点的整理,希望对小学生小升初考试复备考有所帮助。
小升初数学知识点总结大全可打印

小升初数学知识点总结大全可打印标题:小升初数学知识点总结大全可打印正文:对于即将进入初中的学生来说,小升初数学考试是一个重要的里程碑。
下面是一份小升初数学知识点总结,帮助学生更好地掌握数学知识。
1. 小数的四则运算小数的四则运算包括小数的加减乘除、小数的混合运算等。
在小数的混合运算中,需要注意小数点的位置和进位等问题。
2. 分数的四则运算分数的四则运算包括分数的加减乘除、分数的混合运算等。
在分数的混合运算中,需要注意分数与整数的处理问题。
3. 运算定律运算定律包括加法交换律、加法结合律、乘法交换律、乘法结合律和小数运算定律等。
其中,小数运算定律包括小数的加减运算、小数的乘除运算等。
4. 三角形和四边形的面积三角形和四边形的面积计算是小升初数学考试中常见的考点。
学生需要掌握三角形和四边形的面积公式,并能够根据具体情况进行计算。
5. 分数和小数的互化分数和小数的互化是小升初数学考试中常见的考点。
学生需要掌握分数和小数的互化方法,并能够根据具体情况进行互化。
6. 函数和方程函数和方程是初中数学的重要知识点,也是小升初数学考试的考点。
学生需要掌握函数和方程的概念、性质和使用方法,并能够根据具体情况进行应用。
拓展:除了上述知识点之外,小升初数学考试还需要注意以下几个方面:1. 学生需要掌握基本的数学知识和技能,包括数的概念、数的大小比较、数的四则运算、图形的认识和测量等。
2. 学生需要具备良好的逻辑思维能力和分析问题的能力,能够灵活运用所学知识进行思考和解决问题。
3. 学生需要具备良好的语言表达能力,能够清晰明了地表达自己的思想和观点。
总结起来,小升初数学考试需要学生具备扎实的数学知识和技能,具备良好的逻辑思维能力和分析问题的能力,具备良好的语言表达能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
整数分为正整数和负整数。
整数的个数是无限的,没有最小的整数,也没有最大的整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3 正数和负数描述具有相反意义的量,可以用正、负数。
0既不是正数,也不是负数。
4计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
5数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
例如:因为35能被7整除,所以35是7的倍数,7是35的约数。
★一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
★一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
★个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
★个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
★一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
★一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
★一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、12344都能被8整除,1125、13375、5000都能被125整除。
§奇数与偶数能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
§质数与合数★一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
★一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
★1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
★每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
★把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
★几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
★公约数只有1的两个数,叫做互质数。
其中:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
(即质数与合数之间有可能互质,也可能不互质)两个合数的公约数只有1时,这两个合数互质。
(即两个有可能互质,也可能不互质)★几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,例如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
★几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
2.循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 ……0.0333 ……12.109109 ……(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的基本性质分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
运用分数的基本性质可以进行通分或约分。
(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。
4. 大小比较(1). 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
(2). 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3). 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除1. 把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
\三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3. 小数点向左移或者向右移位数不够时,要用“0"补足位。
(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系1. 被除数÷除数= 被除数/除数2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数相当于分子,除数相当于分母。
四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。