坐标系与参数方程文科

合集下载

人教A版高考总复习一轮文科数学精品课件 选修4—4 坐标系与参数方程 第1节 极坐标方程与参数方程

人教A版高考总复习一轮文科数学精品课件 选修4—4 坐标系与参数方程 第1节 极坐标方程与参数方程

π
θ=4代入 ρ2-2ρcos
+1=0,得 ρ2-3 2ρ+1=0,∴ρ1+ρ2=3 2,ρ1ρ2=1,∴|AB|=|ρ1-ρ2|
= (1 + 2 )2 -41 2 =
(3 2)2 -4 × 1 = 14.
θ-4ρsin θ
考向2参数方程和极坐标方程化为直角坐标方程
例2(2022全国甲,文22)在直角坐标系xOy中,曲线C1的参数方程为
(1)极坐标系:如图所示,在平面内取一个 定点
叫做极点;自极点O引一条 射线
再选定一个 长度
(通常取 弧度
O,
Ox,叫做极轴;
单位、一个 角度
)及其正方向(通常取
单位
逆时针 方
向),这样就建立了一个极坐标系.
|OM|
(2)极坐标:设M是平面内一点,极点O与点M的距离
叫做点M
的极径,记为 ρ ;以极轴Ox为始边,射线OM为终边的角 xOM 叫做点
选修4—4 第1节 极坐标方程与参数方程




01
强基础 固本增分
02
研考点 精准突破
课标解读
1.了解在直角坐标系伸缩变换作用下平
面图形的变化情况.
2.能用极坐标表示点的位置,理解在两个
坐标系中表示点的位置的区别,能进行极
坐标和直角坐标的互化.
3.能在极坐标系中给出简单图形的方程,
通过比较这些图形在两个坐标系中的方
程,理解用方程表示平面图形时选择适当
坐标系的意义.
4.了解参数方程及参数的意义.
5.能选择适当的参数写出直线、圆和圆
锥曲线的参数方程.
衍生考点
核心素养

2020年全国卷(3)文科数学

2020年全国卷(3)文科数学

2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。

2 B。

3 C。

4 D。

52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。

$1-i$ B。

$1+i$ C。

$-i$ D。

$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。

0.01 B。

1 C。

100 D。

4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。

有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。

当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。

60 B。

63 C。

66 D。

695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。

$\frac{3}{4}$ B。

$\frac{1}{4}$ C。

$-\frac{1}{4}$ D。

$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。

圆 B。

椭圆 C。

抛物线 D。

直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。

2024年全国统一高考数学试卷(文科)(甲卷)[含答案]

2024年全国统一高考数学试卷(文科)(甲卷)[含答案]

2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程

第二课时 参数方程考试要求 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.思考辨析(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( ) 答案 (1)√ (2)√ (3)√ (4)×解析 (4)当t =π3时,点M 的坐标为(2cos π3,4sin π3),即M (1,23),∴OM 的斜率k =2 3.2.(2019·北京卷)已知直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( ) A.15 B.25C.45D.65答案 D解析 由题意可知直线l 的普通方程为4x -3y +2=0,则点(1,0)到直线l 的距离d =|4×1-3×0+2|42+(-3)2=65.故选D.3.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值是________. 答案 3解析 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过点(3,0),则3-a =0,所以a =3.4.(2019·天津卷)设直线ax -y +2=0和圆⎩⎨⎧x =2+2cos θ,y =1+2sin θ(θ为参数)相切,则实数a =________. 答案 34解析 圆的参数方程消去θ,得 (x -2)2+(y -1)2=4. ∴圆心(2,1),半径r =2. 又直线ax -y +2=0与圆相切. ∴d =|2a -1+2|a 2+1=2,解得a =34.5.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案 ±1515解析 由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心为(2,0),半径为1, ∴圆心到直线y =kx 的距离为 12-|AB |24=12=|2k |k 2+1,得k =±1515.6.(易错题)设P (x ,y )是曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,则yx 的最大值为________.答案 33解析 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆,yx 表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r ,所以|-2k |1+k 2≤1,解得-33≤k ≤33, 所以y x 的最大值为33.考点一 参数方程与普通方程的互化1.下列参数方程与方程y 2=x 表示同一曲线的是( ) A.⎩⎨⎧x =t ,y =t 2B.⎩⎨⎧x =sin 2t ,y =sin t C.⎩⎨⎧x =t ,y =|t |D.⎩⎨⎧x =1-cos 2t 1+cos 2t ,y =tan t答案 D解析 对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ;对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ; 对于C ,消去t 得方程为y 2=|x |,且要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos 2t1+cos 2t =2sin 2t2cos 2t =tan 2t =y 2,符合y 2=x .故选D.2.把下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数);(2)⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)). 解 (1)由已知得t =2x -2,代入y =5+32t 中得y =5+32(2x -2). 即它的普通方程为3x -y +5-3=0.(2)因为sin 2θ+cos 2θ=1,所以x 2+y =1,即y =1-x 2. 又因为|sin θ|≤1,所以其普通方程为y =1-x 2(|x |≤1).3.(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解 (1)由题意知⊙C 的标准方程为(x -2)2+(y -1)2=1, 则⊙C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数).(2)由题意可知,切线的斜率存在,设切线方程为y -1=k (x -4),即kx -y +1-4k =0,所以|2k -1+1-4k |k 2+1=1,解得k =±33,则这两条切线方程分别为y =33x -433+1,y =-33x +433+1, 故这两条切线的极坐标方程分别为 ρsin θ=33ρcos θ-433+1,ρsin θ=-33ρcos θ+433+1.感悟提升 1.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.另外,消参时要注意参数的范围.2.普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线的参数方程直接写出. 考点二 参数方程的应用例 1 (2022·兰州模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为cos ⎝ ⎛⎭⎪⎫θ+π3=0.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知点P (3,3),曲线C 1和C 2相交于A ,B 两个不同的点,求||P A |-|PB ||的值.解(1)将⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t的参数t 消去得曲线C 1的普通方程为x 2-y 24=1.∵cos ⎝ ⎛⎭⎪⎫θ+π3=0,∴ρcos θ-3ρsin θ=0,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ可得曲线C 2的直角坐标方程为x -3y =0. (2)由题意得点P (3,3)在曲线C 2上,曲线C 2的参数方程可表示为⎩⎪⎨⎪⎧x =3+32t ′,y =3+12t ′(t ′为参数),将上述参数方程代入x 2-y 24=1得11t ′2+443t ′+4×29=0,① Δ>0,设t ′1,t ′2为方程①的两根, 则t ′1+t ′2=-43,t ′1t ′2=4×2911,∴(|P A |-|PB |)2=(|P A |+|PB |)2-4|P A ||PB |=(t ′1+t ′2)2-4t ′1t ′2=6411,∴||P A |-|PB ||=81111.感悟提升 1.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.2.过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.训练1 (2022·晋中模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t ∈R ,t 为参数,α∈⎝ ⎛⎭⎪⎫0,π2).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫π4,3π4.(1)求半圆C 的参数方程和直线l 的普通方程;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,点D 在半圆C 上,且直线CD 的倾斜角是直线l 的倾斜角的2倍,△ABD 的面积为1+3,求α的值. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入,得半圆C 的直角坐标方程为x 2+y 2=2y , ∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴y =ρsin θ=2sin 2θ∈(1,2],x =ρcos θ=2sin θ·cos θ=sin 2θ∈(-1,1), ∴半圆C 的直角坐标方程为x 2+(y -1)2=1(1<y ≤2).由sin φ=y -1∈(0,1],cos φ=x ∈(-1,1)知,可取φ∈(0,π), ∴半圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数,φ∈(0,π)).将直线l 的参数方程消去参数t ,得直线l 的普通方程为y =x tan α-2,α∈⎝ ⎛⎭⎪⎫0,π2.(2)由题意可知,A ⎝ ⎛⎭⎪⎫2tan α,0,B (0,-2),根据圆的参数方程中参数的几何意义, 结合已知条件,可得φ=2α, 所以D (cos 2α,1+sin 2α). 则点D 到直线AB 的距离d =|tan α·cos 2α-(1+sin 2α)-2|1+tan 2α=|sin αcos 2α-cos αsin 2α-3cos α| =sin α+3cos α, 又|AB |=(-2)2+⎝ ⎛⎭⎪⎫2tan α2=2sin α.∴△ABD 的面积S =12·|AB |·d =1+3tan α=1+3, ∴tan α= 3.又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π3.考点三 参数方程与极坐标方程的综合应用例2 (2020·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos k t ,y =sin kt (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ-16ρsin θ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标. 解 (1)当k =1时,C 1:⎩⎪⎨⎪⎧x =cos t ,y =sin t ,消去参数t 得x 2+y 2=1,故曲线C 1是以坐标原点为圆心,1为半径的圆.(2)当k =4时,C 1:⎩⎪⎨⎪⎧x =cos 4t ,y =sin 4t ,消去参数t 得C 1的直角坐标方程为x +y =1.C 2的直角坐标方程为4x -16y +3=0. 由⎩⎪⎨⎪⎧x +y =1,4x -16y +3=0,解得⎩⎪⎨⎪⎧x =14,y =14.故C 1与C 2的公共点的直角坐标为⎝ ⎛⎭⎪⎫14,14.感悟提升 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷地解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.训练2 (2022·长春联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =t -2,y =t 2-2t (t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为t 1,t 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρ=2a sin θ. (1)当t 1=1,t 2=3时,直线MN 平分曲线D ,求a 的值;(2)当a =1时,若t 1+t 2=2+3,直线MN 被曲线D 截得的弦长为3,求直线MN 的方程.解 (1)因为t 1=1,t 2=3, 所以M (-1,-1),N (1,3). 所以直线MN 的方程为y =2x +1. 因为ρ=2a sin θ,所以ρ2=2aρsin θ, 又x 2+y 2=ρ2,y =ρsin θ,所以曲线D 的方程可化为x 2+(y -a )2=a 2,因为直线MN 平分曲线D ,所以直线MN 过点(0,a ),所以a =1.(2)由题意可知k MN =(t 21-2t 1)-(t 22-2t 2)(t 1-2)-(t 2-2)=(t 1-t 2)(t 1+t 2-2)t 1-t 2=3,曲线D 的方程为x 2+(y -1)2=1,设直线MN 的方程为y =3x +m ,圆心D 到直线MN 的距离为d ,则d =|m -1|2, 因为d 2+⎝ ⎛⎭⎪⎫322=12,所以⎝ ⎛⎭⎪⎫m -122+⎝ ⎛⎭⎪⎫322=1, 所以m =0或m =2,所以直线MN 的方程为y =3x 或y =3x +2.1.将下列参数方程化成普通方程.(1)⎩⎨⎧x =t 2-1,y =t 2+1(t 为参数); (2)⎩⎨⎧x =cos θ,y =sin θ⎝⎛⎭⎪⎫θ为参数,θ∈⎣⎢⎡⎦⎥⎤π2,π. 解 (1)消去参数t ,得y =x +2,由于t 2≥0,所以普通方程为y =x +2(x ≥-1),表示一条射线.(2)消去参数θ,得x 2+y 2=1,由于θ∈⎣⎢⎡⎦⎥⎤ π2,π,所以x ∈[-1,0],y ∈[0,1],所以普通方程为x 2+y 2=1(-1≤x ≤0,0≤y ≤1),表示圆的四分之一.2.(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),点M 为C 上的动点,点P 满足AP→=2AM →,写出点P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.解 (1)根据ρ=22cos θ,得ρ2=22ρcos θ,因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以曲线C 的直角坐标方程为(x -2)2+y 2=2.(2)设P (x ,y ),M (x ′,y ′),则AP→=(x -1,y ),AM →=(x ′-1,y ′). 因为AP →=2AM →,所以⎩⎪⎨⎪⎧x -1=2(x ′-1),y =2y ′,即⎩⎨⎧x ′=x -12+1,y ′=y 2. 因为点M 为C 上的动点,所以⎝ ⎛⎭⎪⎫x -12+1-22+⎝ ⎛⎭⎪⎫y 22=2, 即(x -3+2)2+y 2=4.所以点P 的轨迹C 1的参数方程为⎩⎪⎨⎪⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)). 所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r ,所以C 与C 1没有公共点.3.(2021·银川模拟)在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为α⎝ ⎛⎭⎪⎫0<α<π2,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且|PM |·|PN |=103,求l 的参数方程.解 (1)由⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t 得⎩⎪⎨⎪⎧x =t +1t ,2y =t -1t ,∵⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=t 2+2+1t 2-t 2+2-1t 2=4, ∴x 2-(2y )2=4,即x 2-4y 2=4.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴ρ2cos 2θ-4ρ2sin 2θ=4. 即曲线C 的极坐标方程为ρ2cos 2θ-4ρ2sin 2θ=4.(2)设l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),代入x 2-4y 2=4整理得(cos 2α-4sin 2α)t 2+6t cos α+5=0,设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=5cos 2α-4sin 2α, 则|PM |·|PN |=|t 1t 2|=⎪⎪⎪⎪⎪⎪5cos 2α-4sin 2α=103.解得cos α=±22, ∵0<α<π2,∴cos α=22,∴α=π4.故l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t(t 为参数). 4.(2022·合肥检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)(t 为参数).在以原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若曲线C 2与曲线C 1交于点A ,B ,M (-2,2),求1|MA |-1|MB |的值.解 (1)由⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)得⎩⎪⎨⎪⎧2x =t 14-t -14,12y =t 14+t -14, 两式平方相减得12y 2-2x 2=4,即y 28-x 22=1.又y =2(t 14+t -14)≥22(t >0), ∴曲线C 1的普通方程为y 28-x 22=1(y ≥22).曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0,化简,得ρsin θ-ρcos θ-4=0,又x =ρcos θ,y =ρsin θ,∴y -x -4=0,∴曲线C 2的直角坐标方程为x -y +4=0.(2)设曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+22t ′,y =2+22t ′(t ′为参数).代入曲线C 1的方程得⎝ ⎛⎭⎪⎫2+22t ′2-4⎝ ⎛⎭⎪⎫-2+22t ′2=8,即3t ′2-202t ′+40=0.Δ=320>0.设方程的两个实数根为t 1,t 2,则t 1+t 2=2023,t 1t 2=403,∴⎪⎪⎪⎪⎪⎪1|MA |-1|MB |=⎪⎪⎪⎪⎪⎪1|t 1|-1|t 2|=||t 2|-|t 1|||t 1|·|t 2|=|t 1-t 2||t 1|·|t 2|=(t 1+t 2)2-4t 1t 2|t 1|·|t 2|=853403=55,∴1|MA |-1|MB |=55或-55.5.(2022·陕西部分学校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+sin φ-2cos φ,y =cos φ+2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ+2=0.(1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α⎝ ⎛⎭⎪⎫-π2<α<π2,ρ∈R 分别与曲线C 1交于A ,B 两点,与曲线C 2交于P 点,若|AB |=3|OA |,求|OP |的值.解 (1)曲线C 1:⎩⎪⎨⎪⎧x -3=sin φ-2cos φ,①y =cos φ+2sin φ,②①2+②2得(x -3)2+y 2=5,即x 2+y 2-6x +4=0,将x 2+y 2=ρ2,x =ρcos θ代入上式,得曲线C 1的极坐标方程为ρ2-6ρcos θ+4=0.由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,ρcos θ+2=0得ρ2+16=0,此方程无解. 所以C 1,C 2相离.(2)由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,θ=α得ρ2-6ρcos α+4=0, 因为直线θ=α与曲线C 1有两个交点A ,B ,所以Δ=36cos 2α-16>0,得cos α>23.设方程ρ2-6ρcos α+4=0的两根分别为ρ1,ρ2,则⎩⎪⎨⎪⎧ρ1+ρ2=6cos α>0,③ρ1ρ2=4,④因为|AB |=3|OA |,所以|OB |=4|OA |,即ρ2=4ρ1,⑤由③④⑤解得ρ1=1,ρ2=4,cos α=56,满足Δ>0,由⎩⎪⎨⎪⎧ρcos α+2=0,θ=α得ρ=-2cos α=-125, 所以|OP |=|ρ|=125.6.(2022·贵阳适应性测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =r cos α,y =r sin α(0<r <2,α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4cos 2θ(如图所示).(1)若r =2,求曲线C 1的极坐标方程,并求曲线C 1与C 2交点的直角坐标;(2)已知曲线C 2既关于原点对称,又关于坐标轴对称,且曲线C 1与C 2交于不同的四点A ,B ,C ,D ,求矩形ABCD 面积的最大值.解 (1)∵r =2,∴x 2+y 2=2,又x 2+y 2=ρ2,∴曲线C 1的极坐标方程为ρ=2,∴⎩⎪⎨⎪⎧ρ2=4cos 2θ,ρ=2,cos 2θ=12⇒cos θ=±32, 当cos θ=32时,sin θ=±12,当cos θ=-32时,sin θ=±12,分别代入⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,可得四个交点的直角坐标分别为⎝ ⎛⎭⎪⎫62,22,⎝ ⎛⎭⎪⎫62,-22,⎝ ⎛⎭⎪⎫-62,22,⎝ ⎛⎭⎪⎫-62,-22. (2)由(1)知曲线C 1的极坐标方程为ρ=r .由⎩⎪⎨⎪⎧ρ=r ,ρ2=4cos 2θ得cos 2θ=r 24. ∵曲线C 2关于原点和坐标轴对称, ∴S 矩形ABCD =4|r cos θ||r sin θ| =4r 2|cos θsin θ|=2r 2|sin 2θ| =2r 21-cos 22θ=2r 21-r 416 =12r 216-r 4=12r 4(16-r 4) ≤12⎝ ⎛⎭⎪⎫r 4+16-r 422=4. 当且仅当r 4=16-r 4,即r 2=22时等号成立. 故矩形ABCD 面积的最大值为4.。

高考文科数学常考题型训练坐标系与参数方程

高考文科数学常考题型训练坐标系与参数方程

常考题型大通关:第22题 坐标系与参数方程1、在平面直角坐标系xOy 中,直线l的参数方程是122x t y ⎧⎪=+⎨=⎪⎪⎪⎩ (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(1)把直线l 的参数方程化为极坐标方程,把曲线C 的极坐标方程化为普通方程; (2)求直线l 与曲线C 交点的极坐标(0ρ≥,02θπ≤<).2、在直角坐标系xOy 中,曲线1C:2x y αα⎧=⎪⎨=+⎪⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C :24cos 3ρρθ=-. (1).求1C 的普通方程和2C 的直角坐标方程;(2).若曲线1C 与2C 交于,A B 两点,,A B 的中点为M ,点()0,1P -,求PM AB ⋅ 的值.3、在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点(2,4)P --的直线l 的参数方程为2545x ty t =-+⎧⎨=-+⎩(t 为参数),直线l 与曲线C 相交于A ,B 两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若2||PA PB AB =,求a 的值4、在平面直角坐标系中,曲线的参数方程为2cos ,2sin x y θθ=+⎧⎨=+⎩(θ为参数).直线l的方程为0y -=,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C 和直线l 的极坐标方程; (Ⅱ)若直线交曲线C 于M ,N 两点,求ON OM OMON+的值.5、在平面直角坐标系xOy 中,曲线1C 的参数方程为3214x ty t=-⎧⎨=--⎩(t 为参数,t R ∈).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)动点P Q ,分别在曲线12,C C 上运动,求P Q ,间的最短距离6、在直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2cos 4sin 0ρθθ-=,P 点的极坐标为π(3,)2,在平面直角坐标系中,直线l 经过点P ,且倾斜角为60o .(1).写出曲线C 的直角坐标方程以及点P 的直角坐标; (2).设直线l 与曲线C 相交于,A B 两点,求11PA PB+的值. 7、在极坐标系中,曲线C 的极坐标方程为2sin 4cos 0(2π)ρθθθ=+≤<,点π1,2M ⎛⎫⎪⎝⎭,以极点O 为原点,极轴为x轴的正半轴建立平面直角坐标系,直线:112x l y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)与曲线C 交于A B ,两点.1.若P 为曲线C 上任意一点,当OP 最大时,求点P 的直角坐标.2.求11MA MB+的值. 8、以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22124cos ρθ=-.1.求曲线C 的直角坐标方程;2.设过点(1,0)P 且倾斜角为45o 的直线l 和曲线C 交于两点A B ,,求11PA PB+的值. 9、已知曲线C 的极坐标方程为2229cos 9sin ρθθ=+,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求曲线C 的普通方程;(2),A B 为曲线C 上两个点,若OA OB ⊥,求2211OAOB+的值.10、在直角坐标系xOy 中,曲线sin cos :1sin 2x C y ααα=+⎧⎨=+⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的方程为:sin )0(R)a a ρθθ--=∈(1)当极点O到直线l l的直角坐标方程;(2)若直线l与曲线C有两个不同的交点,求实数a的取值范围答案以及解析1答案及解析:答案:(1cos sin0θρθ--,2240x y x+-=(2)5(2,)3π,)6π解析:(1)122x ty⎧⎪=+⎨=⎪⎪⎪⎩,消去参数t,y--=,将cossinxyρθρθ==⎧⎨⎩代入0y--cos sin0θρθ--=,曲线C的普通方程为2240x y x+-=(2)C的普通方程为2240x y x+-=,由2240yx y x--=+-=⎪⎩解得1xy⎧==⎪⎨⎪⎩3xy⎧==⎪⎨⎪⎩所以l与C交点的极坐标分别为52,,36ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭考点:曲线的参数方程,曲线的极坐标方程.2答案及解析:答案:(1).曲线1C的普通方程为()2225x y+-=.由222x yρ=+,cos xρθ=,得曲线2C的直角坐标方程为22430x y x+-+=.(2).将两圆的方程()2225x y+-=与22430x y x+-+=作差得直线AB的方程为10x y--=. 点()0,1P-在直线AB上,设直线AB的参数方程为1xy⎧=⎪⎪⎨⎪=-⎪⎩(t为参数)代入22430x y x+-+=化简得240t-+=,所以12t t+=124t t=.因为点M对应的参数为1222t t+=,所以12122t tPM AB t t+⋅=⋅-=32==解析:3答案及解析:答案:(1)由2sin 2cos (0)a a ρθθ=>得22sin 2cos (0)a a ρθρθ=>, 所以曲线C 的直角坐标方程22y ax =, 因为2545x ty t =-+⎧⎨=-+⎩,所以214x y +=+,直线l 的普通方程为2y x =-; (2)直线l的参数方程为2242x ty ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数), 代入22y ax =得:)243280t a t a -+++=,设A ,B 对应的参数分别为12,t t,则)124t t a +=+,12328t t a =+,10t >,20t > 由参数1t ,2t 的几何意义得1212t PA t PB t t AB ==-=,,, 由2||PA PB AB =得21212||t t t t -=,所以21212||5t t t t +=,所以)()()245328a a +=+,即2340a a +-=,故1a =,或4a =-(舍去),所以1a =. 解析:4答案及解析:答案:1.C 的普通方程为224470x y x y +--+=,()21212122ρρρρρρ+-=化为极坐标方程为2sin 704πρθ⎛⎫-++= ⎪⎝⎭.由于直线ONOM OM ON +233223x x x ⎧>⎪⎨⎪---≤⎩22121224cos 4sin 70,.273ON OM l OM ONρρθρρπθρρθ⎧--++=+==⋅=⎪⎨=⎪⎩过原点且倾斜角为3π,故其化为()2270ρρ-+=极坐标方程为()3R πθρ=∈.(2)由知,设N M ,两点对应的极径分别为21ρρ,,则,,则212122ρρρρ+= .解析:5答案及解析:答案:(1)已知曲线2C 的极坐标方程为22cos 30ρρθ+-=,由222x y ρ+=,cos x ρθ=, 可得22230x y x ++-=,即()2214x y ++=. 所以曲线2C 的直角坐标方程为()2214x y ++=. (2)由已知得曲线1C 的普通方程为270x y --=.设12cos ,2s (in )Q αα-+,R a ∈,点Q 到曲线1C 的距离为d ,则d =9αϕ-+2 (其中1tan 2ϕ=), 当且仅当()cos 1αϕ+=时,取等号所以P Q ,2. 解析:6答案及解析:答案:(1)曲线C 的极坐标方程化为直角坐标方程为24x y =, P 点的极坐标为:3,2πP ⎛⎫⎪⎝⎭化为直角坐标为()0,3P(2).直线l 的参数方程为cos ,33sin ,3ππx t y t ⎧=⎪⎪⎨⎪=+⎪⎩,即1,23,x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)将l 的参数方程代入曲线C 的直角坐标方程,得21124t=+,整理得:2480t --=,显然有0∆>,则121248,t t t t ⋅=-+=,121248PA PB t t t t ⋅=⋅=⋅=,1212PA PB t t t t +=+=-=所以116PA PB PA PB PA PB ++==⋅. 解析:7答案及解析:答案:1.由2sin 4cos ρθθ=+得22sin 4cos ρρθρθ=+, 2224x y y x ∴+=+,即()()22215x y -+-=,故曲线C 是以()2,1C '为圆心,5为半径的圆. ∵原点O 在圆C 上,∴max 25OP =, 故线段OP 的中点为圆心()2,1C ,∴点P 的直角坐标为()4,22.将直线l 的方程3112x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)代入2224x y y x +=+并整理得22310t t --=. 设A B ,两点对应的参数分别为12,t t ,则1223t t +=,121t t =-. 由参数t 的几何意义得11MA MB MA MB MA MB ++=12121212t t t t t t t t +-==()212121244t t t t t t +-==.解析:8答案及解析:答案:1.曲线C 的极坐标方程为22124cos ρθ=-.转换为直角坐标方程为:22143x y +=;2.点(1,0)P 且倾斜角为45o 的直线l , 转换为参数方程为:212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数,把直线的参数方程代入22143x y +=,得到:2732902t t +-=,(1t 和2t 为A B 、对应的参数)所以:11116218,7t t t t +=-=-, 所以:12121143t t PA PB t t -+==. 解析:9答案及解析:答案:(1) 2219x y +=(2) 109解析:(1)由2229cos 9sin ρθθ=+得2222cos 9sin 9ρθρθ+=,将cos ,sin x y ρθρθ==代入得到曲线C 的普通方程是2219x y +=.(2)因为2229cos 9sin ρθθ=+,所以2221cos sin 9θθρ=+,由OA OB ⊥,设1(,)A ρα,则B 点的坐标可设为2,2πρα⎛⎫± ⎪⎝⎭,所以2222121111OAOBρρ+=+2222cos sin 110sin cos 19999αααα=+++=+=.10答案及解析:答案:(1)直线l 的方程为:2cos sin 0(R)a a ρθρθ--=∈ 则直角坐标方程为20x y a --=极点O 到直线l 的距离为:33a -=;解得3a =±故直线l 的直角坐标方程为230x y -±= (2)曲线C 的普通方程为2(22)x y x =-≤≤ 直线20x y a --=联立曲线C 与直线l 的方程,消去y 可得220(22)x x a x -+=-≤≤ 即y a =与2()2y f x x x ==-+在22x -()f x 的最大值为12f =⎝⎭;且0f=;(4f =-∴实数a 的范围为1[0,)2解析:。

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系

2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系

第1节 坐标系与参数方程第一课时 坐标系考试要求 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角∠xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化4.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r ,0),半径为r 的圆ρ=2r cos__θ⎝ ⎛⎭⎪⎫-π2≤θ<π2圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin__θ(0≤θ<π)过极点,倾斜角为α的直线①θ=α(ρ∈R )或θ=π+α(ρ∈R ) ②θ=α(ρ≥0)和 θ=π+α(ρ≥0)过点(a ,0),与极轴垂直的直线ρcos__θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin__θ=a (0<θ<π)1.极坐标的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条射线.2.(易错题)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1, 再化为极坐标为ρsin θ=1.3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)答案 B解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y , 即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.5.(易错题)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________. 答案 x 2+(y -1)2=1解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1.6.(2018·北京卷)在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案 1+ 2解析 直线的方程为x +y -a =0,圆的方程为(x -1)2+y 2=1, 所以圆心(1,0),半径r =1, 由于直线与圆相切,故圆心到直线的距离等于半径,即|1-a |2=1,又a >0,所以a =1+ 2.考点一 平面直角坐标系中的伸缩变换1.曲线C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2x ,y ′=y得到曲线C ′,则曲线C ′的方程为________. 答案 x ′24+y ′2=1解析 因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入曲线C 的方程得C ′:x ′24+y ′2=1.2.曲线C 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则曲线C 的方程为________. 答案 4x 2+9y 2=1解析 根据题意,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则(2x )2+(3y )2=1,即4x 2+9y 2=1,所以曲线C 的方程为4x 2+9y 2=1.3.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,则点A ⎝ ⎛⎭⎪⎫13,-2经过变换后所得的点A ′的坐标为________. 答案 (1,-1)解析 设A ′(x ′,y ′),由伸缩变换φ: ⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎨⎧x ′=3x ,y ′=12y .由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1, 所以点A ′的坐标为(1,-1).4.双曲线C :x 2-y 264=1经过伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y后所得曲线C ′的焦点坐标为________.答案 (-5,0),(5,0)解析 设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎨⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即为曲线C ′的方程,知C ′仍是双曲线,其焦点坐标分别为(-5,0),(5,0).感悟提升 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.解答该类问题应明确两点:一是明确平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化例1 (1)极坐标方程ρ2cos θ-ρ=0转化成直角坐标方程为( ) A.x 2+y 2=0或y =1 B.x =1C.x 2+y 2=0或x =1D.y =1(2)点M 的直角坐标是(-1,3),则点M 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ) 答案 (1)C (2)C解析 (1)ρ2cos θ-ρ=0⇒ρ=x 2+y 2=0,或ρcos θ=1,即x =1.(2)∵ρ=(-1)2+(3)2=2,tan θ=3-1=- 3.又点M 在第二象限,∴θ=2π3, ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,2π3.感悟提升 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得,ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1, 即x +3y =2.当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以点P 的直角坐标为⎝⎛⎭⎪⎫1,33,则点P 的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 考点三 求曲线的极坐标方程例2 (2022·西安五校联考)在直角坐标系xOy 中,曲线C 1:(x -1)2+y 2=1(y ≥0),如图,将C 1分别绕原点O 逆时针旋转π2,π,3π2得到曲线C 2,C 3,C 4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C 1,C 2,C 3,C 4的极坐标方程;(2)直线l :θ=π3(ρ∈R )交曲线C 1,C 3分别于A ,C 两点,直线l ′:θ=2π3(ρ∈R )交曲线C 2,C 4分别于B ,D 两点,求四边形ABCD 的面积.解 (1)将x =ρcos θ,y =ρsin θ代入C 1,得C 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2,设C 1上的点(ρ0,θ0)旋转π2得到曲线C 2上的点(ρ,θ),则ρ0=ρ,θ0=θ-π2,代入C 1的方程得ρ=2cos ⎝ ⎛⎭⎪⎫θ-π2=2sin θ⎝ ⎛⎭⎪⎫0≤θ-π2≤π2,所以C 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π2≤θ≤π,同理,C 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫π≤θ≤3π2,C 4的极坐标方程为ρ=-2sin θ⎝ ⎛⎭⎪⎫3π2≤θ≤2π.(2)结合图形的对称性可知S 四边形ABCD =4S △AOB , 将θ=π3代入C 1得|OA |=ρA =1,将θ=2π3代入C 2得|OB |=ρB =3,所以S 四边形ABCD =4S △AOB =4×12·|OA |·|OB |·sin π3=3. 感悟提升 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.训练2 在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M (ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP |=|OA |cos π3=2. 设Q (ρ,θ)为l 上除P 外的任意一点.在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.考点四 极坐标方程的应用例3 已知曲线C :⎩⎨⎧x =2cos α,y =2sin α(α为参数),设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,以直角坐标中的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C ′的极坐标方程;(2)若A ,B 是曲线C ′上的两个动点,且OA ⊥OB ,求|OA |2+|OB |2的最小值. 解 (1)曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),转换为普通方程为x 2+y 2=4,曲线C经过伸缩变换⎩⎨⎧x ′=x ,y ′=12y得到曲线C ′:x 24+y 2=1,极坐标方程为ρ=21+3sin 2θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2,所以|OA |2+|OB |2=ρ21+ρ22=41+3sin 2θ+41+3cos 2θ =8+12(sin 2θ+cos 2θ)(1+3sin 2θ)(1+3cos 2θ)=20(1+3sin 2θ)(1+3cos 2θ) =201+3(sin 2θ+cos 2θ)+94sin 22θ =204+94sin 22θ≥165. 当sin 2θ=±1时,|OA |2+|OB |2取得最小值165.感悟提升 1.若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.2.在极坐标系中,如果P 1(ρ1,θ1),P 2(ρ2,θ2),那么两点间的距离公式 |P 1P 2|=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).两种特殊情况:(1)当θ1=θ2+2k π,k ∈Z 时,|P 1P 2|=|ρ1-ρ2|; (2)当θ1=θ2+π+2k π,k ∈Z ,|P 1P 2|=|ρ1+ρ2|.3.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.训练3 (2021·昆明诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =9+3t ,y =t (t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=161+3sin 2θ.(1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离. 解 (1)由ρ2=161+3sin 2θ, 得ρ2+3ρ2sin 2θ=16,则曲线C 的直角坐标方程为x 2+4y 2=16, 即x 216+y 24=1.直线l 的直角坐标方程为x -3y -9=0.(2)可知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =2sin α(α为参数),设P (4cos α,2sin α),α∈[0,2π),则M (2cos α,sin α)到直线l :x -3y -9=0的距离为d =|2cos α-3sin α-9|2=|7sin (θ-α)-9|2≤9+72,所以线段OP 的中点M 到直线l 的最大距离为9+72.1.将直角坐标方程与极坐标方程互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)θ=π3(ρ∈R );(4)ρcos 2 θ2=1; (5)ρ2cos 2θ=4; (6)ρ=12-cos θ.解 (1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)当x ≠0时,由于tan θ=y x ,故tan π3=yx =3,化简得y =3x (x ≠0); 当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为 y =3x .(4)因为ρcos 2θ2=1,所以ρ·1+cos θ2=1,而ρ+ρcos θ=2,所以x 2+y 2+x =2.化简得y 2=-4(x -1).(5)因为ρ2cos 2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.2.在极坐标系中,已知两点A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.解 (1)设极点为O .在△OAB 中,A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,由余弦定理,得 |AB |=32+(2)2-2×3×2×cos ⎝ ⎛⎭⎪⎫π2-π4= 5.(2)因为直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3,所以直线l 过点⎝ ⎛⎭⎪⎫32,π2,倾斜角为3π4.又B ⎝ ⎛⎭⎪⎫2,π2, 所以点B 到直线l 的距离为(32-2)×sin ⎝ ⎛⎭⎪⎫3π4-π2=2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)因为ρ=x 2+y 2,ρsin θ=y ,所以ρ=21-sin θ化为ρ-ρsin θ=2,所以曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,所以直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2022·南宁调研)在直角坐标系xOy 中,圆C 1:(x -1)2+y 2=1,圆C 2:(x +2)2+y 2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1,C 2的极坐标方程;(2)设A ,B 分别为C 1,C 2上的点,若△OAB 为等边三角形,求|AB |. 解 (1)因为圆C 1:(x -1)2+y 2=1, 圆C 2:(x +2)2+y 2=4,所以C 1:x 2+y 2=2x ,C 2:x 2+y 2=-4x , 因为x 2+y 2=ρ2,x =ρcos θ, 所以C 1:ρ=2cos θ,C 2:ρ=-4cos θ.(2)因为C 1,C 2都关于x 轴对称,△OAB 为等边三角形, 所以不妨设A (ρA ,θ),B ⎝ ⎛⎭⎪⎫ρB ,θ+π3,0<θ<π2.依题意可得,ρA =2cos θ,ρB =-4cos ⎝ ⎛⎭⎪⎫θ+π3.从而2cos θ=-4cos ⎝ ⎛⎭⎪⎫θ+π3,整理得,2cos θ=3sin θ,所以tan θ=233,又因为0<θ<π2,所以cos θ=217,|AB |=|OA |=ρA =2217.5.(2021·成都诊断)在直角坐标系xOy 中,已知曲线C 的方程为(x -1)2+y 2=1,直线l 的方程为x +3y -6=0.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点P (x ,y )在直线l 上且y >0,射线OP 与曲线C 相交于异于点O 的点Q ,求|OP ||OQ |的最小值.解 (1)由极坐标与直角坐标的互化公式x =ρcos θ,y =ρsin θ得 曲线C 的极坐标方程为ρ=2cos θ. 由题意得直线l 的极坐标方程为ρcos θ+3ρsin θ-6=0,即ρsin ⎝ ⎛⎭⎪⎫θ+π6=3.(2)设点P 的极坐标为(ρ1,θ),点Q 的极坐标为(ρ2,θ),其中0<θ<π2. 由(1)知|OP |=ρ1=6cos θ+3sin θ,|OQ |=ρ2=2cos θ. ∴|OP ||OQ |=ρ1ρ2=62cos 2θ+23sin θcos θ=61+cos 2θ+3sin 2θ=61+2sin ⎝⎛⎭⎪⎫2θ+π6.∵0<θ<π2,∴π6<2θ+π6<7π6,∴-12<sin ⎝ ⎛⎭⎪⎫2θ+π6≤1. ∴当sin ⎝ ⎛⎭⎪⎫2θ+π6=1,即θ=π6时,|OP ||OQ |取得最小值2.6.已知曲线C 1:x 2+(y -3)2=9,A 是曲线C 1上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点A 绕点O 逆时针旋转90°得到点B ,设点B 的轨迹方程为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=5π6(ρ>0)与曲线C 1,C 2分别交于P ,Q 两点,定点M (-4,0),求△MPQ的面积.解 (1)曲线C 1:x 2+(y -3)2=9, 即x 2+y 2-6y =0. 从而ρ2=6ρsin θ.所以曲线C 1的极坐标方程为ρ=6sin θ. 设B (ρ,θ),则A ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=6sin ⎝ ⎛⎭⎪⎫θ-π2=-6cos θ.所以曲线C 2的极坐标方程为ρ=-6cos θ. (2)M 到射线θ=5π6(ρ>0)的距离为d =4sin 5π6=2,射线θ=5π6(ρ>0)与曲线C 1的交点P ⎝ ⎛⎭⎪⎫ρP ,5π6,其中,ρP =6sin 5π6=3,射线θ=5π6(ρ>0)与曲线C 2的交点Q ⎝ ⎛⎭⎪⎫ρQ ,5π6,其中,ρQ =-6cos 5π6=33,则|PQ |=|ρP -ρQ |=33-3, 则S △MPQ =12|PQ |d =33-3.。

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。

2016年新课标全国卷Ⅲ文科数学3卷高考试题Word文档版(含答案)

2016年新课标全国卷Ⅲ文科数学3卷高考试题Word文档版(含答案)

2016年新课标全国卷Ⅲ文科数学3卷高考试题Word文档版(含答案)A)a+b>c (B)a+c>b (C)b+c>a (D)a+b+c>08)已知函数f(x)=x3-3x2+2x+1,g(x)=ax2+bx+c,满足g(1)=f(1),g(2)=f(2),g(3)=f(3)。

则a+b+c的值为A)0 (B)1 (C)2 (D)39)已知函数f(x)=x2-2x+1,g(x)=f(x-1),则g(-1)的值为A)-2 (B)-1 (C)0 (D)110)已知等差数列{an}的前n项和为Sn,且a1=2,d=3,则S10的值为A)155 (B)165 (C)175 (D)18511)已知函数f(x)=x3-3x2+2x+1,g(x)=f(x-1),则g(2)的值为A)-5 (B)-1 (C)1 (D)512)已知点A(1,2),B(3,4),C(5,6),则三角形ABC的周长为A)2 (B)4 (C)6 (D)81.设集合 $A=\{0,2,4,6,8,10\},B=\{4,8\}$。

则 $A\capB=\{4,8\}$。

2.若 $z=4+3i$。

则$\frac{z}{|z|}=\frac{4}{5}+\frac{3}{5}i$。

3.已知向量 $\overrightarrow{BA}=(1,3,3,1)$。

$\overrightarrow{BC}=(3,3,2,2)$。

则$\angle ABC=60^{\circ}$。

4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃。

下面叙述不正确的是:(A)各月的平均最低气温都在5℃以上;(B)七月的平均温差比一月的平均温差大;(C)三月和十一月的平均最高气温基本相同;(D)平均最高气温高于20℃的月份有5个。

5.XXX打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则XXX输入一次密码能够成功开机的概率是$\frac{2}{15}$。

陕西省高考数学备考复习(文科)专题十七:坐标系与参数方程

陕西省高考数学备考复习(文科)专题十七:坐标系与参数方程

陕西省高考数学备考复习(文科)专题十七:坐标系与参数方程姓名:________班级:________成绩:________一、 单选题 (共 16 题;共 32 分)1. (2 分) (2018 高二下·滦南期末) 点 M 的极坐标为(1,π),则它的直角坐标为( )A . (1,0)B . ( ,0)C . (0,1)D . (0, )2. (2 分) (2020 高二下·吉林月考) 点 M 的直角坐标是,则它的极坐标为( )A.B.C.D. 3. (2 分) 在极坐标系中,若过点 A(3,0)且与极轴垂直的直线交曲线 ρ=4cosθ 于 A、B 两点,则|AB|= ()A.B.2C.D.第 1 页 共 19 页4. (2 分) (2017·东城模拟) 已知圆的参数方程为 的距离为( )A.1(θ 为参数),则圆心到直线 y=x+3B. C.2D.25. (2 分) 若以直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,已知直线 l 参数方程为 的弦长为( )(t 为参数),曲线 C 的极坐标方程为 ρ=4sinθ,则直线 l 被曲线 C 截得A. B.C. D.6. (2 分) (2019 高二下·张家口月考) 设曲线( 为参数)与 轴的交点分别为,点 是曲线 上的动点,且点 不在坐标轴上,则直线与的斜率之积为( )A.B.C.D.第 2 页 共 19 页7. (2 分) 直线 l: A.α B . -α C . +α D.(其中 t 为参数,)的倾斜角为( )8. (2 分) (2017 高二下·资阳期末) 曲线 C 的参数方程为 ()A . 线段 B . 直线 C . 射线 D.圆(θ 是参数),则曲线 C 的形状是9. (2 分) 直线 A.被圆截得的弦长为( )B.C.D.第 3 页 共 19 页11. (2 分) 参数方程 A. B. C. D.为参数)的普通方程为( )12. (2 分) 已知点 P(x0 , y0)在圆 A . ﹣3≤x0≤3,﹣2≤y0≤2 B . 3≤x0≤8,﹣2≤y0≤8 C . ﹣5≤x0≤11,﹣10≤y0≤6 D . 以上都不对上,则 x0、y0 的取值范围是( )13. (2 分) (2016 高二下·宜春期中) 已知点 P 的极坐标为(2, 极坐标方程是( )),那么过点 P 且平行于极轴的直线的A . ρsinθ= B . ρsinθ=2C . ρcosθ= D . ρcosθ=2 14. (2 分) (2016 高三上·太原期中) 在极坐标系中,点(1,0)与点(2,π)的距离为( ) A.1 B.3C.第 4 页 共 19 页D.15. (2 分) 在平面直角坐标系 xoy 中,曲线 C 的参数方程为 斜率为 的直线 l 被曲线 C 截得的线段中点的坐标为( )(θ 为参数),则过点(3,0)且A . (﹣ ,﹣ )B . ( ,﹣ ) C . (﹣2,﹣4)D . ( ,﹣ )16. (2 分) 过圆 是外一点作圆的两条切线,切点分别为 A,B,则 ()A.的外接圆方程B.C.D.二、 填空题 (共 5 题;共 5 分)17. (1 分) 在直角坐标系 xoy 中,以原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,若极坐标方程为4ρcosθ=3 的直线与曲线(θ 为参数)相交于 A、B,则|AB|=________.18. (1 分) 在极坐标系中,直线 ρsinθ=m 与圆 ρ=4cosθ 相切于极轴上方,则 m=________.19. (1 分) 在极坐标系中,已知两点 A,B 的极坐标分别为,极点)的面积为________,则(其中 O 为20. (1 分) 二次曲线 p=的焦距为________第 5 页 共 19 页21. (1 分) (2019 高一上·永春月考) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线 的参数方程为为.设曲线 C 与直线 l 交于 A、B 两点,若 P 点的直角坐标为三、 综合题 (共 5 题;共 50 分)(t 为参数),圆 C 的极坐标方程,则的值=________.23. (10 分) (2019·湖南模拟) 在直角坐标系中,直线 的参数方程为以坐标原点 为极点, 轴的非负半轴为极轴建立极坐标,曲线 的极坐标方程为(1) 写出曲线 的直角坐标方程与直线 的极坐标方程;( 为参数), .(2) 若直线与曲线 交于点 (不同于原点),与直线 交于点 ,求 的值.24. (10 分) (2017·民乐模拟) 在直角坐标系 xOy 中,已知圆 C: x+y﹣4=0 上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(θ 为参数),点 P 在直线 l:(Ⅰ)求圆 C 和直线 l 的极坐标方程;(Ⅱ)射线 OP 交圆 C 于 R,点 Q 在射线 OP 上,且满足|OP|2=|OR|•|OQ|,求 Q 点轨迹的极坐标方程.25. (10 分) (2019 高三上·雷州期末) 在平面直角坐标系中,圆 的参数方程为,( 为参数),以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为(Ⅰ)求圆 的普通方程和圆 的直角坐标方程;(Ⅱ)判断圆 与圆 的位置关系.26. (10 分) (2017 高三下·上高开学考) 在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知点 A 的极坐标为( 线 l 上,, ),直线 l 的极坐标方程为 ρcos(θ﹣ )=a,且点 A 在直(1) 求 a 的值及直线 l 的直角坐标方程;第 6 页 共 19 页(2) 圆 C 的参数方程为(α 为参数),试判断直线 l 与圆 C 的位置关系.第 7 页 共 19 页一、 单选题 (共 16 题;共 32 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:第 8 页 共 19 页答案:4-1、 考点:解析: 答案:5-1、 考点: 解析:第 9 页 共 19 页答案:6-1、 考点:解析:第 10 页 共 19 页答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共5题;共5分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:三、综合题 (共5题;共50分)答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、考点:解析:。

极坐标与参数方程知识点总结

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程【考纲知识梳理】1.平而直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换©: ° “纟> 的作用卜-,点P(x, y)对应到点[y=“・%(“>0)p(p,y),称卩为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图⑴所示,在平而内取一个左点o.叫做极点,自极点o引一条射线&.叫做极轴;再选左一个长度单位,一个角度单位(通常取弧度)及英正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平而图形为几何背景,而平而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平而直角坐标系都是平而坐标系. (2)极坐标设M是平而内一点,极点。

与点M的距离IOMI叫做点M的极径,记为°;以极轴Ox为始边,射线OM为终边的角厶OM叫做点M的极角,记为。

有序数对(卩。

)叫做点M的极坐标,记作M(p^) ~般地,不作特殊说明时,我们认为可取任意实数•特别地,当点M在极点时,它的极坐标为(OP X&W R)。

和直角坐标不同,平而内一个点的极坐标有无数种表示•如果规左°>0,05&<2兀,那么除极点外,平而内的点可用唯一的极坐标(0。

)表示;同时,极坐标(Q &)表示的点也是唯一确泄的.3•极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是(儿极坐标是(%X°no),于是极坐标与直角坐标的互化公式如表:点M直角坐标(%,>') 极坐标(p,0)互化公式X = QCOS&<[y = psinO0 "+〉厂tan® = —(x0)X在一般情况卜:由tan&确左角时,可根据点M所在的象限最小正角.4 •常见曲线的极坐标方程y7y %X N曲线图形极坐标方程圆心在极点,半径为广的圆p = r (0 <0 < 2 兀)圆心为(几0),半径为/•的圆p = 2r -—< 0\ 2 2 /圆心为(几彳j,半径为r 的圆AOip = 2rsin 0(0 <0<^)过极点,倾斜角为a 的直线(1) 0 = a(p e R )或& = rr + a(p e R ) (2) 0 = a(p > 0)或& =兀 + a(p > 0)过点(",0),与极轴垂直的直线o~(a ・0) -VpCQS0 =彳-彳 <0 < yj过点与极轴平行的直 线• ■ • • ■ • ■ ■ • • ■01•Xpsin 0 = «(0 <0 < 7r)注:由于平而上点的极坐标的表示形式不唯一,即(Q&), (°,2兀+ &), (-+ &),(—°-龙+ &)都表示同一点的坐标,这与点的直角坐标的唯一性明显不同•所以对于曲线上的点的极坐标的多种表示形式,只要求至少 有一个能满足极坐标方程即可•例如对于极坐标方程P = O 点M可以表示为U 4;p = 0・二、参数方程1. 参数方程的概念一般地,在平而直角坐标系中,如果曲线上任意一点的坐标(“)都是某个变数/的函数F 々①,并且对[y = sv )于f 的每一个允许值,由方程组①所确左的点M (x,y )都在这条曲线上,那么方程①就叫做这条曲线的参数 方程,联系变数(x,y )的变数f 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程 叫的极坐标满足方程等多种形式,其中,只有M14 4丿做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数(x,y)中的一个与参数f的关系,例如兀=/(/),把它代入普通方程,求出另一个变数与参数l\= f(t)的关系y = g(”,那么{丿〈就是曲线的参数方程,在参数方程与普通方程的互化中,必须使(x,y)的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一立唯一。

高考文科数学【极坐标与参数方程】规范练

高考文科数学【极坐标与参数方程】规范练

5 【极坐标与参数方程】规范练对应学生用书P1451.(满分10分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =1+t cos α,y =t sin α(t 是参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=13,求直线的倾斜角α的值.解析 (1)由ρ=4cos θ,得ρ2=4ρcos θ. 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=4x , 即曲线C 的直角坐标方程为(x -2)2+y 2=4.(4分) (2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α代入圆的方程(x -2)2+y 2=4,得(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0.(6分)设A ,B 两点对应的参数分别为t 1,t 2, 由根与系数的关系,得⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=13,(8分)故4cos 2α=1,解得cos α=±12.(9分)因为直线的倾斜角α∈[0,π),所以α=π3或2π3.(10分)2.(满分10分)已知平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =1+5cos α,y =2+5sin α(α为参数),直线l 1:x =0,直线l 2:x -y =0,以原点为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 和直线l 1,l 2的极坐标方程;(2)若直线l 1与曲线C 交于O ,A 两点,直线l 2与曲线C 交于O ,B 两点,求|AB |.解析 (1)依题意知,曲线C :(x -1)2+(y -2)2=5,即x 2-2x +y 2-4y =0, 将x =ρcos θ,y =ρsin θ代入上式,得ρ=2cos θ+4sin θ. 因为直线l 1:x =0,直线l 2:x -y =0, 故直线l 1,l 2的极坐标方程为l 1:θ=π2(ρ∈R ), l 2:θ=π4(ρ∈R ).(5分)(2)设A ,B 两点对应的极径分别为ρ1,ρ2, 在ρ=2cos θ+4sin θ中,令θ=π2,得ρ1=2cos π2+4sin π2=4, 令θ=π4,得ρ2=2cos π4+4sin π4=32, 因为π2-π4=π4, 所以|AB |=ρ21+ρ22-2ρ1ρ2cos π4=10.(10分) 3.(满分10分)在平面直角坐标系中,以原点为极点,以x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 1的极坐标方程为ρ=2cos θ.(1)若曲线C 2的参数方程为⎩⎨⎧ x =t cos α,y =1+t sin α(α为参数),求曲线C 1的直角坐标方程和曲线C 2的普通方程;(2)若曲线C 2的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 为参数),A (0,1),且曲线C 1与曲线C 2的交点分别为P ,Q ,求1|AP |+1|AQ |的取值范围.解析 (1)∵ρ=2cos θ,∴ρ2=2ρcos θ, 又∵ρ2=x 2+y 2,ρcos θ=x ,∴曲线C 1的直角坐标方程为x 2+y 2-2x =0, 曲线C 2的普通方程为x 2+(y -1)2=t 2.(4分)(2)将C 2的参数方程⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数)代入C 1的方程x 2+y 2-2x =0,得t 2+(2sin α-2cos α)t +1=0.∵Δ=(2sin α-2cos α)2-4=8sin 2⎝ ⎛⎭⎪⎫α-π4-4>0,∴⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈⎝ ⎛⎦⎥⎤22,1, ∴sin ⎝ ⎛⎭⎪⎫α-π4∈⎣⎢⎡⎭⎪⎫-1,-22∪⎝ ⎛⎦⎥⎤22,1.(6分) t 1+t 2=-(2sin α-2cos α)=-22sin ⎝ ⎛⎭⎪⎫α-π4, t 1t 2=1>0,(7分)∵t 1t 2=1>0,∴t 1,t 2同号,∴|t 1|+|t 2|=|t 1+t 2|.(8分) 由点A 在曲线C 2上,根据t 的几何意义,可得 1|P A |+1|AQ |=1|t 1|+1|t 2|=|t 1|+|t 2||t 1||t 2| =|t 1|+|t 2||t 1t 2|=|t 1+t 2|1=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈(2,2 2 ].∴1|P A |+1|AQ |∈(2,2 2 ].(10分)4.(满分10分)在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρ(sin θ+3cos θ)= 3.(1)求C 的极坐标方程;(2)射线OM :θ=θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求|OP |·|OQ |的取值范围.解析 (1)圆C 的普通方程是(x -2)2+y 2=4, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=4cos θ.(4分) (2)设P (ρ1,θ1),则有ρ1=4cos θ1,(5分) 设Q (ρ2,θ1),且直线l 的极坐标方程是 ρ(sin θ+3cos θ)=3, 则有ρ2=3sin θ1+3cos θ1,(7分)所以|OP |·|OQ |=ρ1ρ2=43cos θ1sin θ1+3cos θ1=433+tan θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3,(9分) 所以2≤|OP |·|OQ |≤3.即|OP |·|OQ |的取值范围是[2,3].(10分)5.(满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数),点M 为曲线C 1上的动点,动点P 满足OP →=aOM →(a >0且a ≠1),点P 的轨迹为曲线C 2.(1)求曲线C 2的方程,并说明C 2是什么曲线;(2)在以坐标原点为极点,以x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为⎝ ⎛⎭⎪⎫2,π3,射线θ=α与C 2的异于极点的交点为B ,已知△AOB 面积的最大值为4+23,求a 的值.解析 (1)设P (x ,y ),M (x 0,y 0), 由OP →=aOM →,得⎩⎪⎨⎪⎧x =ax 0,y =ay 0.∴⎩⎪⎨⎪⎧x 0=xa ,y 0=y a .∵点M 在C 1上, ∴⎩⎪⎨⎪⎧xa =2+2cos θ,y a =2sin θ,即⎩⎪⎨⎪⎧x =2a +2a cos θ,y =2a sin θ(θ为参数), 消去参数θ,得(x -2a )2+y 2=4a 2(a >0且a ≠1). ∴曲线C 2是以(2a,0)为圆心,以2a 为半径的圆.(5分) (2)解法一:A 点的直角坐标为(1,3), ∴直线OA 的普通方程为y =3x ,即3x -y =0. 设B 点坐标为(2a +2a cos α,2a sin α), 则B 点到直线3x -y =0的距离 d =a |23cos α-2sin α+23|2=a ⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π6+3.∴当α=-π6时,d max =(3+2)a .∴S △AOB 的最大值为12×2×(3+2)a =4+23, ∴a =2.(10分)解法二:将x =ρcos θ,y =ρsin θ代入(x -2a )2+y 2=4a 2,并整理得ρ=4a cos θ,令θ=α,得ρ=4a cos α.∴B (4a cos α,α).∴S △AOB =12|OA |·|OB |·sin ∠AOB=4a cos α⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=a |2sin αcos α-23cos 2α|=a |sin2α-3cos2α-3|=a ⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2α-π3-3,∴当α=-π12时,S △AOB 取得最大值(2+3)a , 依题意知(2+3)a =4+23,∴a =2.(10分)6.(满分10分)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解析(1)∵曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ),∴曲线C 1的普通方程为x -y -a +1=0.(2分) ∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, 又ρcos θ=x ,ρ2=x 2+y 2, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(4分) (2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t 2,y =1+2t 2,得t 2-22t +2-8a =0.Δ=(-22)2-4(2-8a )>0,即a >0, ∴⎩⎪⎨⎪⎧t 1+t 2=22,t 1·t 2=2-8a ,(6分) 根据参数方程中参数的几何意义可知|P A |=|t 1|,|PB |=|t 2|, ∴由|P A |=2|PB |得t 1=2t 2或t 1=-2t 2, ∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=22,t 1·t 2=2t 22=2-8a ,解得a =136>0,符合题意,(8分)当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=22,t 1·t 2=-2t 22=2-8a ,解得a =94>0,符合题意. 综上所述,a =136或a =94.(10分)。

高考文科数学复习专题-极坐标与参数方程

高考文科数学复习专题-极坐标与参数方程

1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

文科参数方程知识点总结

文科参数方程知识点总结

文科参数方程知识点总结参数方程是数学中的一个重要概念,它在物理、工程、经济学等领域都有广泛的应用。

文科参数方程则是参数方程在文科领域的应用,如经济学中的供求模型、社会学中的人口增长模型等。

本文将对文科参数方程的基本概念、性质、图形和应用进行总结。

一、基本概念1. 参数方程的定义参数方程是指用参数表示的一组函数方程,通常用 t 表示。

一般情况下,自变量和 t 之间是一个一一对应的关系,也就是说,参数方程可以表示为 x=f(t), y=g(t),其中 x 和 y 是关于 t 的函数。

2. 平面直角坐标系中参数方程的表示当参数方程 x=f(t), y=g(t) 中的 t 取遍一定范围内的所有实数时,x 取值范围构成一个集合 X,y 取值范围构成一个集合 Y,这个集合可以表示为 {(x, y)|x∈X, y∈Y},而这个集合就是参数方程 x=f(t), y=g(t) 在平面直角坐标系中的图形。

3. 参数曲线的性质参数曲线在平面直角坐标系中的图形通常是一条曲线,参数曲线的性质取决于参数方程 f(t) 和 g(t) 的性质。

通常情况下,我们通过导数的方法来讨论参数曲线的切线、凹凸性、极值等性质。

二、基本图形1. 直线当参数方程中 f(t) 和 g(t) 都是关于 t 的一次函数时,参数曲线通常表示一条直线。

要确定直线的方向和斜率,通常需要讨论f’(t) 和g’(t) 的符号和性质。

2. 圆在参数方程中,圆通常可以表示为 x=r*cos(t), y=r*sin(t),其中 r 为圆的半径, t 的变化范围通常是[0, 2π]。

参数方程中的变量 t 的变化会导致圆在平面直角坐标系中画出完整的圆。

3. 椭圆椭圆可以由参数方程 x=a*cos(t), y=b*sin(t) 表示,其中 a 和 b 分别为椭圆在 x 方向和 y 方向上的半轴长度, t 的变化范围通常是[0, 2π]。

参数方程中的变量 t 的变化会导致椭圆在平面直角坐标系中画出完整的椭圆。

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标系与参数方程文科 The pony was revised in January 2021
坐标系与参数方程
知识归纳
1. 极坐标系
①极坐标是用“距离”与“角度”来刻画平面上点的位置的坐标形式。

极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,
缺一不可。

规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。

②平面直角坐标与极坐标的区别:
在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。

③极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。

④如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。

2.极坐标与直角坐标的互化:
(1)互化的前提:
①极点与直角坐标的原点重合;极轴与x 轴的正方向重合;③ 两种坐标系中取相同的长度单位。

(2)互化公式⎩⎨⎧==θρθρsin cos y x , ⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ
x
注:极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法. 常见参数方程(直线、圆、椭圆)
例题讲解
1、已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2
,4(π-D ,求它们的直角坐标。

答案:A
(22-
(((0,4)2
B C D --- 2、已知点的直角坐标分别为)32,2(),3
5,0(),3,3(---C B A ,求它们的极坐标。

答案:34))(4,).623
A B C πππ 课堂练习
一、选择题
1.把方程1xy =化为以t 参数的参数方程是( )
A .1212x t y t -⎧=⎪⎨⎪=⎩
B .sin 1sin x t y t =⎧⎪⎨=⎪⎩
C .cos 1cos x t y t =⎧⎪⎨=⎪⎩
D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x t t y t
=-+⎧⎨=-⎩为参数与坐标轴的交点是( )
A .21(0,)(,0)52、
B .11(0,)(,0)52
、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、
3.直线12()2x t t y t
=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ) A .125 B
. 4.若点(3,)P m 在以点F 为焦点的抛物线2
4()4x t t y t
⎧=⎨=⎩为参数上,则PF 等于( )
A .2
B .3
C .4
D .5
5.极坐标方程cos 20ρθ=表示的曲线为( )
A .极点
B .极轴
C .一条直线
D .两条相交直线
6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )
A .cos 2ρθ=
B .sin 2ρθ=
C .4sin()3πρθ=+
D .4sin()3
π
ρθ=- 二、填空题 1.已知曲线2
2()2x pt t p y pt
⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN = 。

2
.直线2()3x t y ⎧=-⎪⎨=+⎪⎩为参数上与点(2,3)A -
是 。

3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ
=+⎧⎨=-⎩为参数,则此圆的半径为 。

4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为 。

5.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩
相切,则θ= 。

坐标系与参数方程参考答案
一、选择题
1.D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制
2.B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5; 当0y =时,12t =
,而25x t =-+,即12x =,得与x 轴的交点为1(,0)2 3.
B 11221x x t y t y ⎧=⎪=+⎧⎪⇒⎨⎨=+⎩⎪=+⎪⎩,把直线122x t y t =+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=
12125t t -===
12t -=4.C 抛物线为24y x =,准线为1x =-,PF 为(3,)P m 到准线1x =-的距离,即为4
5.D cos 20,cos 20,4k π
ρθθθπ===±,为两条相交直线
6.A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x = 圆22(2)4x y +-=与直线2x =显然相切
二、填空题
1.14p t 显然线段MN 垂直于抛物线的对称轴。

即x 轴,121222MN p t t p t =-=
2.(3,4)-,或(1,2)- 22221()),,2t t +=== 3.5 由3sin 4cos 4sin 3cos x y θθθθ
=+⎧⎨=-⎩得2225x y +=
4.
2 圆心分别为1(,0)2和1(0,)2 5.6π,或56
π 直线为tan y x θ=,圆为22(4)4x y -+=,作出图形,相切时, 易知倾斜角为
6π,或56π 三、解答题
1.已知曲线C 1:4cos ,3sin ,
x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 1上的点P 对应的参数为2t π
=,Q 为C 2上的动点,求PQ 中点M 到直线
332,:2x t C y t
=+⎧⎨=-+⎩ (t 为参数)距离的最小值。

答案解解析:(Ⅰ)22
22
12:(4)(3)1,: 1.649x y C x y C ++-=+= 1C 为圆心是(4,3)-,半径是1的圆. 2C 为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)当2t π=时,3(4,4).(8cos ,3sin ),(24cos ,2sin ).2
P Q M θθθθ--++故
3C 为直线3270,4cos 3sin 13|.x y M C d θθ--==--到的距离
从而当43cos ,sin 55θθ==-时,d。

相关文档
最新文档