人教版七年级下册数学:实数的运算
人教版数学七年级下册-实数的性质及运算
例2 求下列各数的相反数和绝对值:
3,π 3.14. 解: 因为 ( 3) 3, (π 3.14) 3.14 π,
所以 3,π 3.14 的相反数分别为
3,3.14 π.
由绝对值的意义得
3 3,π 3.14 π 3.14.
练一练
(1)求 3 2的7 相反数; (2)已知 | a | = 3,求 a.
解:(1)∵ 3 64 =-4,
∴3 (2)∵
64 的相反数是4,倒数是 225 =15,
1 4
,绝对值是
4.
∴
225
的相反数是-15,倒数是
1 15
,绝对值是15.
(3)
11 的相反数是- 11,倒数是
1 ,绝对值是 11 .
11
练一练 1. 3 的相反数是 3 ,
π 的相反数是 π , 3 27 的 相反数是 -3.
(2) 因为 3 3, 3 3,所以 a 的值是 3 和 3.
实数的运算
填空:设 a,b,c 是任意实数,则
(1)a + b = b + a (加法交换律);
(2)(a + b) + c = a + (b + c) (加法结合律);
(3)a + 0 = 0 + a = a ;
(4)a + (-a) = (-a) + a = 0
;
(5)ab = ba (乘法交换律); (6)(ab)c = a(bc) (乘法结合律); (7) 1 ·a = a ·1 = a ;
(8)a(b + c) = ab + ac (乘法对于加法的分配律),
典例精析 例4 计算下列各式的值: (1)( 3 2) 2;
人教版七年级数学课件《实数的运算》
B. 9=±3
3
D. −27=-3
达标检测
人教版数学七年级下册
3.-27的立方根与81的算术平方根的和是( A )
A.0
B.-6
C.0或-6
D.6
4.有一个数值转换器,原理如图.当输入的x为256时,输
出的y是( B )
A.16
B. 2
C. 3
D. 8
达标检测
人教版数学七年级下册
5.0、1、2、3、4、5、6、7、8、9、10这11个数的算术平方根中,一共
当m=-3时,原式=-0+1+(-3-1)2=17.
达标检测
人教版数学七年级下册
15.(1)阅读:
① 12= 22 × 3=2 3
② 18= 32 × 2 =3 2
练习:
① 20=_____;
② 27=_____;
③ 48=_____;
④ 50=_____.
(2)阅读:①
练习:①
1.交换律:加法 a+b=b+a,乘法 a×b=b×a
2.结合律:加法 (a+b)+c=a+(b+c),乘法 (a×b)×c=a×(b×c)
3.分配律:a×(b+c)=a×b+a×c
典例解析
人教版数学七年级下册
例1.计算下列各式的值:
(1)( 3 2) 2;
(2)3 3 2 3
解:(1)( 3 2) 2
(2)( 3 2) 2 2 3;
1
(4) 6 5. (精确到0.01)
2
解:(1)原式 (2 15+9 7) 2 = 10 2;
(2)原式 ( 3+2 3)+( 2
人教版七年级数学下册6.3.2《实数的运算》说课稿
人教版七年级数学下册6.3.2《实数的运算》说课稿一. 教材分析人教版七年级数学下册6.3.2《实数的运算》这一节主要介绍了实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。
本节内容是学生进一步学习数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析七年级的学生已经初步掌握了实数的概念,对实数有一定的认识。
但是,对于实数的运算规则,部分学生可能还不太熟悉。
因此,在教学过程中,需要针对学生的实际情况,耐心讲解,让学生充分理解实数的运算规则。
三. 说教学目标1.知识与技能目标:使学生掌握实数的基本运算规则,能够熟练地进行实数的加法、减法、乘法、除法以及乘方等运算。
2.过程与方法目标:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。
3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力和数学素养。
四. 说教学重难点1.教学重点:实数的基本运算规则。
2.教学难点:实数运算中的异号运算和零的运算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过复习实数的概念,引出实数的运算。
2.讲解实数的加法运算:讲解实数加法的运算规则,并通过例题进行演示。
3.讲解实数的减法运算:讲解实数减法的运算规则,并通过例题进行演示。
4.讲解实数的乘法运算:讲解实数乘法的运算规则,并通过例题进行演示。
5.讲解实数的除法运算:讲解实数除法的运算规则,并通过例题进行演示。
6.讲解实数的乘方运算:讲解实数乘方的运算规则,并通过例题进行演示。
7.综合练习:布置一些实数运算的题目,让学生进行练习。
8.课堂小结:对本节课的内容进行总结,强调实数运算的规则。
9.布置作业:布置一些实数运算的题目,让学生进行巩固。
七. 说板书设计板书设计如下:加法:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
人教版七年级数学下册6.3实数实数的运算优秀教学案例
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使他们愿意学习数学,主动学习数学。
2.培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。
3.培养学生团队协作的精神,使他们学会与人合作,共同完成任务。
4.培养学生的自主学习能力,使他们学会独立思考,主动探究问题。
在情感态度与价值观目标的设计上,我注重培养学生对数学学科的兴趣和积极性,使他们愿意学习数学,主动学习数学。通过实际案例的引入和练习题的设置,培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。采用小组合作学习的方式,培养学生团队协作的精神,使他们学会与人合作,共同完成任务。在教学过程中,关注学生的个体差异,给予他们个性化的指导,培养他们的自主学习能力,使他们学会独立思考,主动探究问题。
三、教学策略
(一)情景创设
1.利用多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义。
2.设计具有情境性的数学问题,激发学生的学习兴趣,引发他们的思考。
3.创设轻松愉快的学习氛围,使学生在愉悦的情感状态下学习实数运算。
在情景创设方面,我注重将实数运算与实际生活相结合,让学生在熟悉的情境中感受运算的重要性。通过多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义,激发他们的学习兴趣。同时,设计具有情境性的数学问题,引发学生的思考,使他们能够主动参与到实数运算的学习中来。此外,我还注重创设轻松愉快的学习氛围,通过幽默的语言、鼓励性的评价等方式,使学生在愉悦的情感状态下学习实数运算。
七年级下册数学知识点总结人教版
七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。
- 无理数:不能表示为分数形式的实数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。
- 除法:除以一个数等于乘以它的倒数。
- 乘方:求一个数的幂。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。
- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。
二、代数1. 代数式- 单项式:只含有乘法运算的代数式。
- 多项式:由若干个单项式相加或相减组成的代数式。
2. 代数式的运算- 加法和减法:合并同类项。
- 乘法:单项式与单项式相乘,多项式与单项式相乘。
- 除法:多项式除以单项式。
3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。
- 公式法:使用平方差公式、完全平方公式等进行分解。
4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。
5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。
- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。
三、几何1. 平面图形- 点、线、面的基本性质。
- 直线、射线、线段的定义和性质。
- 角的定义、分类和性质,包括邻角、对顶角、同位角等。
2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。
- 三角形的内角和定理:三角形内角和为180度。
- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。
七年级下册数学实数的运算
七年级下册数学实数的运算实数是包括有理数和无理数的数集合,包括正数、负数和零。
在数学中,我们经常会进行实数的运算,包括加、减、乘、除等。
下面我们来详细介绍一下七年级下册数学实数的运算。
首先,我们来讨论实数的加法运算。
实数的加法运算遵循交换律和结合律。
例如,对于实数a、b、c,有如下性质:1.交换律:a + b = b + a2.结合律:(a + b) + c = a + (b + c)在实数的加法运算中,我们可以将正数、负数和零进行运算。
例如,2 + 3 = 5,(-2) + 3 = 1,(-2) + (-3) = -5,0 + 2 = 2。
接着,我们来讨论实数的减法运算。
实数的减法运算可以看作是加法运算的逆运算。
例如,a - b = a + (-b)。
实数的减法运算遵循减法性质,即减法不满足交换律,但满足结合律。
对于实数a、b、c,有如下性质:1.非交换性:a - b ≠ b - a2.结合律:(a - b) - c = a - (b + c)在实数的减法运算中,我们也可以将正数、负数和零进行运算。
例如,5 - 3 = 2,(-2) - 3 = -5,0 - 2 = -2。
接着,我们来讨论实数的乘法运算。
实数的乘法运算也遵循交换律和结合律。
例如,对于实数a、b、c,有如下性质:1.交换律:a × b = b × a2.结合律:(a × b) × c = a × (b × c)在实数的乘法运算中,我们可以将正数、负数和零进行运算。
例如,2 × 3 = 6,(-2) × 3 = -6,(-2) × (-3) = 6,0 × 2 = 0。
最后,我们来讨论实数的除法运算。
实数的除法运算可以看作是乘法运算的逆运算。
对于非零实数a、b,有如下性质:1.除法性质:a ÷ b = a × (1/b)在实数的除法运算中,我们也可以将正数、负数进行运算。
人教版七年级下数学6.3.2实数的性质及其运算教案
利用实数的运算法则、运算律进行正确运算。
教法学法
教法:讨论法、观察法、多媒体电化教学法
学法:自主探索与合作交流相结合
教学资源课前准备
PPT、计算器
教学环节
教学过程设计
二次备课
一、预习新知
1.一个正实数的绝对是,一个负实数的绝对值是,0的绝对是,互为相反数的两个实数的绝对.
2.如何求一个实数的相反数、绝对值、倒数?
2.下列各数中,互为相反数的是( )
A.3 与 B.2与(-2)2
C. 与 D.5与|-5|
3. 的值是( )
A.5 B.-1 C. D.
4.比较大小:(1) 与 ;(2) 与4
方法总结:1.可以先估算无理数处于哪两个数之间,进行比较;2.可以比较被开方数,被开方数越大,结果就越大。
5.- 是的相反数;π-3.14的相反数是.
3.怎样表示无理数的相反数?
4.当遇到无理数并且需要求出结果的近似值时,应如何计算?
自主归纳:
1.无理数 的相反数是( )
A. B. C. D.
2. 的绝对值是( )
A.3 B.-3 C. D.
二、合作探究
探究点1:实数的性质
问题1:如果a表示一个正实数,那么就表示一个负的相反数是。
第6单元
课 题 名 称
6.3 实数
6.3.2实数的性质及运算
总课时数
2
第( 2 )课 时
教材及学情分析
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算.本章内容不仅是学习二次根式、一元二次方程以及解三角形的基础,还为以后高中数学的不等式等学习做好准备。
经过上学期对有理数的学习,以及学习了相反数,绝对值,倒数的概念,求法和加法交换律,结合律,乘法分配律等,在这学期实数的性质中,对无理数的相反数,绝对值和倒数的求法跟在有理数范围内的求法是一样的。有了上学期的基础,相信同学们能够较为轻松地学习实数的性质并进行正确的运算。
七年级-人教版-数学-下册-第2课时-实数的运算
问题 1.(1)分别写出- 6,π-3.14 的相反数;
(2)指出- 5,1- 3 3 分别是什么数的相反数;
解:(1)因为-(- 6 )= 6,-(π-3.14)=3.14-π, 所以,- 6 ,π-3.14 的相反数分别是 6 ,3.14-π. (2)因为-( 5)=- 5,-(3 3 -1)=1- 3 3 , 所以,- 5,1- 3 3 分别是 5 ,3 3 -1的相反数.
第2课时 实数的运算
有理数关于相反数和绝对值的定义是什么?
只有符号不同的两个数,叫做互为相反数. 一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值, 记作 |a|.
思考 (1) 2 的相反数是____2_,-π 的相反数是__π___,0 的相反数
是__0__; (2)| 2 |=___2_,|-π|=__π__,|0|=__0__.
有理数关于相反数和绝对值的意义同样适合于实数.
归纳
数 a 的相反数是-a,这里 a 源自示任意一个实数. 一个正实数的绝对值是它本身;一个负实数的绝对值是它的 相反数;0 的绝对值是 0.即设 a 表示一个实数,则
a,当a 0时; | a | 0,当a 0时;
a,当a 0时.
实数的相反数与绝对值的意义 (1)实数 a 的相反数记作-a,两个实数互为相反数 是指这两个实数的绝对值相等,但符号相反. (2)若实数 a,b 互为相反数,则 a+b=0,反之亦 成立. (3)实数的绝对值是指实数在数轴上对应的点到原点 的距离.
问题 1.(3)求 3 64 的绝对值;
(4)已知一个数的绝对值是 3,求这个数.
解:(3)因为 3 64 = 3 64=-4, 所以 | 3 64 |=| 4 |=4. (4)因为 | 3 |= 3 ,| 3 | = 3 , 所以绝对值为 3的数是 3 或 3.
第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
人教版七年级下册第六章实数知识点
人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。
在七年级下册的第六章中,我们主要学习了实数的相关知识。
1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。
简单来说,实数包括整数、分数、小数、无理数等。
2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。
有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。
无理数是不能表示成分数形式的实数,例如根号2、π等。
3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。
对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。
4. 实数的比较
实数之间可以进行大小比较。
对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。
若a=b,则a与b相等。
若a<b,则a称为小于b,b称为大于a。
5. 实数的表示
实数可以用数轴上的点表示。
数轴是一条直线,上面的每个点都
与一个实数一一对应。
数轴上的原点表示0,向右表示正数,向左表示负数。
以上就是七年级下册第六章实数的相关知识点。
实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。
人教版数学七年级下册6.3.2实数的运算教学设计
3.布置小组讨论作业,让学生在课后互相交流实数运算的解题方法,共同分析解题思路,提高团队协作能力和沟通能力。
4.鼓励学生利用数学软件或计算器辅助完成作业,培养他们运用现代技术工具解决问题的能力。
1.学生对实数概念的理解程度,尤其是无理数的过程中可能出现的错误,如运算符误用、计算顺序混乱等,教师需及时发现并纠正。
3.针对不同学生的学习能力,设计分层教学,使基础薄弱的学生能够扎实掌握实数运算,优秀生能够拓展思维,提高解题能力。
4.了解实数运算的优先级,掌握实数运算的顺序,提高运算速度和准确性。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探究中发现实数的运算规律,提高学生的自主学习能力。
2.运用比较、归纳、总结等方法,使学生对实数运算有更深入的理解,培养学生良好的思维品质。
3.设计丰富的例题和练习题,让学生在解题过程中掌握实数运算的方法,提高解题能力。
人教版数学七年级下册6.3.2实数的运算教学设计
一、教学目标
(一)知识与技能
1.了解实数的定义,理解实数包括有理数和无理数,能够正确区分各种实数。
2.学会实数的四则运算,包括加减乘除,掌握实数运算的法则,能够熟练进行混合运算。
3.能够运用实数解决实际问题,如计算物体的面积、体积等,提高学生的实际应用能力。
(3)注重分层教学,针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高。
(4)及时反馈评价,关注学生的个体差异,鼓励学生积极参与课堂活动,提高学生的自信心。
(5)课后作业设计注重趣味性和挑战性,激发学生的学习兴趣,让学生在完成作业的过程中巩固所学知识。
人教版数学七年级下册6.3《实数的运算》优秀教学案例
3.教师巡回指导,给予学生必要的提示和帮助,引导学生运用所学的实数运算规则解决问题。
(四)总结归纳
1.教师引导学生对实数运算的规则进行总结归纳,如加减法的交换律、结合律,乘除法的分配律等。
2.强调实数运算在实际生活中的应用,引导学生认识到实数运算的重一、案例背景
本节内容是针对人教版数学七年级下册6.3《实数的运算》进行教学,主要涉及实数的加减乘除、乘方以及平方根等基本运算。学生在学习这部分内容时,需要具备一定的实数概念和基本的数学运算能力。
在实际教学中,我发现许多学生在进行实数运算时,容易出现运算错误,对运算规则理解不透彻,导致解题速度慢,准确率低。针对这一问题,我设计了本节优秀教学案例,旨在帮助学生深入理解实数运算的规则,提高运算速度和准确率,培养学生的数学思维能力。
3.实数的乘方:通过具体的例子,如2^3 = 8,(-2)^2 = 4等,引导学生理解实数乘方运算规则,并让学生在练习中巩固。
4.平方根:通过具体的例子,如√9 = 3,√(-9) = undefined等,引导学生理解平方根的概念和运算规则,并让学生在练习中巩固。
(三)学生小组讨论
1.将学生分成若干小组,每组选定一个具体问题,如计算购物清单的总价、解决实际问题等,让学生在小组内进行讨论和合作。
3.利用多媒体技术,展示实数运算的动画演示,让学生在直观的视觉冲击下,更好地理解和记忆运算规则。
(二)讲授新知
1.实数的加减法:通过具体的例子,如2 + 3 = 5,-2 - 3 = -5等,引导学生理解实数加减法的运算规则,并让学生在练习中巩固。
2.实数的乘除法:通过具体的例子,如2 * 3 = 6,4 / 2 = 2等,引导学生理解实数乘除法的运算规则,并让学生在练习中巩固。
七年级数学下册《6.3 实数》课件
绝对值
代数意义
只有符号不同 的两个数
几何意义
复习导入
(1)2的相反数是 -2 , 的相反数是
.
(2)-3的绝对值是 3 , 5.2的绝对值是 5. . 2
探究新知
有理数关于相反数和绝对值的意义同样适合于实数。
(1) 的相反数是
, 的相反数是 ,0的相反数是 0.
(2)
,
,
0.
-2 B -1
0
1A 2
典例解析 例1 计算下列各式的值:
(3) (1) (2)
根指数、被开方数都 分别相同的无理数要 合并.
典例解析
合并 算术平方根性质 乘法交换律、结合律
典例解析 例2 计算(结果保留小数点后两位):
计在算计过算程过中程比中结保果留要几求多 位小保数留呢一?位小数.
典例解析 例2 计算(结果保留小数点后两位):
人教版七年级数学下册
6.3 实 数
第2课时实数的运算
学习目标
1.会求实数的相反数、绝对值. 2.会对实数进行简单的运算.
复习导入 问题1 在有理数范围内,相反数的概念是什么?
有理数范围
相反数
代数意义
只有符号不同 的两个数
几何意义
复习导入 问题2 在有理数范围内,绝对值的概念是什么?
有理数范围
相反数
是
.
的数
3.
的绝对值 4
是
.
应用新知
例2 求下列各数的相反数和绝对值:
ห้องสมุดไป่ตู้
相反数
2
绝对值
2
探究新知
实数的运算法则和运算律
实数和有理数一样,也可以进行加、减、乘、除、乘方运算. 而且有理数的运算法则与运算律对实数仍然成立.
人教版七年级下册数学:实数的运算 (7)
巩固
3、计5算 :3 0.145
3 6 2
π+ 12
-
4 5
+
3
3 6 1.817
例3 3 5 4 5
= (34)( 5)2 乘法交换律 125 60 结合律知计3算+:10=x+y,其中x是整数,且0<y<1,求x-y
的相反数。
(1)
9.已知a、b、c是实数,且满足
(2-a)²+ a2 b c + c 8 =0, ax3+bx+c=0,求代数式3x²+6x+1的值。
在实数运算中, 当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数 去代替有理数,再进行计算。
实数范围内的简单计算 (2) 例2 计算 (结果保留小数点后两位) (1) 5 π ; (2) 3 2. 5 π 2.236 3.142 5.38; 3 2 1.732 1.414 2.45.
在数从有理数扩充到实数后,我们已经学过哪 些运算?
6种运算:加、减、乘、除、乘方、开方。
有理数的运算法则和运算定律对实数同样适用: ①实数有加、减、乘、除、乘方、开方等运算; ②混合运算的顺序是先乘法、开方,再乘除,
最后加减; ③同级运算按照从左到右的顺序进行; ④有括号要先算括号里面的。
实数的运算顺序
数的家族又扩大了,请你对实数进行分类
有理数 整数 (有限小数或
无限循环)小数
实
分数
数
无理数 无限不循环小数
数的家族又扩大了,请你对实数进行分类
正有理数 正实数
实 数
0
正无理数 负有理数
负实数
负无理数
人教版七年级数学下册6.3.2《实数的运算》教学设计
人教版七年级数学下册6.3.2《实数的运算》教学设计一. 教材分析人教版七年级数学下册6.3.2《实数的运算》是学生在掌握了有理数的运算基础上,进一步学习实数的运算。
本节内容主要包括实数的加法、减法、乘法、除法运算,以及实数的乘方、开方运算。
教材通过具体的例子,引导学生掌握实数运算的法则,培养学生的运算能力。
二. 学情分析七年级的学生已经掌握了有理数的运算,对于实数的运算,他们具备了一定的认知基础。
但是,学生在运算过程中,可能会对实数的加减乘除运算规则理解不深,容易出错。
因此,在教学过程中,教师需要通过具体的例子,让学生加深对实数运算规则的理解,提高运算能力。
三. 教学目标1.理解实数的加法、减法、乘法、除法运算规则,掌握实数的乘方、开方运算。
2.能够熟练地进行实数的运算,提高运算速度和准确性。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.实数的加法、减法、乘法、除法运算规则。
2.实数的乘方、开方运算。
五. 教学方法1.采用讲解法,通过讲解实数运算的规则,让学生理解并掌握实数运算的方法。
2.采用例题演示法,通过具体的例子,让学生加深对实数运算规则的理解。
3.采用练习法,让学生在练习中提高实数运算的能力。
4.采用小组讨论法,让学生分组讨论实数运算问题,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,展示实数运算的规则和例子。
2.准备一些练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的运算,为新课的学习做好铺垫。
例如:同学们,我们已经学习了有理数的运算,那么有理数的加法、减法、乘法、除法运算规则是什么?2.呈现(15分钟)教师通过PPT展示实数的加法、减法、乘法、除法运算规则,以及实数的乘方、开方运算。
同时,通过具体的例子,让学生加深对实数运算规则的理解。
3.操练(10分钟)教师提出一些实数运算的题目,让学生在课堂上进行练习。
人教版七年级下册数学作业课件 第六章 实数 第二课时 实数的性质及运算
15.老师在上完了本章的内容后设计了如下问题: 定义:把形如 a+b m 与 a-b m (a、b 为有理数且 b≠0, m 为正整数且开方开不尽)的两个实数称为共轭实数. (1) 请你举出一对共轭实数; 解:如 8-2 5 与 8+2 5 (答案不唯一).
(2)3 2 与 2 3 是共轭实数吗?-2 3 与 2 3 呢? 解:3 2 与 2 3 不是共轭实数,-2 3 与 2 3 是共轭实数.
与
2 3
4.在数轴上表示- 3 的点与原点的距离是 3 ,
与原点的距离是 5 的点所表示的实数是 5 .
5.求下列等式中的 x 的值: (1)|x|= 7 ; 解:x=± 7 .
(2)|x|= 2 -1. 解:x= 2 -1 或 1- 2 .
知识点二 实数的运算
6.计算 25 - 3 27 的结果是
12.若规定一种运算为:a★b= 2 ×(b-a),如 3★5= 2 ×(5-3)=2 2 .则 2 ★ 3 8 = 2 2 2 .
【解析】 2 ★ 3 8 = 2 ★2= 2 (2- 2 2 2 2 )=2 2 - 2.
13.计算:
(1)|
3
-2|-(-2)2+2×
3 2
;
解:原式=2- 3 -4+ 3 =-2.
(3)共轭实数 a+b m ,a-b m 是有理数还是无理数? 解:共轭实数 a+b m ,a-b m 是无理数.
(4)共轭实数 a+b m 与 a-b m 的和、差分别是有理数还 是无理数? 解:∵a+b m +a-b m =2a,(a+b)-(a-b)=2b m , ∴共轭实数的和为有理数,差为无理数.
(4)3( 2 + 3 )-2( 2 - 3 ); 解:原式= 2 +5 3 .
人教版数学七年级下册6.3.2《实数的运算》教学设计
人教版数学七年级下册6.3.2《实数的运算》教学设计一. 教材分析人教版数学七年级下册6.3.2《实数的运算》是实数章节中的一个重要内容。
这一节主要介绍了实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。
学生需要掌握实数运算的法则,并能够熟练地进行实数的混合运算。
教材通过具体的例子和练习题,帮助学生理解和掌握实数运算的方法。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对于实数的加减乘除运算也有一定的了解。
但是,学生在运算过程中可能会出现运算规则混淆、运算顺序错误等问题。
因此,在教学过程中,教师需要引导学生理清运算规则,培养学生的运算能力和逻辑思维能力。
三. 教学目标1.知识与技能目标:学生能够掌握实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。
2.过程与方法目标:学生能够通过观察、分析和实践,探索实数运算的规律,培养运算能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与实数运算的学习,培养对数学的兴趣和自信心。
四. 教学重难点1.教学重点:实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。
2.教学难点:实数运算的顺序和运算规则的应用。
五. 教学方法1.讲授法:教师通过讲解和示范,引导学生理解和掌握实数运算的规则。
2.案例分析法:教师通过具体的例子,让学生观察和分析实数运算的过程,培养学生的运算能力和逻辑思维能力。
3.练习法:学生通过做练习题,巩固和加深对实数运算规则的理解和掌握。
六. 教学准备1.教材:人教版数学七年级下册。
2.课件:教师准备与本节课内容相关的课件,包括实数运算的规则和例子。
3.练习题:教师准备一些实数运算的练习题,用于学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾实数的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合作探究 达成目标
探究点一 实数的相反数、绝对值
求一个有理数的相反数和绝对值与求一个实数的 相反数和绝对值之间有什么关系?
求一个有理数的相反数和绝对值与求一个实数 的相反数和绝对值的意义是一样的.实数a的 相反数是-a,一个正实数的绝对值是它本身 ,一个负实数的绝对值是它的相反数,0的 绝对值是0.
(2) 3 2 3 1 1
0 (3)
(4)2 3 (4)3 (1)2 2
9
课后作业
作业:教科书习题6.3第3,5题; 课外作业:导学测评6.3 (第二课时)
在进行实数的运算时,有理数的运算法则、运算性质、运算顺序 、运算律等同样适用;
达标检测 反思目标
4、计算
(1)4 2 6 2 (3) 3 5 2 3
(2) 3( 3 2) (4)3 8 9 1 ( 4 )2
5
小结
1.实数的相反数、绝对值的意义及求法. 2.实数间的计算.
达标检测 反思目标
第六章 实 数
6.3 实 数 第二课时
献县临河中学 李艳苹
1.复习引入
1.有理数关于相反数和绝对值的意义是什么?
2.有理数的运算律和运算性质:
有理数之间可以进行加、减、乘、除(除数不 为0)、乘方、非负数的开平方、任意数的开立方 运算,有理数的运算中还有交换律、结合律、分 配律。
创设情景 明确目标
数a 的相反数是 –a,
一个正实数的绝对 值是它本身; 一个负实数的绝对 值是它的相反数; 0的绝对值是0.
a,当a 0时; a 0,当a 0时;
- a,当a 0时.
合作探究 达成目标
探究点一 实数的相反数、绝对值
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5,1 3 3 是什么数的相反数; (3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个
1、设 3 对应数轴上的点是A, 3 对应数轴
上的点是B,那么A、B间的距离是 2 3 。
2、在数轴上与原点的距离是 2 6 的点所表示的
数是 2 6 。
3、求下列各数的相反数与绝对值:
3 , 3 2, 4
5 2.
达标检测 反思目标
4、计算:
(1)2 3 3 2 5 3 3 2 3 3
2.能进行实数间的简单运算.
合作探究 达成目标
探究点一 实数的相反数、绝对值
阅读课本P54,回答下列问题。 (1) 2 的相反数是 2 ,
π 的相反数是 π , 0 的相反数是 0 ;
(2) 2 = 2 ,-π = π ,
0= 0 .
合作探究 达成目标
探究点一 实数的相反数、绝对值
结合有理数相反数和绝对值的意义, 你能说说实数关于相反数和绝对值的性质吗?
当数从有理数扩充到实数后,有理数关于相反数、绝 对值的意义是否适用于实数?
实数之间是否可以进行加、减、乘、除(除数不为0)、 乘方运算,而且非负数可以进行开方运算?
任意一个实数可以进行开立方运算,在进行实数的运 算时,有理数的运算法则及运算性质等是否仍然适用?
学习目标
1.会求一个实数的相反数、绝 对值.
➢练习:P56第2、3题
探究点二 实数间的运算
例3 计算下列各式的值: (1) ( 3 2 ) 2
3 2 2(加法结合律)
3 0 3; (2) 3 3 2 3
3 2 (3 分配律)
数的运算时,有理数的运算法则、运算性质
、运算顺序、运算律等是否适用?