初一数学实数计算题附答案

合集下载

初一数学下册知识点《实数的运算》150题及解析

初一数学下册知识点《实数的运算》150题及解析

初一数学下册知识点《实数的运算》150题及解析副标题题号一二三四总分得分一、选择题(本大题共4小题,共12.0分)1.下列各组数中,把两数相乘,积为1的是()A.2和-2B.-2和!C.龙和亭D.归和-也【答案】C【解析】解:A、2x(-2)=-4,故此选项不合题意;3、-2x^-1,故此选项不合题意;C、源X号1,故此选项符合题意;。

、看x(-③=-3,故此选项不合题意;故选:C.直接利用两数相乘运算法则求出答案.此题主要考查了实数运算,正确掌握运算法则是解题关键.2,下列运算正确的是()A.择=±3B.I—3I=—3C.—明=—3D.—32=9【答案】C【解析】略3,计算廖例的结果是()A.3B.-7C.-3D.7【答案】D【解析】解:原式=5-(-2)=5+2=7.故选:D.原式利用算术平方根及立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.计算|1+731+1^3-21=()A.2^3-1B.1-2^3C.-1D.3【答案】D【解析】解:原式=1+保+2-也=3.故选:D.直接利用绝对值的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.二、填空题(本大题共18小题,共54.0分)5.对于实数",定义运算顼5=卜*气骂'气例如4.3,因为4>3.所以4<3=^42+32=5•若x,>满足方程组{刀*2;=;9,贝—=.【答案】60【解析】解:由题意可知:药堂9,解得:{拦3•.・xVy,.•・原式=5x12=60故答案为:60根据二元一次方程组的解法以及新定义运算法则即可求出答案.本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.6.对于两个不相等的实数。

,b,我们规定符号max{s。

}表示s8中的较大值,如max(-3,4}=4,按照这个规定,方程max{x,小}=竺尹的解为.[答案】刀=3+广或x=-1或x=-2【解析】解:①若x>-x,即x>0,则刀=兰",即x2-3x-2=0,解得:户嵯(负值舍去),经检验:x=勺网是原分式方程的解;②若X<-X,即X<0,则2,即x2+3x+2=0,解得:Xi—1,x2=-2,经检验:x=-l和%=-2是原分式方程的解;综上,方程max(x,-工}=驾兰的解为*=土必或x=-l或x=-2.分和x<-x,依据新定义列出关于x的分式方程,解之可得x的值.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.计算:\{8+(3-71)°=.【答案】3【解析】解:原式=2+1=3.故答案为:3.直接利用立方根的性质和零指数幕的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.第2页,共43页8. a.A为实数,且ab=l,设P=£+是,。

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。

七年级数学实数练习题及答案

七年级数学实数练习题及答案

实数练习题温故而知新:1. 算术平方根与平方根:算术平方根:一般地,如果一个正数 x 的_平方_ _等于a ,即_x 2_=a___,那么这个正数x 叫做a 的算术平方根,0的算术平方根是0.平方根:一般地,如果一个数的—平方 等于a ,那么这个数叫做a 的平方根(或二次方根), 这就是说,如果 x 2_=a_ ,那么x 叫做a 的平方根,记为 j a平方根的性质:(1)正数有「两___个平方根,它们 互为相反数( 2)0的平方根是___0__;(3)—负数—没有平方根.2. 立方根:立方根:一般地,如果一个数的—立方 等于a ,那么这个数叫做a 的立方根或三次方根. 这就是说,如果 _x 3_=a ,那么x 叫做a 的立方根.立方根的性质:(1)正数的立方根是 一正数__ ;(2)负数的立方根是 一负数—_ ;(3) 0的立方根是 0 ,即卩V o = _______ .3. 实数的概念与分类: 正整数 1 0 负整数 1有限小数或无限循环小数 分数;正分数 实数』负分数 丿 例1 一个正数x 的平方根分别是a+1与a-3,则a 的值为()A. 2B. -1C. 1D. 0解析:一个正数的平方根有两个,它们互为相反数.(下) (a+1) + (a-3) =0,解得 a=1.答案:C 小结:(1) 一个正数的平方根有两个,它们互为相反数;(2) —个正数的立方根是一个正数 例2 已知m 是.15的整数部分,n 是.15的小数部分,求m,n..先估算.15的值的范围,再确定其整数部分,余下的即为小数部分 解析:先估算.15的值的范围,再确定其整数部分,余下的即为小数部分{「正无理数' ■负无理数- 无限不循环小数答案:解:••• ...9 V .15 V ,16即3V 15 V 4•••J5的整数部分m=3,15的小数部分n=、15-3小结:确定一个无理数的整数部分,一般采用估算法(估算到个位) ;确定小数部分的方法是:首先确定其整数部分,然后用这个数减去整数部分即得小数部分.例 3 求下列各式中的X:(1) X2-144=0; (2) 25x2-16=0; (3) (x-3『 =25.解析:先通过移项、系数化为1,将原式变形为x2=a(a> 0)的形式,再根据平方根的定义求出未知数X 的值•答案:解:(1) X2-144=0X2=144X=± 12;(下)(2)25X2-16=02 16X2=-25X=±—;(下)5(3)(X-3) 2=25X-3=± 5 X=8或X=-2小结:解这类题目要根据平方根的意义求解,所以先将方程转化为“x2=a”的形式,再用开平方法求解,这里要注意:当a>0时,其平方根有两个,所以方程有两个解.例4计算下列各式的值:(1) . 0 27 、1 30.125:4(2)(2、2沁)(、23)\ 4解析:先算乘方与开方,再算乘除,最后算加减答案:1 r—解:(1)原式=0-3- - (-0.5) +2 \'64=0-3-1+1+1 =-2;(下)(2) 原式=2 2 3 - 2 3=(2 2 2 ) + ( 3 、3)=、2小结:(1)有理数的运算法则及运算律在实数中仍然适用;(2)对于含有根号的计算,其结果不一定是无理数.例5. 如图3-1所示,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20 cm,倒放时,空余部分的高度为5 cm,现把瓶内的溶液全部倒在一个圆柱形的杯子里,杯内的溶液的高度为10 cm,求:(1)瓶内溶液的体积;(2)圆柱形杯子的内底面半径(冗〜3.14,结果精确到0.1 cm).答案:解:1L=1000cmB,由题意得瓶子的底面积为100040 (cm2)25(1)瓶内溶液的体积是40X 20=800 (cm3)(2)设圆柱形杯子的内底面半径为r,则n r2X 10=800,小结:解此类等积变形问题的关键是根据体积不变确定数量关系或建立等量关系2<)cm?™=■解析:该瓶的容积相当于底面与瓶底面相同,高为25 cm的圆柱体的体积.…r= ~5.0 (cm)⑵n- 2n n「2" (n为大于0的自然数).Y n 1 Y n 1小结:此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想, 归纳,验证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论.举一反三:1. 某正数的平方根为a和竺上,则这个数为().3 3A. 1B. 2C. 4D. 9 解析:由平方根定义知a与2^-9互为相反数,3 3a 2a 9 门所以—+ =0,3 3解得a=3,所以这个数的平方根为土1,所以这个数为1.选A.2. 如图3-3,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为点C,贝U点C所表示的数为().「J FF-4 -3 -2Q I 2 3 4® 3-3A. -2- 3B. -1- 3C. -2+ 3D. 1+ 3解析:••• AB= 3+1,••• C点表示的数为-1- ( 3+1)=-2八3.选A3. (1)1的平方根是;立方根为;算术平方根为(2) 平方根是它本身的数是(3) 立方根是其本身的数是(4) 算术平方根是其本身的数是解析:思考平方根和立方根的含义,注意特殊的数字答案:(1)± 11 1(2) 0(3)± 1, 0(4)1, 04. 求下列各式中的x.(1)X2-5=4;(2)(X-2)3=-0. 125解:(1)x=± 3; (2)x=1. 5.5. “欲穷千里目,更上一层楼”说的是登得高看得远,如图3-2,若观测点的高度为h,观测者视线能达到的最远距离为d,则d=x/2hR,其中R是地球半径(通常取6 400 km).小丽站在海边一块岩石上,眼睛离海平面的高度h为20 m,她观测到远处一艘船刚露出海平面,求此时d的值.解析:注意每一个字母所代表的含义.答案:解:由R=6 400 km, h=0.02 km,得d=、、=、. 2 0.02 6 400 =16(km).答:此时d的值为16 km.。

(完整版)七年级数学《实数》经典例题及习题新人教版

(完整版)七年级数学《实数》经典例题及习题新人教版

山东省肥城市湖屯镇初级中学七年级数学《实数》经典例题及习题新人教版经典例题1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是( )A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1。

25的算术平方根是__________;平方根是__________。

2) —27立方根是__________.3)___________,___________,___________。

【答案】1);.2)—3。

3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3。

点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |—1。

(完整版)初一数学下册实数试题(带答案) 解析

(完整版)初一数学下册实数试题(带答案) 解析

一、选择题1.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10 B .﹣4或﹣10C .4或10D .4或﹣102.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220213.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点C C .点A 和点CD .点A 和点B 4.193的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②6.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40 B .﹣32 C .18 D .107.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120 B .125C .-120D .-1258.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .69.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……② ②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是 A .201811a a --B .201911a a --C .20181a a-D .20191a -10.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____12.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.13.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____. 14.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 15.对于数x ,符号[x]表示不大于x 的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x 的方程[347x -]=2的整数解为_____. 16.已知220a b a -+-=,则2+a b 的值是__________;17.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.18.1x -(y +1)2=0,则(x +y )3=_____.19.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.20.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.三、解答题21.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ;(2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点AB 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点AB 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.23.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算. 定义:如果b a N =(a >0,a ≠1,N >0),那么b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=. 根据“对数”运算的定义,回答下列问题: (1)填空:6log 6= ,3log 81= . (2)如果()2log 23m -=,求m 的值.(3)对于“对数”运算,小明同学认为有“log log log a a a MN M N =⋅(a >0,a ≠1,M >0,N >0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.24.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;26.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.27.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a=___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3a-.(图中标出必要线段的长)28.阅读材料,回答问题:(1)对于任意实数x,符号[]x表示“不超过x的最大整数”,在数轴上,当x是整数,[]x 就是x,当x不是整数时,[]x是点x左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?29.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 30.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.2.A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A . 【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.3.A【分析】的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴2<3,∴的是点C 和点D .故选:A . 【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.C解析:C 【分析】先根据19位于两个相邻平方数16和25 【详解】解:由于16<19<25,所以45<<,因此738<<, 故选:C . 【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.6.D解析:D直接利用题中的新定义给出的运算公式计算得出答案. 【详解】解:(-5)※4=(﹣5)2﹣42+1=10. 故选:D . 【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.7.D解析:D 【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….9.B解析:B 【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可. 【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1,即(a-1)M=a 2019-1, ∴M= 201911a a --.故选B. 【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.10.D解析:D 【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案. 【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|, ∴MB =MC . ∴点M 在线段OB 上. 故选:D . 【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.二、填空题 11.-9 【分析】直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6=﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】此题考察新定义形式的有理数计算,解析:-9 【分析】直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.12.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.13.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.14..【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“点睛”本题解析:21nn++.【详解】根据题意按规律求解:b1=2(1-a1)=131221-4211+⎛⎫⨯==⎪+⎝⎭,b2=2(1-a1)(1-a2)=314221-29321+⎛⎫⨯==⎪+⎝⎭,…,所以可得:b n=21nn++.解:根据以上分析b n=2(1-a1)(1-a2)…(1-a n)=21nn++.“点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b值时要先算出a的值,要注意a中n的取值.15.6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得.【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.16.10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】 ∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.17.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.18.0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.5【分析】由绝对值和算术平方根的非负性,求出a、b所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.20.①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确;②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.三、解答题21.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53.【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.22.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设a x=M,a y=N,则log a M=x、log a N=y,根据a x•a y=a x+y知a x+y=M•N,继而得log a MN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设a x=M,a y=N,则log a M=x,log a N=y(a>0,a≠1,M、N均为正数).∵a x•a y=x ya+,∴x ya+=M•N,∴log a MN=x+y,即log a MN=log a M+log a N.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.24.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100=,10001951121000000<<,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<∴56<,可得5060<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.25.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21na-⎛⎫⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11na aa-⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12,111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.26.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n 1514+-, 即1+5+52+53+54+…+5n =n 1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.27.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A表示的数是2-,点B表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.28.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.29.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.30.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800 【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-,4950=;②a0=,1a,3b=,原式11111 1324354698100=+++++⨯⨯⨯⨯⨯,11111111111111(1)()()+()() 23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-,1111111111(1)2324354698100=⨯-+-+-+-++-,1111(1)2299100=⨯+--,1465119800=.【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。

七年级数学实数测试题及答案

七年级数学实数测试题及答案

七年级数学实数测试题及答案一、选择题1. 下列哪个数是无理数?A. 0.8080080008…(每两个8之间依次多一个0)B. 4C. 1.414213562D. 0.6666…(无穷循环的6)2. 实数的加法中,下列哪个等式是正确的?A. 3 + 4 = 7B. -2 + 5 = 3C. 2 + (-3) = -1D. 1 + 0 = 23. 计算以下表达式的结果是:A. √9 = 3B. √4 = 2C. √16 = 4D. √25 = 54. 若a、b是两个实数,且a < b,那么下列哪个不等式是正确的?A. a + c < b + c,对于任意实数cB. a - c < b - c,对于任意实数cC. a × c < b × c,对于任意正实数cD. a ÷ c < b ÷ c,对于任意负实数c5. 以下哪个选项是实数的乘除法的基本性质?A. 除数不能为零B. 一个数乘以0等于0C. 一个数除以它自己等于1D. 所有选项都正确二、填空题1. 请写出一个无理数的例子:________。

2. 实数的减法中,-5 - (-3) 等于 ________。

3. 计算表达式:(-2) × (-4) = ________。

4. 根据实数的大小比较规则,-3 < -2。

5. 请计算:√64 = ________。

三、解答题1. 请解以下方程:3x - 5 = 10并验证你的解答是否正确。

2. 一个长方形的长是12cm,宽是5cm,求长方形的面积和周长。

请使用实数的运算法则来解答。

3. 一个水果店有苹果和橙子,苹果每斤售价为3元,橙子每斤售价为4元。

如果小明买了5斤苹果和3斤橙子,他一共需要支付多少钱?请用实数的加法和乘法来计算总金额。

4. 请计算以下表达式的值,并说明你的计算过程:√(49 × 16) = ________。

七年级数学-实数习题精选(含答案)

七年级数学-实数习题精选(含答案)

实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若 a a -=2,则a______0.8、12-的相反数是_________。

9、 38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。

A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

完整版)七年级数学实数测试题含答案

完整版)七年级数学实数测试题含答案

完整版)七年级数学实数测试题含答案七年级数学实数测试题一、精心选一选(每小题1分,共10分)1.有下列说法:1)无理数就是开方开不尽的数;2)无理数包括正无理数、零、负无理数;3)无理数是无限不循环小数;4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是()A.1.B.2.C.3.D.42.如果一个实数的平方根与它的立方根相等,则这个数是()A.-1.B.0.C.1.D.不存在3.能与数轴上的点一一对应的是()A.整数。

B.有理数。

C.无理数。

D.实数4.下列各数中,不是无理数的是()A.7.B.0.5.C.2π。

D.0.xxxxxxxx5…(两个5之间依次多1个)5.(-0.7)的平方根是()A.-0.7.B.±0.7.C.0.7.D.不存在6.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于C.72的平方根是7D.负数有一个平方根7.一个数的平方根等于它的立方根,这个数是()A.0.B.-1.C.1.D.不存在8.下列运算中,错误的是()①1/25=1/5,②(-4)2=±4,③3-1=-31,④1/2+1/2=9/xxxxxxxxxxx12A.1个。

B.2个。

C.3个。

D.4个9.若a=25,b=3,则a+b的值为()A.-8.B.±8.C.±2.D.±8或±2二、细心填一填(每小题1分,共10分)10.在数轴上表示-3的点离原点的距离是。

11.设面积为5的正方形的边长为x,则x=12.9的算术平方根是,的平方根是,的立方根是,-125的立方根是。

13.(-4)2=,3(-6)3=,(196)2=。

14.比较大小:32;5-1.5(填“>”或“<”)15.要使2x-6有意义,x应满足的条件是16.已知a-1+b-5=,则(a-b)的平方根是________;17.若102.01=10.1,则±1.0201=;18.一个正数x的平方根是2a-3与5-a,则a=________;19.一个圆它的面积是半径为3cm的圆的面积的25倍,则这个圆的半径为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档