西安交通大学物理仿真实验

合集下载

碰撞实验实验报告

碰撞实验实验报告

竭诚为您提供优质文档/双击可除碰撞实验实验报告篇一:碰撞实验报告西安交通大学高级物理实验报告课程名称:高级物理实验实验名称:碰撞实验系别:实验日期:20XX年12月2日姓名:班级:学号:第1页共12页实验名称:碰撞实验一、实验目的1.设计不同实验验证一系列的力学定律;2.熟悉实验数据处理软件datastudio的应用。

二、实验原理1.动量守恒定理:若作用在质点系上的所有外力的矢量和为零,则该质点系的动量保持不变。

即:=????????根据该定理,我们将两个相互碰撞的小车看作一个质点系时,由于在忽略各种摩擦阻力的情况下外力矢量和为零,所以两个小车的动量之和应该始终不变。

2.动量定理:物体在某段时间内的动量增量,等于作用在物体上的合力在同一时间内的冲量。

即:2?1=????1??2其中F在??1到??2内的积分,根据积分的几何意义可以用F-t曲线与坐标轴的面积来计算。

3.机械能守恒定理:在仅有保守力做功的情况下,动能和时能可以相互转化,但是动能和势能的总和保持不变。

在质点系中,若没有势能的变化,若无外力作用则质点系动能守恒。

4.弹簧的劲度系数:由胡克定律:F=kx在得到F随x变化关系的情况下就可以根据曲线斜率计算出劲度系数。

5.碰撞:碰撞可以分为完全弹性碰撞、完全非弹性碰撞和非完全弹性碰撞。

完全弹性碰撞满足机械能守恒定律和动量守恒定律,完全非弹性碰撞和非完全弹性碰撞则只满足动量守恒定律而不满足机械能守恒定律。

三、实验设计1.摩擦力的测量:给小车一初速度使之在调节为水平的轨道上运动,同时记录其运动过程中的速度随时间变化图。

用直线拟合所得到的v-t图像,所得斜率即为加速度a,进而可得小车所受摩擦力为f=ma,并有小车与导轨之间的滚动摩擦因数为μ=a/g。

2.胡克定律测量弹性系数:使小车运动并撞向弹簧(注意速度不应太大以免直接撞到弹簧后边的传感器),记录该过程中弹簧弹力随小车位移的变化图线。

由于相撞过程中小车位移与弹簧保持一致,所以求得相撞阶段F-x图像的斜率△F/△x即为弹簧劲度系数。

用Matlab描述物理中的光学现象

用Matlab描述物理中的光学现象
关键词 光照 干涉 衍射
MA L B T A 软件 具有强大的运算 和作图功能 ,是科技 人员从事科 学研究和工程计算的重要工具 ,由Maa主包 、Sm l k 件以及各 tb l i un ̄ i 类功能各异的工具箱组成 ,是一种进行科学和工程计算的交互式程序 语言 。Maa语言可以实现工程 计算 、算法研究、符号运算 ,本文 通 tb l 过实例说明如何利用MA L B T A 描述物理中的光学现象问题 ” 。 在普通物理教学中 , 大学生常常接触较多的数学公式 ,由于他们 的知识不完整 ,对其物理意义理解不深,人们通常借助计算机辅助教 学 。因此在普 通物理 教学中 引入软件MA L B, T A 进行 计算 机辅助教 学 ,运用MA L B T A 的可视化技术 ,绘出随时间和空 间变化 的物理 量 或物理现 象的图形和 图象 ,帮助大学生理解物理 光学意义 。特别是 Maa的S un库 平台能够实现动态 仿真实验 , 但可以寓理 论教 tb i lk l m i 不 学、实验演示于一体 ,同时它也适合学生的自主探究 , 有助于提高学
出代码如下 :
【 Y・]pa s3 ) x, Z- ek (2;
s r ( Y,) uf X, Z l
c l  ̄ cp e) om o o pr
s dn ha i
』 ’ 爨 0 。 霜
P -s c .s (’)s ()^: ft (n ( *i 4 d.i d) 2 i b) n /n .
% 当要求P 的曲线分布图时P (nC)s (*) ( ) 4 值可调 =s co*i4d. d . 悬N i .n 胁 ) I
po ( ,) lt P : d
sY 5Dmr】 ≯ um3… g \ r 0. i 、 f l’ .at ‘ , fe14sn 一 (r, dp 。 X 【l e 爱7.O g.5 . , ’ h , . z t 6 【 p 5

牛顿环测量曲率半径实验

牛顿环测量曲率半径实验

西安交通大学物理仿真实验报告课程大学物理仿真实验实验名称牛顿环法测曲率半径第1页共 5页一、实验目的和简介:光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广泛的应用。

在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的。

因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差。

利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以及精确测量长度,角度和微小形变等。

二、实验仪器:1.读数显微镜——它由一个显微镜的镜筒和一个螺旋测微装置组成。

螺旋测微装置主要包括标尺,读数准线,测微鼓轮。

测微鼓轮的圆周上刻有100格的分度,它旋转一周,读数准线就沿标尺前进或后退1mm,故测微鼓轮的分度值为0.01mm。

2.钠光灯——波长在5893A附近,具有光强,色纯的特点3.入射光调节架——架上嵌有一个可以转动的玻璃片,玻璃片调到大约45°时,可使平行光垂直射到牛顿环玻璃表面。

4.牛顿环仪——由一块待测曲率半径的平凸透镜,以其凸面放在一块光学平板玻璃上构成,外由一金属圆框固定。

三、实验原理:图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。

分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(k=1,2,3…)(2)时,发生相长干涉,出现第K级亮纹,而当(k=0,1,2,3…)(3)时,发生相消干涉,出现第k级暗纹。

单摆实验报告,大学

单摆实验报告,大学

单摆实验报告,大学篇一:单摆实验报告单摆一、实验目的1. 验证单摆的振动周期的平方与摆长成正比,测定本地重力加速度的值2. 从摆动N次的时间和周期的数据关系,体会积累放大法测量周期的优点二、实验仪器单摆秒表(0.01s)游标卡尺(0.02mm) 米尺(0.1cm)三、实验原理如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆。

设摆点O为极点,通过O且与地面垂直的直线为极轴,逆时针方向为角位移?的正方向。

由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小f?mgsin 设摆长为L,根据牛顿第二定律,并注意到加速度d2?的切向方向分量a??l?2 ,即得单摆的动力学方程dtd2?ml2??mgsin?dt结果得d2?g2????? 2ldt由上式可知单摆作简谐振动,其振动周期 T?2??2?2?lg或 g?4?l T利用上式测得重力加速度g ,可采取两种方法:第一,选取某给定的摆长L,利用多次测量对应的振动周期T,算出平均值,然后求出g ;第二,选取若干个摆长li,测出各对应的周期Ti,作出Ti2?li图线,它是一条直线,由该直线的斜率K 可求得重力加速度。

四、实验内容和步骤(1)仪器的调整1.调节立柱,使它沿着铅直方向,衡量标准是单摆悬线、反射镜上的竖直刻线及单摆悬线的像三者重合。

2.为使标尺的角度值能真正表示单摆的摆角,移动标尺,使其中心与单摆悬点间的距离y满足下式y??AB???180????5??AB式中为标尺的角度数,可取,而是标尺上与此5°相对应的弧长,可用米尺量度。

(2)利用给定摆长的单摆测定重力加速度1.适当选择单摆长度,测出摆长。

注意,摆长等于悬线长度和摆球半径之和。

2.用于使摆球离开平衡位置(?﹤5°),然后令它在一个圆弧上摆动,待摆动稳定后,测出连续摆动50次的时间t ,重复4次。

基于扩展有限元的碳纤维复合材料裂纹扩展仿真

基于扩展有限元的碳纤维复合材料裂纹扩展仿真

基于扩展有限元的碳纤维复合材料裂纹扩展仿真韩少燕 门 静 韩海燕(西安交通大学城市学院,陕西 西安 710018)引言 碳纤维复合材料以其良好的力学性能被广泛的应用于汽车、航空航天等领域[1]。

碳纤维层合板在实际使用过程中容易受到冲击载荷产生大变形弯曲,导致局部产生应力集中与应变从而引起材料损伤,例如基体开裂、纤维断裂后或者层间分层等,材料损伤扩展会进一步导致力学性能降低,从而导致材料失效最终结构失效。

扩展有限元通过引入富集函数来修正传统有限元的近似位移函数,以描述间断界面,使间断的描述独立于有限元网格,避免了计算过程中的网格重构[2]。

本文采用扩展有限元法模拟了碳纤维复合材料层合板在弯曲载荷作用下的开裂过程,以预测材料抵抗外力损伤的性能。

1、扩展有限元 扩展有限元是以美国西北大学Belytschko 教授为首的研究组于1999年提出的一种求解不连续问题的数值方法,该方法可有效的求解强和弱不连续问题[2-3]。

扩展有限元的基本原理是基于单位分解法在传统有限元位移模式中加入特殊函数(加强函数),从而反应不连续性的存在,不同类型的不连续问题,只是加强函数不同而已。

1.1单位分解法单位分解法是Melenk 和Bubska 及Duarte 和Oden 于1996年先后提出的。

对于求解区域Ω,单位分解法用一些相互交叉的子域ΩI 来覆盖,每个子域都与一个函数()I ϕx 相联系。

函数()I ϕx 仅在ΩI 内非零,且满足单位分解条件()1I Iϕ=∑x (1)Duarte 和Oden 用K 阶移动最小二乘近似函数来构造单位分解,即1()()[()]mh k I iI i Ii b q ϕ==+∑∑ u x x u x (2) 其中:()i q x 可以是单项式基。

系数是未知量,可以通过Galerkin 法或配点法求解。

为了提高逼近精度,或满足对待定问题的特殊逼近要求,也可以包含其他一些形式的函数(称之为加强基函数)。

大学物理仿真实验报告牛顿环(word文档良心出品).docx

大学物理仿真实验报告牛顿环(word文档良心出品).docx

西安交通大学大学物理仿真实验报告实验名称:牛顿环法测曲率半径实验日期:专业班级:姓名:学号:教师签字: ________________一、实验目的1.学会用牛定透曲率半径。

2.正确使用微,学用逐差法理数据。

二、实验仪器牛,数微,光灯,入射光架。

三、实验原理如所示,在平板玻璃面 DCF上放一个曲率半径很大的平凸透ACB,C 点接触点,在 ACB和 DCF之,形成一厚度不均匀的空气薄膜,色光从上方垂直入射到透上,透透,近似垂直地入射于空气膜。

分从膜的上下表面反射的两条光来自同一条入射光,它足相干条件并在膜的上表面相遇而生干涉,干涉后的度由相遇的两条光的光程差决定,由可,二者的光程差等于膜厚度 e 的两倍,即此外,当光在空气膜的上表面反射,是从光密媒射向光疏媒,反射光不生相位突,而在下表面反射,会生相位突,即在反射点,反射光的相位与入射光的相位之相差,与之的光程差/2,所以相干的两条光具有/2 的附加光程差,的光程差(1)当足条件(2),生相干涉,出第K 亮,而当(k = 0,1,2⋯)(3),生相消干涉,出第k 暗。

因1同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。

可以想见,干涉条纹是一组以 C 点为中心的同心圆,这就是所谓的牛顿环。

如图所示,设第k 级条纹的半径为,对应的膜厚度为,则(4)在实验中, R 的大小为几米到十几米,而的数量级为毫米,所以 R >> e,e2相对于k k2Re k是一个小量,可以忽略,所以上式可以简化为( 5)如果 r k是第k级暗条纹的半径,由式(1)和( 3)可得( 6)代入式( 5)得透镜曲率半径的计算公式(7)对给定的装置,R 为常数,暗纹半径( 8)和级数 k 的平方根成正比,即随着k 的增大,条纹越来越细。

同理,如果r k是第k级明纹,则由式(1)和( 2)得(9)代入式( 5),可以算出( 10)2由式( 8)和( 10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出 R。

交大最新ModelSim仿真教程

交大最新ModelSim仿真教程

1. ModelSim概览ModelSim仿真软件是由Midel技术公司开发的工业界上最为通用的仿真器之一,它可以用于Verilog仿真,VHDL仿真或者两者的混合仿真。

ModelSim仿真软件产品的类型很多,我们在这里要介绍的是ModelSim/S,它是ModleSim的首要版本,功能最为强大,包含了ModelSIm/PLUS的所有功能及其附加功能。

ModelSim/SE随着时间的推移不断地推出新的版本,我们要介绍的是Mentor Graphis公司于2005年6月推出的ModelSim/Se 6.1版本的使用。

图1.1 ModelSim/Se 6.1用户界面在UNIX操作系统的命令行中首先输入fpga.setup命令,然后输入vsim命令,便可以得到图1.1所示的ModelSim图形用户界面。

为了完成后续的实验内容,请先将ModelSimLAB 文件夹(内部包含lab1、lab2、lab3、lab4四个文件夹)复制到自己的根目录下面。

2. 基本的仿真步骤ModleSim 有三种实现方法。

第一种是交互式的命令行,这种操作方法没有用户界面,唯一的界面是控制台的命令行。

第二种是用户界面(UI),它能够接收菜单输入和命令行输入。

第三种是批处理模式,是用DOS 或UNIX 命令行运行批处理文件。

我们在这里主要讨论第二种——用户界面的方式。

2.1建立ModelSim 库(物理库)这里要插入怎么创作的命令,进到哪个目录,运行什么命令?从主菜单里面:File->New->Library 点击Library 得到Create a New Library 对话框。

选择a new library and a logical mapping to it ,在Library Name 中输入work ,相应的在Library Physical Name 中也会出现物理名work 。

然后点击OK 确定。

此时在工作空间workspace 的Library 内会出现一个名为work 的库。

交通仿真实验指导书

交通仿真实验指导书

长沙理工大学
综合性、设计性实验指导书
实验名称:交通仿真实验
课程名称:交通仿真
所在部门:交通运输学院
设计人:李顺
实验一建立仿真路网
一、实验目的:
通过本实验使学生认识和了解微观交通仿真软件VISSIM,掌握建立仿真路网的基本方法与步骤。

二、实验内容:
安装VISSIM软件,建立仿真路网。

三、实验要求:
要求学生自选底图,在VISSIM软件上建立仿真路网,以备进行交通流特性及行驶规则的设置。

四、实验学时:4学时
五、实验步骤:
1.安装VISSIM软件。

2.建立仿真路网
1)导入底图
2)根据底图建立路网
实验二交通流特性及行驶规则的设置
一、实验目的:
掌握VISSIM交通流特性及行驶规则的设置基本操作方法与步骤。

二、实验内容:
微观交通流参数设置;
宏观交通流参数设置;
车辆行驶规则设置;
三、实验要求:
在实验一的基础上,进行交通流特性及行驶规则的设置。

四、实验学时:6学时
五、实验步骤:
1.微观交通流参数设置;
1)车辆的期望车速设置;
2)车辆加、减速特性设置;
3)车辆的几何尺寸设置;
4)交通行为参数设置;
2.宏观交通流参数设置;
1)车辆分类;
2)交通组成;
3)输入流量;
4)路径选择;
3.车辆行驶规则设置;
1)速度控制规则;
2)超车规则;
3)优先规则;
4)信号控制规则(重点)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 用误差均分原理设计单摆装置,测量重力加速度 g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度 g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺 (提供硬白纸板自制)、天平(公用). 假设摆长 l≈70.00cm;摆球直径 D≈2.00cm;摆动周期 T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精
大学物理仿真实验
实验报告
计算机 xx 班 xxx 2140505xxx
实验日期:2015 年 5 月 30 日教师签字: 同组者:无审批日期: 实验名称:利用单摆测重力加速度 一、 实验简介: 单摆实验是个经典实验, 许多著名的物理学家都对单摆实验进行 过细致的研究。 本实验的目的是学习进行简单设计性实验的基本 方法,根据已知条件和测量精度的要求,学会应用误差均分原则 选用适当的仪器和测量方法,学习累积放大法的原理和应用,分 析基本误差的来源及进考图 1 单摆仪,一级近似的周期公式为 T = 2π ������ ������
由此通过测量周期摆长求重力加速度 四、实验仪器:
图一摆幅测量标尺
图二单摆仪
图三钢球
图四游标卡尺 五、测量内容及数据处理:
T=55.60/30=1.853s D(平均)=(1.682+1.652+1.672+1.692+1.622+1.662)/6=1.664cm l=92.00-1.664/2=90.34cm g=
度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为 0.1s 左右,所以实验 人员开,停秒表总的反应时间近似为△人≈0.2s. 2. 对重力加速度 g 的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要 求. 3. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的 关系,试分析各项误差的大小. 4. 自拟试验步骤用单摆实验验证机械能守恒定律.
������
������ 2 2 ������
=10.49m/s 2
▽g=10.49-9.80=0.69m/s 2 E=▽g/g=6.5% 六、小结 实验测得的重力加速度 g=10.39±0.69m/s 2 相对误差 E=6.5% 误差分析:测量单摆摆动周期的时候,判断摆动是否一个周期存 在人为视觉上的判断误差,导致周期的测量存在较大的误差。 建议:1.测量周期次数增加。 2.多次重复测量周期。
相关文档
最新文档