高一数学必修1函数试题及答案 精选版

合集下载

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin (ωx φ)》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.已知函数()2sin(2)16f x x a π=+++,且当[0,]2x π∈时()f x 的最小值为2.(1)求a 的值;(2)先将函数()y f x =的图像上点的纵坐标不变,横坐标缩小为原来的12,再将所得的图像向右平移12π个单位,得到函数()y g x =的图像,求方程()4g x =在区间[0,]2π上所有根之和.2.写出将sin y x =的图像变换后得到2sin 24y x π⎛⎫=- ⎪⎝⎭的图像的过程,并在同一个直角坐标平面内画出每一步变换对应的函数一个周期的图像(保留痕迹). 3.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =sin x 的图象通过相应的平移与伸缩变换得到函数f (x )的图象,写出变换过程. 4.用“五点法”画出函数2sin y x =在区间[]0,2π上的图象. 5.已知函数()()sin f x A x ωϕ=+(0A >,0>ω与2πϕ<),在同一个周期内,当4x π=时,则y 取最大值1,当712x π=时,则y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象 (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和. 6.已知函数()2cos 44f x x ππ⎛⎫=-⎪⎝⎭. (1)求函数()f x 图象的对称轴;(2)将函数()f x 图象上所有的点向左平移1个单位长度,得到函数()g x 的图象,若函数()y g x k =+在()2,4-上有两个零点,求实数k 的取值范围.7.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,则火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地 球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式: 0lnkm v m ω=,被称为齐奥尔科夫斯基公式,其中ω为发动机的喷射速度,0m 和k m 分别是火箭的初始质量和发动机熄火(推进剂用完 )时的质量.0km m 被称为火箭的质量比.(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.(参考数据:ln20.69≈,无理数e 2.71828=)二、单选题8.为了得到函数3sin 2y x =的图象,只要将函数3sin(21)y x =-的图象( ) A .向左平移1个单位长度 B .向左平移12个单位长度C .向右平移1个单位长度D .向右平移12个单位长度9.函数sin3y x =的图象可以由函数cos3y x =的图象( ) A .向右平移6π个单位得到 B .向左平移6π个单位得到 C .向右平移3π个单位得到 D .向左平移3π个单位得到 10.要得到函数()2cos 23f x x π⎛⎫=- ⎪⎝⎭的图像,只需将cos2y x =的图像( )A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移23π个单位长度 D .向右平移23π个单位长度 11.为了得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需把函数3sin y x =图像上所有点( )A .向左平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12B .向左平行移动3π个单位长度,再把所得各点的横坐标伸长到原来的2倍 C .向左平行移动6π个单位长度,再把所得各点的横坐标缩短到原来的12D .向右平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12 12.要得到函数π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,需( )A .将函数3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)B .将函数π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)C .将函数3sin 2y x =图像上所有点向左平移π5个单位长度D .将函数3sin 2y x =图像上所有点向左平移π10个单位长度13.为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度三、填空题14.将函数()f x 的图象向左平移π6个单位长度后得到()()sin y g x A x ωϕ==+(0A >,0>ω与π2ϕ≤)的图象如图,则()f x 的解析式为_____.15.彝族图案作为人类社会发展的一种物质文化,有着灿烂历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化,如图1,漆器图案中出现的“阿基米德螺线”,该曲线是由一动点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动所形成的轨迹.这些螺线均匀分布,将其简化抽象为图2,若2OA =,则AOB ∠所对应的弧长为______.参考答案与解析1.(1)2a =;(2)3π. 【分析】(1)由于当[0,]2x π∈时()f x 的最小值为2,所以min ()112f x a =-++=,从而可求出a 的值;(2)由图像变化可得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=,从而可求出x 的值【详解】(1)()2sin(2)16f x x a π=+++,∵[0,]2x π∈,∴72[,]666x πππ+∈∴min ()112f x a =-++=,∴2a =;(2)依题意得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=∴4266x k πππ-=+(k Z ∈)或54266x k πππ-=+(k Z ∈) ∴212k x ππ=+或24k x =+ππ,解得12x π=或4x π= ∴所有根的和为1243πππ+=.【点睛】此题考查三角函数的图像和性质,考查三角函数的图像的变换,考查转化能力和计算能力,属于基础题2.答案见解析.图像见解析【分析】由三角函数图像中的相位变换、周期变换、振幅变换叙述变换过程,然后作出图像变换的过程即可.【详解】先将sin y x =的图像上各点向右平移4π个单位得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像再将函数sin 4y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持纵坐标不变,横坐标缩短到原来的一半,得到函数sin 24y x π⎛⎫=- ⎪⎝⎭的图像.再将函数sin 24y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持横坐标不变,纵坐标扩大到原来的2倍,得到函数2sin 24y x π⎛⎫=- ⎪⎝⎭的图像.3.(1)f (x )=sin (2)6x π+ ;(2) 答案见解析.【分析】(1)由图像可得A =1,51264Tππ-=结合2T πω=可求出ω的值,然后将点(,1)6π代入解析式可求出ϕ的值,从而可求出函数f (x )的解析式; (2)利用三角函数图像变换规律求解【详解】(1)由图像知A =1.f (x )的最小正周期T =4×5()126ππ-=π,故ω=2Tπ=2 将点(,1)6π代入f (x )的解析式得sin ()3πϕ+=1又|φ|<2π,∴φ=6π.故函数f (x )的解析式为f (x )=sin (2)6x π+.(2)变换过程如下:y =sin x 图像上的所有点的横坐标缩小为原来的一半,纵坐标不变,得到y =sin 2x 的图像,再把y =sin 2x 的图像,向左平移12π个单位y =sin (2)6x π+的图像. 4.答案见解析【分析】利用五点作图法,列表、描点、连线可作出函数sin y x =在区间[]0,2π上的图象. 【详解】解:按五个关键点列表如下:描点并将它们用光滑的曲线连接起来,如图所示.5.(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可. (1)设()()sin f x A x ωϕ=+的最小正周期为T 由题意可知,1A =,1721243T πππ=-=即223T ππω== ∴3ω=,即()()sin 3f x x φ=+∵3sin 14πϕ⎛⎫+= ⎪⎝⎭∴3242k ππϕπ+=+ k Z ∈ 又2πϕ<,∴4πϕ=-∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期故所有实数根之和为1119112662ππππ++=. 6.(1)14x k =+ k ∈Z (2)()2,0-.【分析】(1)求出()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,解方程442x k ππππ+=+,k ∈Z 即得解;(2)求出()2cos 4g x x π=,即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,再利用数形结合分析求解. (1)解:因为()2cos 44f x x ππ⎛⎫=- ⎪⎝⎭,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.令442x k ππππ+=+,k ∈Z ,解得14x k =+ k ∈Z 所以函数()f x 图象的对称轴为直线14x k =+ k ∈Z . (2)解:依题意,将函数()f x 的图象向左平移1个单位长度后,得到的图象对应函数的解析式为()()2sin 12cos 444g x x x πππ⎡⎤=++=⎢⎥⎣⎦.函数()y g x k=+在()2,4-上有两个零点即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,如图所示所以02k <-<,即20k -<< 所以实数k 的取值范围为()2,0-. 7.(1)2.8千米/秒(2)该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒,理由见解析【分析】(1)明确0k m m ω、、各个量的值,代入即可;(2)求出最大理想速度max v ,利用放缩法比较max 2ln10v =与7.9的大小即可. (1)2ω=,0160m =和40k m =0lnk m v m ω∴=21602ln 2ln 42ln 24ln 2 2.7640=⨯===≈ ∴该单级火箭的最大理想速度为2.76千米/秒.(2)10km M ≤ 2ω= 0max ln km v m ω∴=2ln10= 7.97.97128e22>>=7.97.9ln ln128ln1002ln10e ∴=>>=max v ∴2ln107.9=<.∴该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒.8.B【分析】根据已知条件,结合平移“左加右减”准则,即可求解.【详解】解:()13sin 213sin 22y x x ⎛⎫=-- ⎪⎝=⎭∴把函数13sin 22x y ⎛⎫- ⎝=⎪⎭的图形向左平移12个单位可得到函数3sin 2y x =.故选:B . 9.A【分析】化简函数sin 3cos[3()]6y x x π==-,结合三角函数的图象变换,即可求解.【详解】由于函数3sin 3cos(3)cos(3)cos[3()]226y x x x x πππ==+=-=- 故把函数cos3y x =的图象向右平移6π个单位,即可得到cos3sin 36y x x π⎛⎫=-= ⎪⎝⎭的图象.故选:A. 10.B【分析】直接由三角函数图象的平移变换求解即可. 【详解】将cos2y x =的图像向右平移3π个单位长度可得2cos2cos 233y x x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭. 故选:B. 11.A【分析】利用三角函数图象变换规律求解即可【详解】将3sin y x =向左平移3π长度单位,得到3sin 3y x π⎛⎫=+ ⎪⎝⎭,再把所得的各点的横坐标缩短到原来的12,可得3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:A 12.D【分析】根据三角函数的图像变换逐项判断即可.【详解】解:对于A ,将3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于B ,将π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 210y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于C ,将3sin 2y x =图像上所有点向左平移π5个单位长度后,得到2π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于D ,将3sin 2y x =图像上所有点向左平移π10个单位长度后,得到π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,正确.故选:D. 13.C【分析】化简2cos 2y x x =+,再根据三角函数图象平移的方法求解即可【详解】12cos 22cos 222cos 223y x x x x x π⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭,因为2cos 23y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到2cos 22cos263ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦y x x故选:C14.()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭【分析】由图像可知,函数的最值、最小正周期,可得,A ω的值,代入点5,212π⎛⎫⎪⎝⎭,进而解得ϕ的值,根据函数的图像变换规律,可得答案.【详解】由题图可知()max 2A g x ==,函数()g x 的最小正周期为45πππ3123T ⎛⎫=+= ⎪⎝⎭,所以2π2T ω==,所以()()2sin 2g x x ϕ=+.又5π5π2sin 2126g ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5ππ2π62k ϕ+=+(k ∈Z ),解得π2π3k ϕ=-(k ∈Z ). 因为π2ϕ≤,所以π3ϕ=-,所以()π2sin 23g x x ⎛⎫=- ⎪⎝⎭.将函数()g x 的图象向右平移π6个单位长度后可得到函数()f x 的图象故()ππ2π2sin 22sin 2633f x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭15.4π9【分析】根据题意得到圆心角2π9AOB α=∠=,结合弧长公式,即可求解.第 11 页 共 11 页 【详解】由题意,可知圆心角2π9AOB α=∠=,半径2r OA == 所以AOB ∠所对应的弧长为2π4π299l r α==⨯=. 故答案为:4π9.。

高一年级数学必修一函数应用题及答案

高一年级数学必修一函数应用题及答案

高一年级数学必修一函数应用题及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=R,A={x|x>0},B={x|x>1},则A∩ ?UB=()A{x|0≤x<1}B.{x|0C.{x|x<0}D.{x|x>1}【解析】 ?UB={x|x≤1},∴A∩ ?UB={x|0【答案】B2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2xB.12xC.log12xD.2x-2【解析】f(x)=logax,∵f(2)=1,∴loga2=1,∴a=2.∴f(x)=log2x,故选A.【答案】A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+∞).故选A.【答案】A4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x<4时,f(x)=f(x+1).则f(3)=()A.18B.8C.116D.16【解析】f(3)=f(4)=(12)4=116.【答案】C5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,∴函数在[3,5]上只有一个零点4.【答案】B6.函数y=log12(x2+6x+13)的值域是()A.RB.[8,+∞)C.(-∞,-2]D.[-3,+∞)【解析】设u=x2+6x+13=(x+3)2+4≥4y=log12u在[4,+∞)上是减函数,∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.【答案】C7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1B.y=|x|+1C.y=2x+1,x≥0x3+1,x<0D.y=ex,x≥0e-x,x<0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.【答案】C8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(1,2)C(2,3)D.(3,4)【解析】由函数图象知,故选B.【答案】B9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()A.a≤-3B.a≤3C.a≤5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-∞,4)上为减函数,只须使(-∞,4)⊆(-∞,-3a+12)即-3a+12≥4,∴a≤-3,故选A.【答案】A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C.【答案】C11.设log32=a,则log38-2log36可表示为()A.a-2B.3a-(1+a)2C.5a-2D.1+3a-a2【解析】log38-2log36=log323-2log3(2×3)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】A12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lgx)>f(1),则x的取值范围是()A.110,1B.0,110∪(1,+∞)C.110,10D.(0,1)∪(10,+∞)【解析】由已知偶函数f(x)在[0,+∞)上递减,则f(x)在(-∞,0)上递增,∴f(lgx)>f(1)⇔0≤lgx<1,或lgx<0-lgx<1⇔1≤x<10,或0或110∴x的取值范围是110,10.故选C.【答案】C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若 ?UA={1},则实数a的值是________.【答案】-1或214.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.【解析】A={x|0【答案】415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).【答案】[1,+∞)。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数试题及答案

高一数学函数试题及答案

(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。

2.函数422--=x x y 的定义域 。

3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。

高中数学必修一函数大题(含详细解答)

高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。

试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。

已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。

(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。

3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。

(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一数学必修1函数试题及答案-精选版

高一数学必修1函数试题及答案-精选版

高一必修1函数测试一、选择题:1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为||)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。

2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+xx 的根,则21x x +值为______________。

3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(xx f =则当2-<x 时=)(x f ________________。

4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =5、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A 、0 B 、1 C 、2 D 、36、从甲城市到乙城市m 分钟的电话费由函数)47][43(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。

7、函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。

8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞-B 、]0,(-∞C 、)23,(--∞ D 、]0,2(- 9、若2)5(12-=-x f x ,则=)125(f __________10、已知映射B A f →:,其中A =B =R ,对应法则为32:2++=→x x y x f 若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________. 12、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。

【考点】函数的概念,函数的奇偶性。

点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。

4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。

在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。

【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。

函数考试题库及答案高一

函数考试题库及答案高一

函数考试题库及答案高一一、选择题(每题3分,共30分)1. 函数f(x) = 2x + 3的定义域是:A. (-∞, +∞)B. [0, +∞)C. (0, +∞)D. [3, +∞)答案:A2. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:A3. 函数y = 3x^2 - 6x + 2的图像开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A4. 下列哪个函数是奇函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 - 1D. f(x) = x答案:B5. 函数y = 2x + 1的反函数是:A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = 2x + 1答案:A6. 若函数f(x) = x^3 + 2x^2 - 5x + 1,则f'(x)是:A. 3x^2 + 4x - 5B. 3x^2 + 4x + 5C. 3x^2 - 4x + 5D. 3x^2 - 4x - 5答案:A7. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B8. 若函数f(x) = ln(x),则f'(x)是:A. 1/xB. xC. ln(x)D. x^2答案:A9. 函数y = e^x的图像是:A. 直线B. 抛物线C. 指数曲线D. 对称曲线答案:C10. 函数y = 3x^2 - 6x + 2的顶点坐标是:A. (1, -1)B. (1, 5)C. (3, 5)D. (3, -1)答案:B二、填空题(每题4分,共20分)1. 函数f(x) = x^2 - 6x + 9的最小值是______。

答案:02. 若f(x) = 2x - 3,则f(-1) = ______。

答案:-53. 函数y = 1 / x的图像关于______对称。

高中数学必修一函数性质专项习题及答案

高中数学必修一函数性质专项习题及答案

高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。

则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1第二章 函数单调性和奇偶性专项练习一、函数单调性相关练习题1、(1)函数2)(-=x x f ,∈x {0,1,2,4}的最大值为_____.(2)函数123)(-=x x f 在区间[1,5]上的最大值为_____,最小值为_____. 2、利用单调性的定义证明函数21)(xx f =在(-∞,0)上是增函数. 3、判断函数12)(+=x x f 在(-1,+∞)上的单调性,并给予证明. 4、画出函数322丨+丨+=-x x y 的图像,并指出函数的单调区间.5、已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4); (2)f (2)f (15)与6、已知)(x f y =在定义域(-1,1)上是减函数,且)23()1(-<-a f a f ,求实数a 的取值范围. 7、求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==x x x x x 2221123-----+||(4)2012--=x x y 8、函数f(x)=ax 2-(3a -1)x +a 2在[1,+∞]上是增函数,求实数a 的取值范围.9、【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 10、求函数xx x f 4)(+=在[1,3]上的最大值和最小值. 二、函数奇偶性相关练习题11、判断下列函数是否具有奇偶性.(1)11)1()(-+-=x x x x f ;(2)a x f =)( (R x ∈); (3)3232)52()52()(--+=x x x f 12、若32)1(2++-=mx x m y 是偶函数,则m =_________.13、已知函数c bx ax x f ++=2)( (0≠a )是偶函数,那么cx bx ax x g ++=23)(是 ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14、已知函数b a bx ax x f +++=3)(2是偶函数,且其定义域为[1-a ,a 2],则 ( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 15、已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2-=,则)(x f 在R 上的表达式是 ( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)16、函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数17、若)(x ϕ,)(x g 都是奇函数,2)()()(++=x bg x a x f ϕ在(0,+∞)上有最大值5,则)(x f 在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-318、函数2122)(x x x f ---=的奇偶性为________(填奇函数或偶函数) .19、判断函数=)(x f ⎪⎩⎪⎨⎧0130132323<,-+>,+-x x x x x x 的奇偶性.20、f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.21、已知)(x f 是偶函数,)(x g 是奇函数,若11)()(-=+x x g x f ,则)(x f 的解析式为_______,)(x g 的解析式为_______.22、已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0.试证f (x )是偶函数.23、设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2).求证f (x )是偶函数.高中数学必修1第二章 函数单调性和奇偶性专项练习答案1、【答案】(1)2 (2)3,31 2、略3、【答案】减函数,证明略.4、【答案】分为0≥x 和0<x 两种情况,分段画图.单调增区间是(-∞,-1)和[0,1]; 单调减区间是[-1,0)和(1,+∞)5、【答案】(1)f(6)<f(4) ; (2)∴>,即>.f(15)f(4)f(15)f(2)6、【答案】实数a 的取值范围是(31,43) 7、【答案】(1)递增区间是[-3,-1],[1,+∞); 递减区间是(-∞,-3],[-1,1](2)增区间是(-∞,0)和(0,1); 减区间是[1,2)和(2,+∞)(3)∴函数的增区间是[-3,-1],减区间是[-1,1].(4)函数的增区间是(-∞,-4)和(-4,21);减区间是[21,5)和(5,+∞) 8、【答案】a 的取值范围是0≤a ≤1.9、【答案】当a >0时,f(x)在(-1,1)上是减函数;当a <0时,f(x)在(-1,1)上是增函数.10、【答案】先判断函数在[1,2]上是减函数,在(2,3]上是增函数,可得)2(f =4是最小值,)1(f =5是最大值.二、函数奇偶性相关练习题11、【答案】(1)定义域不关于原点对称,所以是非奇非偶函数;(2)0=a ,)(x f 既是奇函数又是偶函数;0≠a ,)(x f 是偶函数;(3))(x f 是奇函数.12、【答案】 013、【答案】选A14、【答案】选B15、【答案】选D16、【答案】选B17、【答案】 选C18【答案】 奇函数19、【答案】 奇函数【提示】分x >0和x <0两种情况,分别证明)()(x f x f =--即可.20、【答案】解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5. 因f (x )在[5,+∞]上单调递减, 所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.21、【答案】11)(2-=x x f ,1)(2-=x x x g 22、证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ), 故f (x )为偶函数.23、证明:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴f (-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.。

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。

高一数学函数试题及答案

高一数学函数试题及答案

4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为

5.已知函数
f
(x)

x2
1
(x 0) ,若 f (x) 10 ,则 x

2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
A.1 B. 0
C. 0 或1
D.1或 2
3.已知集合 A 1, 2,3, k, B 4,7, a4, a2 3a ,且 a N*, x A, y B
使 B 中元素 y 3x 1 和 A 中的元素 x 对应,则 a, k 的值分别为( )
A. 2,3 B. 3, 4 C. 3,5 D. 2,5
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,

x2
,
0 x
0
的图象是抛物线,
其中正确的命题个数是____________。
三、解答题
1.判断一次函数 y kx b, 反比例函数 y k ,二次函数 y ax2 bx c 的 x
单调性。
2.已知函数 f (x) 的定义域为 1,1 ,且同时满足下列条件:(1) f (x) 是奇函数;
二、填空题
1.函数 f (x) (a 2)x2 2(a 2)x 4 的定义域为 R ,值域为 ,0 ,

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。

由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。

【答案】4或8【解析】主要考查对数方程解法。

解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。

解答过程中巧妙地转化为求函数的值域。

解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。

7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。

解:当时为减函数。

为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。

高一数学新教材人教版必修一第三章函数的概念与性质测试卷含答案

高一数学新教材人教版必修一第三章函数的概念与性质测试卷含答案
值;
(Ⅲ)若 f (x) 在区间[2, ) 上单调递增,求实数 a 的取值范围.
19.(本小题满分 12 分)
已知函数
f
(x)
ax x2
b 1
是定义在
(1,1)
上奇函数,
且 f (1) 3 .
3 10
(Ⅰ)判断函数 f (x) 在 (1,1) 上的单调性,并用
定义证明;
(Ⅱ)若实数 t 满足 f (2t 1) f (t 1) 0 ,求实
4
5.令 t 1 x 0, 则 y 2 2t2 t 2(t 1)2 17 17
4 88
6.
y
x(x 2),(x x(x 2),(
2) x 2)
,作出图象即可.
7.函数 f (x) ax 2a 1,(a 0) 在 (0, ) 上单 x
调递增,又 m2 1 0,m2 m 3 0
x3 数,则实数 a 的取值范围是
15.已知函数 f (x) x5 3x3 5x 3 ,若 f (a) f (a 2) 6 ,则实数 a 的取值范围是
16.已知 m R ,函数 f (x) x 3 m m 在[2, x 1
5] 上的最大值是 5 ,则 m 的取值范围是
三、解答题:(写出必要的文字说明,推理过程或 演算步骤) 17.(本小题满分 10 分) 设函数 f (x) ax2 (b 2)x 3 . (Ⅰ)若 f (1) 3 ,且 a 0,b 0 ,求 b 1 的最
9.已知奇函数 y f (x) 的图象关于直线 x 2 对称,
且 f (m) 3,且 f (m 4) 的值为( )
A. 3
B. 0
C. 3
D. 1
3
10.已知函数 f (x 1) 是偶函数,且 x 1 时, f (x) 单调递减,设 a f ( 1),b f (3),c f (0) ,则 a,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修1函数测试
一、选择题:
1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为|
|)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。

2。

3=) 4、[1,4]56]表78A 910若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________
11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________. 12、关于x 的方程0|34|2
=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。

13、关于x 的方程a
x
lg 11
)2
1
(-=
有正根,则实数a 的取值范围是______________
14、已知函数f(x)=5log )(log 4
12
4
1
+-x x ,∈x []42,,则当x = , )(x f 有最大值 ;当x = 时,f(x)有最小值 .
二、解答题:本大题共4小题,解答时应写出文字说明、演算步骤.
15、已知集合=A {
}m ,3,2,1,集合{}
a a a B 3,,7,42
4
+=,其中 .,,,**B y A x N a N m ∈∈∈∈13:+=→x y x f 是从集合A 到集合B 的函数,求B A a m ,,,
16、已知函数3)(2
++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值.
17、已知函数12
)(+=x x f ,将函数)(1
x f
y -=的图象向左平移2个单位,再向上平移1个单位,就
得到)(x g y =的图象. (1)写出)(x g y =的解析式; (2)求)()()(1
2
x f x g x F --=的最小值.
18(1)(2)
一、选择题
1、{}2,0
2、1
3、
21--x 4、3 5、2 6、83.5元 7、2
1
>a 8、D ]0,2(- 9、0 10、)2,(-∞ 11、),10()10
1
,0(+∞⋃ 12、a =1 13、(0,1)
14.4,7 ;2 , 5.75
三、解答题:
15、由函数的定义可知,函数是从定义域到值域的映射,因此,值域中的每一个元素,在定义域中一定能有原象与之对应.
由对应法则,1对应4,2对应7,3对应10,m 对应13+m .
2,103,10,,24**==+≠∴∈∈a a a a N a N m (5-=a 舍去)
又,2134
=+m ,5=∴m 故{
}{}.16,10,7,4,5,3,2,1==B A 16、设)(x f 在]2,2[-上的最小值为)(a g ,则满足a a g ≥)(的a 的最小值即为所求.
(2171-,
∴(2)18(1)又222
22
2
M
∴到今年为止,已砍伐了
2
T
年. (2)设从今年开始,以后砍了N 年,则再砍伐N 年后剩余面积为
N x a )1(2
2
-. 由题意,有
,41)1(22a x a N ≥-即4
1)1(22≥-N x
由(1)知T T
x x 1)21(121)1(=-⇒=-.4
1
)21(22≥⋅∴
T N
. 化为23
)21
(2
21)21(=≥T N T N T N 2323≤⇒≤∴
故今后最多还能砍伐
T 2
3
年.。

相关文档
最新文档