第一章 数与式 知识点
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
初中数学数与式
初中数学数与式第一章 实数★重点★ 实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类〞的原那么:1〕相称〔不重、不漏〕2〕有标准2.非负数:正实数与零的统称。
〔表为:x ≥0〕常见的非负数有:性质:假设干个非负数的和为0,那么每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a 〔a ≠±1〕;B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义〔“三要素〞〕②作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数〔正整数—自然数〕定义及表示: 实数 无理数(无限不循环小数) 正分数 负分数 正整数 0 负整数 (有限或无限循环性数) 整数 分数 0 实数 负数整数分数 无理数有理数正数整数 分数 无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数)奇数:2n-1偶数:2n 〔n 为自然数〕7.绝对值:①定义〔两种〕:代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││〞是“非负数〞的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。
二、实数的运算1. 运算法那么〔加、减、乘、除、乘方、开方〕2. 运算定律〔五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律〕3. 运算顺序:A.高级运算到低级运算;B.〔同级运算〕从“左〞到“右〞〔如5÷51×5〕;C.(有括号时)由“小〞到“中〞到“大〞。
三、应用举例〔略〕附:典型例题1. :a 、b 、x 在数轴上的位置如下列图,求证:│x-a │+│x-b │=b-a.2.:a-b=-2且ab<0,〔a ≠0,b ≠0〕,判断a 、b 的符号。
初中数学基础知识2第1章《数与式第1节》
方、负整数指数幂、算术平方根、零指数幂、特殊角的三角函数值
第3页
实数的相关概念
1.(2019 山西)-3 的绝对值是
A.-3 B.3
C.-1
3
2.(2016 山西)-1的相反数是
6
A.1 B.-6 C.6
6
3.(2011 山西)|-6|的值是
A.-6
B.-1 C.1
6
6
D.1
3
D.-1
6
D.6
第一章
( C)
A.6.06×104 立方米/时
B.3.136×106 立方米/时
C.3.636×106 立方米/时
D.36.36×105 立方米/时
答案
第5页
第一章
第一节
5.(2017 西)2017年5月18日,我国宣布在南海神狐海域成功试采可 燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计, 仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国 陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( C)
a.186×108吨
b.18.6×109吨
c.1.86×1010 吨
d.0.186×1011 吨
答案
第6页
第一章
第一节
6.(2014 西)pm2.5是指大气中直径小于或等于2.5 μm(1 μm=0.000001 m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质, 对人体健康和大气环境质量有很大危害.2.5 μm用科学记数法可表示 为( C )
A.3830×104千瓦
B.383×105千瓦
C.0.383×108千瓦
D.3.83×107千瓦
答案
第 29 页
(完整版)《数与式》知识点(最新整理)
第一部分《数与式》知识点π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:单项式:系数与次数分类多项式整式数与式()01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧=⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于二次根式的性质:最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题第三部分《函数与图象》知识点O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-A 一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性:若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,⑤最值:当a >0时,x=-,y =;a <0时,x=-y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值...⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):④比较函数的大小第四部分《图形与几何》知识要点0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:,;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos302cos4545110cos60,tan302R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在t A B C 中,si n =cos =,t an =斜边斜边的邻边si n 三角函数特殊三角函数值si n45;si n6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩A A 相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r (距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩A 于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R +r ),内含(d <R -r )圆和圆的位置关系相切:外切(d=R +r ),内切(d=R -r )相交:R -r <d <R +r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:P第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩A 行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=,相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩A第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩ 一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)Ccr。
中考第一轮复习--第一章数与式
第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数,722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考数学复习数与式知识点总结
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
升华 符号"÷"变成"×",除数变为它的倒数,除
数不能为0.
知识 实数 ③用科学记数法表示一个绝对值大于10的数时,等 的分类 号右边数的形式为a×10",a是一个只有一位整数的数
四 口+□=凶 n比等号左边的整数位数小1.
实数中的概念
梳理
正整数。 ::::口:
按定义
有理数
整数
分数
零
负整数
正分数
有限小数或无
(2)从外到里去括号,减少变号次数.只含有小括号和中括号, 那么把小括号内的各项视为一个整体,先去中括号,再去 小括号.
(3)一次去掉多重括号,在含有多重括号的式子中,去括号时,括
3+(a+b):+ab=(x+4 刁十二
整 式
(m十n)(a+b)=ma十mb+na+nb
的整除式法
乘法公式
单项式除以单项式,分别把系数、同底数幂
6、去括号添括号时,特别是括号前是"_"的情况,容 易把某一项或某几项忘记变号而出错.
1、对于幂的运算性质和乘法公式,不仅要掌握它们的结构 特征,而且要理解每一公式中字母的内涵,进而灵活、
恰当地应用.
2、因式分解必须在指定的数的范围内进行,且必须分解到
每个多项式都不能再分解为止
3、列代数式时,读题不能只看局部不看整体.
浙教版九上数学知识点归纳总结
浙教版九上数学知识点归纳总结# 浙教版九年级上册数学知识点归纳总结## 第一章:数与式### 1.1 整式- 整式的概念:由数和字母的乘积组成的代数式。
- 单项式:只含有一个字母的整式。
- 多项式:由多个单项式相加或相减组成的整式。
### 1.2 因式分解- 提取公因式法:找出多项式中所有项的公共因子并提取出来。
- 公式法:利用已知的代数公式进行因式分解。
### 1.3 分式- 分式的概念:分子和分母都是整式的有理表达式。
- 分式的加减:需要通分后进行。
- 分式的乘除:分子乘分子,分母乘分母。
## 第二章:方程与不等式### 2.1 一元一次方程- 解法:移项、合并同类项、系数化为1。
### 2.2 一元二次方程- 解法:直接开平方法、配方法、公式法、因式分解法。
### 2.3 不等式- 不等式的概念:表达式两边不等关系的数学表达。
- 解法:移项、合并同类项、系数化为1。
## 第三章:函数### 3.1 函数的概念- 函数的定义:对于集合A中的每个元素x,都有集合B中唯一确定的元素y与之对应。
### 3.2 一次函数- 一次函数的表达式:\( y = kx + b \)。
- 图像:一条直线。
### 3.3 二次函数- 二次函数的表达式:\( y = ax^2 + bx + c \)。
- 图像:一个开口向上或向下的抛物线。
## 第四章:几何基础### 4.1 线段与角- 线段的性质:两点之间的最短距离。
- 角的分类:锐角、直角、钝角、平角、周角。
### 4.2 三角形- 三角形的分类:按边分等腰、等边、不等边;按角分锐角、直角、钝角。
### 4.3 四边形- 四边形的分类:平行四边形、矩形、菱形、正方形。
## 第五章:图形的变换### 5.1 平移- 平移的性质:图形的形状和大小不变,位置改变。
### 5.2 旋转- 旋转的性质:图形的形状和大小不变,方向改变。
### 5.3 对称- 对称的性质:图形关于某条直线或点对称。
初中数学知识总结大全 第一章 数与式 (编辑:靳军强)
第一章数与式 (1)1.1 实数 (1)1.2数轴 (1)1.3相反数、绝对值、倒数 (3)1.4平方根与立方根 (4)1.4.1 平方根 (4)1.4.2 立方根 (5)1.5有理数的运算 (5)1.5.1 有理数的加法法则 (6)1.5.2 有理数的减法法则 (6)1.5.3 有理数乘法法则 (6)1.5.4 有理数除法法则 (6)1.5.5 有理数的乘方 (6)1.5.6 有理数比大小 (7)1.6 实数的运算顺序及一般的运算顺序 (7)1.7 实数大小比较的方法 (7)1.8科学计数法、近似数和有效数字 (7)1.9 互逆运算关系 (8)1.10 运算律: (8)1.11 整式的加减及有理式 (8)1.11.2 代数式和有理式、整式和分式 (9)1.11.3 整式、单项式与多项式 (9)1.11.4 整式的加减 (10)1.11.5 整式的乘法 (11)1.11.6 整式的除法 (12)1.11.7 整数指数幂 (12)1.11 分解因式 (13)1.11.1 分解因式 (13)1.11.2 提公共因式法 (14)1.11.3 运用公式法 (14)1.11.4 分组分解法 (15)1.11.5 十字相乘法 (15)第一章数与式1.1 数的划分名称概念及联系备注整数→自然数用来表示物体个数的0、1、2、3……叫做自然数。
按能否被2整除分奇数:不能被2整除的自然数。
如:1、3、5 ……1、数的产生:我们的祖先在生产劳动中,就有了计算的需要。
如:他们出去打猎的时候,要数一数一共出去了多少人,拿了多少件武器;回来的时候,要数一数捕获了多少只野兽等。
这样就产生了数。
一个物体也没用“0”表示。
3、“1”是自然数的单位,任何自然数都是由若干个1组成。
偶数:能被2整除的自然数。
如:2、4、6 ……按因数的个数分备注:这里是因数不是约数质数:只有1和它本身这两个因数的自然数合数:除了1和它本身还有其它的因数的自然数1 只有1个因数。
初中数学实数代数式整式知识点归纳
第一章 数与式第⼀节 实数考点⼀:实数的分类与实数的有关概念<实数的分类>实数:是有理数和⽆理数的总称。
定义为与数轴上的点相对应的数。
有理数:整数和分数统称为有理数整数:正整数、零和负整数统称为整数正数:⼤于零的数,正数前⾯可以放上正号“+”来表⽰(常省略不写)负数:⼩于零的数,⽤⼤于零的数前⾯放上负号“-”来表⽰0既不是正数也不是负数分数:正分数、负分数统称为分数⽆理数:⽆限不循环⼩数叫⽆理数。
即⾮有理数之实数,不能写作两整数之⽐。
若将它写成⼩数形式,⼩数点之后的数字有⽆限多个,并且不会循环。
常见的⽆理数有⼤部分的平⽅根、π等。
<数轴、相反数、绝对值、倒数>数轴:规定了原点、单位长度和正⽅向的直线叫做数轴。
任何⼀个有理数都可以在数轴上表⽰。
相反数:如果两个数只有符号不同,那么我们称其中⼀个数为另⼀个数的相反数,也称这两个数互为相反数。
零的相反数是零。
数轴上,表⽰互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
绝对值:把⼀个数载数轴上对应的点到原点的距离叫做这个数的绝对值。
⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;零的绝对值是零。
互为相反数的两个数的绝对值相等。
在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。
倒数:如果两个数互为倒数,则它们的乘积为1。
注意:1.零没有倒数2.求分数的倒数,就是把分数的分⼦分母颠倒位置。
⼀个带分数要先化成假分数。
3.正数的倒数是正数,负数的倒数是负数。
⾃然数⽆理数实数<平⽅根、算术平⽅根、⽴⽅根>平⽅根:⼀般地如果⼀个数的平⽅等于a,那么这个数叫做a的平⽅根,也叫a的⼆次⽅根.⼀个正数有正负两个平⽅根,它们互为相反数;0的平⽅根是0;负数没有平⽅根。
开平⽅:求⼀个数的平⽅根的运算叫做开平⽅。
开平⽅是平⽅运算的逆运算,因此,可以运⽤平⽅运算求⼀个数的平⽅根。
算数平⽅根:正数的正平⽅根称为算数平⽅根。
人教版数学中考知识点-第一章数与式
第一章数与式一、有理数的意义1.数轴的三要素为、和 . 数轴上的点与构成一一对应.a = .2.实数a的相反数为________. 若a,b互为相反数,则b3.非零实数a的倒数为______. 若a,b互为倒数,则ab= .4.绝对值在数轴上表示一个数的点离开的距离叫做这个数的绝对值。
即一个正数的绝对值等于它;0的绝对值是;负数的绝对值是它的。
a ( a>0 )即│a│= 0 ( a=0 )-a ( a<0 )5.科学记数法:把一个数表示成的形式,其中1≤a<10的数,n是整数.如:据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为.6.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.二、实数的分类1.按定义分类正整数整数零自然数有理数负整数正分数分数有限小数或无限循环小数实数负分数正无理数无理数无限不循环小数负无理数2.按正负分类正整数正有理数正实数正分数正无理数实数零(既不是正数也不是负数)负整数负有理数负实数负分数负无理数2. 实数的运算与大小比较一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。
2. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .3. =0a (其中a 0 且a 是 )=-p a (其中a 0)4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行.二、实数的大小比较1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.3.实数大小比较的特殊方法⑴设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则a b.⑵平方法:如3>2⑶商比较法:已知a>0、b>0,若b a>1,则a b ;若b a =1,则a b ;若b a <1,则a b.⑷近似估算法⑸找中间值法 4.n 个非负数的和为0,则这n 个非负数同时为0.例如:若a +2b +c =0,则a=b=c=0.3.整式及其运算1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式 (1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 相加,所得的结果作为合并后的系数,字母和字母的指数 。
数与式知识点大全(可编辑
数与式知识点大全(可编辑一、整数1.整数的定义和性质2.整数的加法和减法运算规则3.整数的乘法和除法运算规则4.整数的乘方运算规则5.整数的比较和排序方法二、有理数1.有理数的定义和性质2.有理数的加法和减法运算规则3.有理数的乘法和除法运算规则4.有理数的比较和排序方法三、实数1.实数的定义和性质2.实数的加法和减法运算规则3.实数的乘法和除法运算规则4.实数的比较和排序方法四、指数与对数1.指数的定义和性质2.指数运算法则3.对数的定义和性质4.对数运算法则五、代数式与观察式1.代数式和观察式的定义和性质2.代数式的简化和展开方法3.代数式的合并和分解方法4.代数式的因式分解和整理方法六、一次方程与一次不等式1.一次方程的定义和性质2.一次方程的解法和应用3.一次不等式的定义和性质4.一次不等式的解法和应用七、二次方程与二次不等式1.二次方程的定义和性质2.二次方程的求根公式和解法3.二次方程的判别式和根的性质4.二次不等式的定义和性质5.二次不等式的解法和应用八、分式1.分式的定义和性质2.分式的加法和减法运算规则3.分式的乘法和除法运算规则4.分式的化简和展开方法九、根式1.根式的定义和性质2.根式的加法和减法运算规则3.根式的乘法和除法运算规则4.根式的化简和展开方法十、函数1.函数的定义和性质2.函数的图像和性质3.函数的四则运算规则4.函数的复合和反函数十一、二项式与多项式1.二项式和多项式的定义和性质2.二项式的展开和化简方法3.多项式的加法和减法运算规则4.多项式的乘法和除法运算规则以上是数与式的主要知识点,涵盖了整数、有理数、实数、指数与对数、代数式与观察式、方程与不等式、分式、根式、函数、二项式与多项式等方面的内容。
通过学习和掌握这些知识点,可以更好地理解和应用数与式的概念和运算规则,提高数学能力和解题能力。
数与式的知识点总结PPT
乘法运算
两数相乘,同号得正,异号得 负,并把绝对值相乘。
除法运算
除以一个数等于乘以这个数的 倒数。
有理数性质及应用
稠密性
有理数在实数范围内是稠密的, 即任意两个不相等的实数之间都
存在有理数。
可数性
有理数集是可数的,即可以与自然 数集建立一一对应关系。
应用领域
有理数在数学、物理、化学、工程 等领域都有广泛应用,如分数运算 、百分比计算、速度、加速度等。
分式化简与求值技巧
分式的化简
通过约分、通分等技巧将复杂的分式 化简为简单的形式。
分式的求值
给定具体的数值或条件,通过代入计 算求出分式的值。
07
二次根式知识点
二次根式定义及性质
01
定义:形如$\sqrt{a}$( $a\geq0$)的代数式称为二
次根式。
02
性质
03
04
非负性:$\sqrt{a}\geq0$( $a\geq0$)。
合并同类项
将多项式中相同字母且相同指数的项合并在 一起。
应用公式化简
如平方差公式、完全平方公式等。
提取公因式
将多项式中各项都含有的公共因子提取出来 。
整体代入法
将某个复杂的代数式看作一个整体进行代入 化简。
06
分式知识点
分式定义及基本性质
分式定义
一般地,如果A、B表示两个整式,并且B中含有字母,那么式子A/B就叫做分式 ,其中A叫做分子,B叫做分母。
分式的基本性质
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。
分式运算规则
分式的加减运算
同分母的分式相加减,分母不变,把分子相加减;异分母的 分式相加减,先通分,变为同分母的分式,然后再加减。
九年级数学上册第一章知识点
九年级数学上册第一章知识点第一章数与式1. 整数的概念与性质- 整数的定义:整数的范围是正整数、零和负整数的集合。
- 整数的大小比较:同号相比较,绝对值大的整数大;异号相比较,正整数大于负整数。
- 整数的加减法运算:同号相加减,保留原来的符号并按照正整数的运算法则计算;异号相加减,转化为同号相减再取其相反数。
- 整数的乘法运算:同号相乘结果为正,异号相乘结果为负。
- 整数的除法运算:除法运算是乘法运算的逆运算,同号相除结果为正,异号相除结果为负。
2. 有理数的概念与性质- 有理数的定义:有理数是可以表示为两个整数的比的数,包括整数和分数。
- 有理数的分类:正有理数、负有理数、零是有理数的三种特殊情况。
- 有理数的大小比较:同号相比较,绝对值大的有理数大;异号相比较,正有理数大于负有理数。
- 有理数的加减法运算:同号相加减,保留原来的符号并按照正有理数的运算法则计算;异号相加减,转化为同号相减再取其相反数。
- 有理数的乘法运算:同号相乘结果为正,异号相乘结果为负。
- 有理数的除法运算:除法运算是乘法运算的逆运算,同号相除结果为正,异号相除结果为负。
3. 实数的概念与性质- 实数的定义:实数包括有理数和无理数。
- 无理数的定义:无理数是不能表示为两个整数的比的数,包括无限不循环小数和无限循环小数。
- 实数数轴:实数可用数轴表示,其中每一个点对应一个唯一的实数。
- 实数的大小比较:实数可用数轴上的大小比较方法进行。
- 实数的加减法运算:实数的加减法运算满足交换律和结合律。
- 实数的乘法运算:实数的乘法运算满足交换律和结合律。
- 实数的除法运算:除法运算是乘法运算的逆运算。
4. 数的开方与乘方- 数的开方:开方是求一个数的正平方根,结果是使得这个数乘以自己等于被开方数的非负实数。
- 平方根的性质:非负实数的平方根是有两个,一个是正数,一个是负数。
- 数的乘方:乘方是重复乘以一个数,有平方、立方等特殊情况。
九年级全册知识点
九年级全册知识点第一章:数与式1.1 整数整数的概念:整数由正整数、0、负整数组成,用符号“+”表示正整数、“-”表示负整数。
整数的运算规则:- 整数的加法:同号相加得同号,异号相加取绝对值大的数的符号,结果的绝对值为两数绝对值的和。
- 整数的减法:减去一个正整数等于加上一个负整数,减去一个负整数等于加上一个正整数,然后按加法运算规则计算。
- 整数的乘法:同号相乘为正,异号相乘为负,结果的绝对值为两数绝对值的积。
- 整数的除法:同号相除为正,异号相除为负,结果的绝对值为两数绝对值的商。
1.2 有理数有理数的概念:有理数是整数和分数的统称,可以用分数形式表示。
有理数的运算规则:- 有理数的加法与减法:先化为相同分母,再按整数的加法和减法运算规则计算。
- 有理数的乘法:分子乘以分子,分母乘以分母,再约分。
- 有理数的除法:将除法转化为乘法,即转化为分子乘以倒数的形式,然后按乘法运算规则计算。
第二章:代数式与方程式2.1 代数式与项代数式的概念:由数或字母和运算符号组成的表达式称为代数式,可以是一个数,也可以是若干个数和字母的积和和。
项的概念:代数式中用加号或减号连接的数或字母的乘积称为项。
2.2 方程式方程式的概念:两个代数式之间用等号连接的式子称为方程式,它表示两个代数式的相等关系。
解方程的方法:- 移项法:通过移动代数式的位置,将含有未知数的项移到一边,使方程式变为等价方程式,最后求解未知数的值。
- 相消法:利用等式两边相等,则它们的倍数也相等的性质,去掉方程式中的相同项,最后求解未知数的值。
第三章:平面图形的认识3.1 点、线、面的概念- 点:空间中没有长度、宽度和高度,只有位置的概念,用大写字母标记。
- 线:由无数个点连成的路径,没有宽度,用小写字母表示,两点确定一条直线。
- 面:由无数个点和线围成的平坦的二维图形,有长度和宽度。
3.2 角和三角形- 角的概念:由两条射线共同端点组成的图形称为角,用大写字母标记角的顶点。
初中数学数与式概念总结
代数第一部分数与式第一章实数一、实数的有关概念1、定义:有理数和无理数统称为实数。
2、实数的分类(1正实数实数零2、数轴:1)2314、绝对值:数轴上一点到原点的距离。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
若|a|=a,则a>0;若|a|=-a,则a<0.若|a|=0,a=0性质:1)绝对值具有非负性,即|a|≥02)若几个数的绝对值的和为0,则每个数都等于0.即|a|+|b|+|c|+…+|d|=0则a=b=c=…=d=03)互为相反数的两个数绝对值相等5、倒数:如果两个数的乘积为1,称这两个数互为倒数。
0没有倒数。
若a 和b 互为倒数,则ab=1,若ab=1,则a 和b 互为倒数。
6、平方根和立方根bb b 倒数法:b a b a <,则>>011;若b a b>,则<<01a 18、几种常见的非负数:1)绝对值的非负性:任意实数的绝对值都是非负的,即|a|≥02)平方的非负性:任意实数的平方都是非负的,即a 2≥0,a 2n ≥03)二、实数的运算:1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
异号两数相加,绝对值相等时和为0;注:互为相反数的两个数相加和为0。
一个数同0相加,仍得这个数。
加法交换律 a b b a +=+ )()(c b a c b a ++=++第二章整式第一节代数式及整式一、代数式:1、定义:用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注:122;二、1都是数字和字母乘积的形式的代数式叫做单项式。
单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1. 3.当单项式的系数为。
2、多项式:几个单项式的和叫做多项式。
多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
高一数学 第一章的知识点
高一数学第一章的知识点第一章:数与式高一数学第一节:整式与分式1. 整式的概念与性质整式是指由常数、变量及它们的乘、积、差、商等运算所组成的代数表达式。
整式具有以下性质:- 整式是有限个单项式相加减得到的。
- 整式的次数等于其中次数最高的单项式的次数。
- 同类项是具有相同字母部分的项。
2. 分式的概念与性质分式是指由整式的除法表示的代数表达式。
分式具有以下性质:- 分式由分子与分母组成,分子分母都是整式。
- 分式的值在未知数合法取值范围内有意义。
- 分式的约分和通分。
第二节:二次根式1. 平方根的定义和性质平方根是指一个数的平方等于该数的数值,可以用√a表示,其中a为非负实数。
- 一般正数的平方根都是无理数。
- 平方根的性质:非负实数a和b,有以下性质。
- 非负实数a的平方根是唯一的非负实数。
- 平方根的运算性质,如√(a*b) = √a * √b。
2. 二次根式的定义和性质二次根式是指由非负实数的平方根及其运算所组成的表达式。
- 二次根式的性质:非负实数a、b和任意非负整数m、n,有以下性质。
- √a * √b = √(a*b)- √(a^m) = a^(m/2) (m为偶数)- √(a^m) = |a^(m/2)| (m为奇数)- √(a/b) = √a / √b第三节:一次函数与一次不等式1. 一次函数的概念与性质一次函数是指自变量的最高次数是1的函数,通常表达为f(x) = kx + b,其中k和b为常数。
- 一次函数的图像是一条直线。
- 斜率表示函数变化的趋势,截距表示函数与y轴的交点。
2. 一次不等式的概念与求解方法一次不等式是指未知数的最高次数是1的不等式,通常形式为ax + b > 0 or ax + b < 0。
- 一次不等式的解集是满足不等式的实数集合。
- 求解一次不等式的方法:根据不等式的性质进行代数运算,得出解集的范围。
第四节:二次函数与一元二次方程1. 二次函数的概念与性质二次函数是指自变量的最高次数是2的函数,通常表达为f(x)= ax^2 + bx + c,其中a、b和c为常数且a≠0。
《数与式》知识点
《数与式》知识点一、什么是数与式1.数的概念:数是人们为了反映事物的多少而引进的概念,是数量的概念。
2.数的分类:自然数、整数、有理数、无理数、实数等。
3.式的概念:将数或数与字母的组合称为式。
二、数的分类1.自然数:包括0及0之后的所有正整数,记作N。
2.整数:包括正整数、负整数和0,记作Z。
3.有理数:包括整数和可以表示为两个整数之比的数,记作Q。
4.无理数:不能表示为两个整数之比的数,记作I。
5.实数:整数、有理数、无理数的统称,记作R。
三、整数运算性质1.加法的封闭性:整数的加法结果仍为整数。
2.加法的交换律、结合律和消去律:整数的加法满足交换律、结合律和消去律。
3.乘法的封闭性:整数的乘法结果仍为整数。
4.乘法的交换律、结合律和消去律:整数的乘法满足交换律、结合律和消去律。
5.加法与乘法的分配率:加法与乘法满足分配率。
四、有理数的性质1.有理数的存在性:任何两个不相等的有理数之间都存在无限多个有理数。
2.有理数的比较性:对于任意两个有理数,可以进行大小比较。
3.有理数的相反数和绝对值:对于任意有理数a,存在唯一有理数-b,使得a+b=0,且有理数的绝对值为非负数。
4.有理数的加法和乘法:有理数的加法满足交换律、结合律和消去律,乘法满足交换律、结合律和分配率。
五、式的运算性质1.代数式:只含有字母、数及加减乘除运算符号的式。
2.同类项:含有相同字母因子的项。
3.同类项合并:将同类项的系数相加或相减。
4. 分配律:a(b+c)=ab+ac,(a+b)c=ac+bc。
5.括号的运算:可以将加法和减法与括号中的项逐项进行运算。
6.用文字表示公式:利用文字和符号表示一个运算法则。
以上就是《数与式》的一些重要知识点,涵盖了数与式的概念、运算性质和分类等内容。
通过学习这些知识点,可以帮助我们更好地理解和运用数与式,进一步提高数学水平。
希望对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 数与式
知识点
一、实数的有关概念
1、 相反数:只有符号不同的两个数叫相反数,即a 的相反数为-a.注意:0的相反数为0;两
个相反数和为0.
2、 倒数:两个数的积为1,这两个数互为倒数.即a 的倒数为a
1.注意:0没有倒数. 3、 绝对值:a 的绝对值为|a|,|a|=⎩
⎨⎧≤-≥)0()0(a a a a 4、 数轴:规定了原点、正方向、单位长度的直线叫数轴。
5、 实数大小比较:正数大于负数,0大于负数,两个负数绝对值大的反而小
6、 无理数:无限不循环小数
7、 实数分类:实数⎪⎩⎪⎨⎧⎩⎨⎧数)
无理数(无限不循环小小数)(有限小数或无限循环分数
整数有理数 8、 科学记数法:把一个数写成a ×n 10的形式(其中1≤ a<10,n 是整数)
9、 近似数和有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。
10、 非负数:指 a ≥0,非负数有|a|,2a ,a .注意:几个非负数的和为0,则每一个非
负数为0.
二、实数的有关计算
1、 六种基本运算:加、减、乘、除、乘方、开方
2、 运算顺序:先算乘方、开方,再算乘、除,最后算加、减。
如果有括号,就先算括号;
同级运算应从左到右;如果符合运算律,可以变更运算顺序,简便计算。
3、 运算律:
(1) 加法交换律:a+b=b+a
(2) 加法结合律:(a+b)+c=a+(b+c)
(3) 乘法交换律:ab=ba
(4) 乘法结合律:(ab)c=a(bc)
(5) 乘法对于加法的分配律:(a+b)c=ac+bc
三、代数式有关概念
1、 代数式:用运算符号把数和表示数的字母连结而成的式子叫代数式。
注意:单独一个数
或字母也是代数式
2、 代数式的值:用数值代替代数式里的字母,计算后所得的结果,叫代数式的值。
3、 代数式分类:代数式⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧握二次根式)无理式(初中只要求掌分式
多项式(次数、项数)单项式(系数、次数)整式有理式
四、整式
1、 整式定义:没有除法运算,或虽有除法运算但除式中不含字母的有理式叫整式。
2、 整式运算:
(1)整式的加减法:实质是去括号后合并同类项
①同类项:所含字母相同,相同字母的指数也分别相同的项叫同类项
②合并同类项:把同类项的系数相加,字母和字母的指数不变。
注意:不是同类项不能合并。
③去括号法则: a+(b+c)=a+b+c a-(b+c)=a-b-c
④添括号法则:a+b+c=a+(b+c) a-b-c=a-(b+c)
(2)整式的乘、除法:
①幂的运算法则:
n m n m a a a +=∙ n m n m a a a -=÷(a ≠0)
mn n m a a =)( m m m a a b a ∙=∙)( m m m b a b a =)( ( b ≠0) 10=a (a ≠0) m m a
a 1=-(a ≠0) ②乘法公式:平方差公式22))((
b a b a b a -=-+
完全平方公式2222)(b ab a b a +±=±
③单项式乘以(或除以)单项式
④单项式乘以多项式:ac ab c b a +=+∙)(
⑤多项式乘以多项式:bn bm an am n m b a +++=++))((
⑥多项式除以单项式:m b m a m b a ÷+÷=÷+)(
五、因式分解
1、概念:把一个多项式化成几个多项式的积的形式叫因式分解
2、因式分解方法与步骤:
一提(公因式):)(c b a m mc mb ma ++=++
二用(公式):平方差公式))((22b a b a b a -+=-
完全平方公式222)(2b a b ab a ±=+±
三试(十字相乘)
四查:检查每一个因式都不能分解为止
六、分式
1、 分式;除式中含有分母的有理式叫分式
2、 分式基本性质:
,bm am b a = m
b m a b a ÷÷=(m ≠0) 3、 约分和通分:约分b a bm am =,通分d
c b a ,→b
d bc bd ad , 4、 分式运算 ①分式的加减法:同分母c b a c b c a ±=± 异分母bd
bc ad d c b a ±=± ②分式的乘除、乘方:,bd ac d c b a =∙ ,c d b a d c b a ⨯=÷ n n n b
a b a =)( 注意:分式运算时先把分子和分母能因式分解的都因式分解,然后进行约分和通分。
七、根式
1、 方根的有关概念
(1) 平方根: a 的平方根a ±(a ≥0),注意:负数没有平方根
(2) 算术平方根: a 的算术平方根a (a ≥0)
(3) 立方根: a 的立方根3a (a 为全体实数)
2、 二次根式
(1)式子a (a ≥0)叫二次根式
(2)二次根式的性质:①a a =2)((a ≥0) ②=2a |a|=⎩⎨⎧≤-≥)
0()0(a a a a ③)0,0(≥≥∙=∙b a b a b a ④b
a b a =(a ≥0,b >0) (3)最简二次根式:被开方数中每一个因式的指数都小于2,并且被开方数不含分母的二
次根式叫最简二次根式
(4) 同类二次根式:几个二次根式化为最简二次根式后,如果被开方数相同,这几个二次
根式叫同类二次根式
3、 二次根式的运算:
(1) 加减法:把各个二次根式化为最简二次根式后,再合并同类二次根式
(2) 乘除法:)0,0(≥≥∙=∙b a b a b a b
a b a =(a ≥0,b >0)
(3) 分母有理化:把分母中根号去掉叫分母有理化:
a a a a
∙=1
, )()(1b a b a b a b a ∙±=±。