初一绝对值练习题及答案
(完整版)初一绝对值练习(含例题、基础、拨高)
综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a |一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b |,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415 )A 、a 〉|b |B 、a<bC 、|a |〉|b |D 、|a|〈|b | 6、判断。
(1)若|a|=|b |,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( ) (4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______.9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
11、实数|b|的大小关系是_______。
12、比较下列各组有理数的大小。
(1)—0。
6○-60 (2)-3.8○—3。
9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b的值.14、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值.绝对值综合练习题二一、选择题1、 如果m 〉0, n<0, m 〈|n|,那么m ,n ,-m, -n 的大小关系( ) A.-n>m>-m 〉n B.m>n>-m 〉-n C 。
—n 〉m 〉n 〉—m D.n>m 〉-n 〉—m2、绝对值等于其相反数的数一定是…………………( ) A .负数 B .正数 C .负数或零 D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等; ②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有…………………………………………( ) A .0个 B .1个 C .2个 D .3个 4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和329、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数11、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
(完整版)绝对值练习题(含答案)
试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________.
三、解答题
11.计算
(1)│-6.25│+│+2.7│; (2)|-8 |-|-3 |+|-20|
12.比较下列各组数的大小:(1)-1 与- (2)- 与-0.3;
13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.
14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x- cd的值.
15.求| - |+| - |+…| - |的值.
16.化简│1-a│+│2a+1│+│a│(a>-2).
17.若│a│=3,│b│=4,且a<b,求a,b的值.
18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0这五个数由大到小用“>”依次排列出来.
7.绝对值和相反数都等于它本身的数是_________.
8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.
9.比较下列各对数的大小(用“)”或“〈”填空〉
(1)- _______- ;(2)-1 _______-1.167;(3)-(- )______-|- |.
2.3绝对值
一、选择题
1.下列说法中正确的个数是( )
(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3) 两个负数比较,பைடு நூலகம்对值大的反而小;(4)一个非正数的绝对值是它本身.
初一数学《绝对值》练习题及答案
初一数学《绝对值》练习题及答案
一、选择题
1.2021年嘉兴市-3的绝对值是
a3b-3c13d-13
2.绝对值等于其相反数的数一定是
a.负数
b.正数
c.负数或零
d.正数或零
3.若│x│+x=0,则x一定就是
a.负数
b.0
c.非正数
d.非负数
二、填空题
4.│3.14-|=.
5.绝对值大于3的所有整数存有.
6.数轴上表示1和-3的两点之间的距离是;
7.2021年深圳市若,则的值就是
a.b.c.d.
8.正式宣布排球比赛,对所采用的排球的`重量就是轻微规定的,检查5个排球的重量,少于规定重量的克数记为正数,严重不足规定重量的克数记并作负数,检查结果如下表中:
+15-10+30-20-40
表示哪个排球的质量不好一些即为重量最吻合规定重量?你怎样用段小宇的绝对值科学知识去表明这个问题?
10.写出绝对值大于2.1而不大于5的所有整数_
一个正数减小时,它的绝对值,一个负数减小时,它的绝对值.填上减小或增大
1.如果|a|=4,|b|=3,且a>b,求a,b的值.
2.1对于式子|x|+13,当x等同于什么值时,存有最小值?最小值就是多少?
2对于式子2-|x|,当x等于什么值时,有最大值?最大值是多少
3.写作以下解题过程,然后答题:
已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.现已知:|a|+a=0,求a的取值范围.
因为|a|+a=0,所以|a|与a互为相反数,所以|a|=-a,所以a的值域范围就是a0.
阅读以上解题过程,解答下题
未知:|a-1|+a-1=0,谋a的值域范围.。
初一七年级数学绝对值练习题及答案解析完整版
初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。
2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2)一般地①正数大于0,0大于负数,正数大于负数。
②两个负数,绝对值大的反而小。
小试牛刀:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a,则a。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x<y<0,那么︱x︱︱y︱。
7.︱x-1︱=3,则x =。
8.若︱x+3︱+︱y-4︱=0,则x+y=。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x︱<л,则整数x=。
11.已知︱x︱-︱y︱=2,且y=-4,则x=。
12.已知︱x︱=2,︱y︱=3,则x+y=。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x+1︱的最小值是,这时,x值为。
15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。
初一七年级数学绝对值练习题及答案解析
初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。
掌握绝对值的概念和性质对于解决数学问题非常重要。
下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。
1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。
所以绝对值的结果总是非负数。
对于a) |-5|,-5与0之间的距离是5,所以结果是5。
对于b) |0|,0与0之间的距离是0,所以结果是0。
对于c) |3|,3与0之间的距离是3,所以结果是3。
2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。
因为5与-5的绝对值都是5。
对于b)|2x - 3| = 7,需要分情况讨论。
当2x - 3 = 7时,解得x = 5。
当2x - 3 = -7时,解得x = -2。
3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。
当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。
当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。
所以综合起来,-5 < x < 1。
对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。
当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。
绝对值专项练习60题(有答案)8页
绝对值专项练习60题(有答案)8页1.正确的说法是:C。
整数分数统称有理数。
2.点所表示的数是1,因为距离-2有3个单位长度的点只有-5和1.3.| -4 | =4.4.x的值是-3,y的值可以是5或-5,所以x+y的值可以是2或-8.5.a的取值范围是a ≤ 0.6.点A到原点的距离是|a|。
7.这四个数中,负数的个数是2个,因为- a和-a + |a|是负数。
8.在-2,-| -7 |,-| +3 |中,负数有2个。
9.点B表示的数是-1,因为A和C表示的数的绝对值相等,所以它们的距离原点的距离相等,B表示的数是它们的中点,即-1.10.任何一个有理数的绝对值在数轴上的位置是整个数轴。
11.|a| ≥ |b|。
12.在数轴上表示x的点与原点的距离是3,所以它可以是3或-3.13.数a在数轴上的点应是在原点或原点的左侧,因为|a| = -a。
14.下列判断错误的是B。
一个负数的绝对值一定是正数,因为一个负数的绝对值是它的相反数,即正数。
15.下列判断正确的是B。
|a|一定是正数。
16.a>|a-b|>b。
17.a-b的值可以是3或-13,因为a和b的值不确定。
18.正确的说法是C和D,即若|a|=|b|,则a与b互为相反数;若一个数小于它的绝对值,则这个数为负数。
19.正确的选项是C,即非负数。
20.正确的选项是D,即3或-1.21.正确的选项是B,即1+a>a>1-b。
22.正确的选项是B,即负数。
23.正确的选项是A,即a>0.24.正确的选项是C,即6或-4.25.正确的选项是A,即若|a|=|b|,则a=b。
26.正确的选项是D,即2或4.27.化简结果为B,即-1.28.有无穷多个绝对值等于它本身的数。
29.正确的图形是B。
30.正确的选项是B,即b同号或其中至少一个为零。
31.正确的选项是D,即-7或1.32.正确的选项是A,即1.33.正确的选项是C,XXXm<n<0,则|m|>|n|。
初一数学《绝对值》专项练习(含答案)
绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。
【人教版】七年级数学:绝对值的概念与性质练习题及答案
绝对值的概念与性质一.选择题(共11小题) 1.|2023|(−= ) A .2023B .2023−C .12023−D .120232.2022−的绝对值是( ) A .2022−B .2022C .12022−D .120223.已知23x −的绝对值与6x +的绝对值相等,则x 的相反数为( ) A .9B .1C .1或9−D .9或1−4.若43a =−,4||3b =−,32c =,2d =−,则绝对值最大的数是( )A .aB .bC .cD .d5.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于( )A .5±B .0或1±C .0或5±D .1±或5±6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +−+的结果是( )A .2a b c ++B .b c −C .c b −D .2a b c −−7.如果|1|0a +=,那么2023a 的值是( ) A .2023−B .2023C .1−D .18.若0m ,则||2m m −+等于( ) A .22m +B .2C .22m −D .22m −9.若|5|5x x −=−,则x 的取值范围为( ) A .5x >B .5xC .5x <D .5x10.已知a 、b 、c 的大致位置如图所示:化简||||||a c b c a b −−−++的结果是( )A .2a −B .2aC .222a b c +−D .222a b c −+−11.若|1||2|0a b −++=,则a b +的值为( ) A .1−B .1C .3D .3−二.填空题(共4小题)12.若|3||2|0++−=,则2022a b+=.()a b13.若|2||3|0−++=,则a b的值为.a b14.已知|||2|0−++=,则x yx y y+=.15.已知|2|x−与|4|y+互为相反数,则x y+=.绝对值的概念与性质 答案一.选择题(共11小题) 1.|2023|(−= ) A .2023B .2023−C .12023−D .12023【解答】解:|2023|(2023)2023−=−−=. 故选:A .2.2022−的绝对值是( ) A .2022−B .2022C .12022−D .12022【解答】解:|2022|2022−=. 故选:B .3.已知23x −的绝对值与6x +的绝对值相等,则x 的相反数为( ) A .9B .1C .1或9−D .9或1−【解答】解:|23||6|x x −=+, 236x x ∴−=+,或23(6)x x −=−+,9x ∴=或1x =−,x ∴的相反数是9−或1.故选:C .4.若43a =−,4||3b =−,32c =,2d =−,则绝对值最大的数是( )A .aB .bC .cD .d【解答】解:数a 的绝对值为:44||33−=,数b 的绝对值为:44||33−=,数c 的绝对值为:33||22=,数d 的绝对值为:|2|2−=, 由于34223>>, 所以绝对值最大的数是2d =−, 故选:D .5.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于( )A .5±B .0或1±C .0或5±D .1±或5±【解答】解:由于a ,b 为有理数,0ab ≠, 当0a >、0b >时,且2||3235||a bM a b =+=+=. 当0a >、0b <时,且2||3231||a b M a b =+=−=−. 当0a <、0b >时,且2||3231||a bM a b =+=−+=. 当0a <、0b <时,且2||3235||a b M a b =+=−−=−. 故选:D .6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +−+的结果是( )A .2a b c ++B .b c −C .c b −D .2a b c −−【解答】解:由题意得:0b a c <<<,且||||c a >. 0a c ∴+>,0a b +<. ∴原式()a c a b =+−−−a c ab =+++2a b c =++.故选:A .7.如果|1|0a +=,那么2023a 的值是( ) A .2023−B .2023C .1−D .1【解答】解:|1|0a +=, 1a ∴=−,20232023(1)1a ∴=−=−. 故选:C .8.若0m ,则||2m m −+等于( ) A .22m + B .2 C .22m − D .22m −【解答】解:0m , ||m m ∴=−,原式222m m m =++=+. 故选:A .9.若|5|5x x −=−,则x 的取值范围为( ) A .5x >B .5xC .5x <D .5x【解答】解:|5|5x x −=−, 50x ∴−,即5x , 故选:B .10.已知a 、b 、c 的大致位置如图所示:化简||||||a c b c a b −−−++的结果是( )A .2a −B .2aC .222a b c +−D .222a b c −+−【解答】解:由数轴可得:0a c −<,0b c −<,0a b +<, 则原式()()()a c b c a b =−−+−−+ a c b c a b =−++−−−2a =−.故选:A .11.若|1||2|0a b −++=,则a b +的值为( ) A .1−B .1C .3D .3−【解答】解:|1||2|0a b −++=, 1a ∴=,2b =−,1(2)1a b ∴+=+−=−,故选:A .二.填空题(共4小题)12.若|3||2|0a b ++−=,则2022()a b += 1 . 【解答】解:|3||2|0a b ++−=, 3a ∴=−,2b =,则202220222022()(32)(1)1a b +=−+=−=. 故答案为:1.13.若|2||3|0a b −++=,则a b 的值为 9 . 【解答】解:|2||3|0a b −++=, 20a ∴−=,30b +=, 2a ∴=,3b =−,2(3)9a b ∴=−=,故答案为:9.14.已知|||2|0−++=,则x yx y y+=4−.【解答】解:|||2|0−++=,x y yx y∴−=,20y+=,y=−,x2∴=−,2∴+=−+−=−.2(2)4x y故答案为:4−.15.已知|2|x−与|4|y+互为相反数,则x y+=2−.【解答】解:|2|x−与|4|y+互为相反数,|2||4|0∴−++=,x yy+=,∴−=,40x20y=−x2∴=,4∴+=−=−,242x y故答案为:2−.。
初一数学绝对值练习题
初一数学绝对值练习题一、选择题:1. 绝对值的定义是:一个数的绝对值是其数值与0的距离,即|a|=______。
A. a(当a>0时)B. -a(当a<0时)A和B2. 计算|-5|的结果为:A. 5B. -5C. 0A3. 若|a|=3,则a可能的值是:A. 3B. -3C. 0A和B4. 绝对值的几何意义是表示数轴上一个数到原点的距离,若|-2|=2,则-2在数轴上的位置是:A. 原点B. 距离原点2个单位长度C. 距离原点3个单位长度B5. 已知|a+1|=4,那么a的值可能是:A. 3B. -5C. 5B二、填空题:6. 若|a|=5,则a的值是______。
答案:±57. 计算|-3.5|的结果为______。
答案:3.58. 若一个数的绝对值是它本身,则这个数是______。
答案:非负数9. 若|a-b|=b-a,则a和b的大小关系是______。
答案:a≤b10. 若|-x|=|x|,则x是______。
答案:非负数三、计算题:11. 计算|-7|+|-2|-|3|的值。
答案:7+2-3=612. 若|2x-3|=5,求x的值。
答案:x=4或x=-113. 已知|a|=2,|b|=3,且|a+b|=|a-b|,求a和b的值。
答案:a=2,b=3或a=-2,b=-3四、解答题:14. 一个数的绝对值是它到0的距离,如果一个数的绝对值是4,那么这个数可能是什么?答案:这个数可能是4或-4。
15. 已知|a|=2,|b|=1,且a+b=0,求a和b的值。
答案:由于a+b=0且|a|=2,|b|=1,可以推断出a=2,b=-1或a=-2,b=1。
16. 判断以下说法是否正确,并说明理由:(1)若|a|=|b|,则a=b。
(2)若|a|=|b|,则a=-b。
答案:(1)不正确,因为a和b可以是相反数,例如|-3|=|3|,但-3≠3。
(2)正确,因为如果a和b的绝对值相等,那么它们要么相等,要么互为相反数。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ =3 ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
绝对值专项练习60题(有答案)ok
绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A.﹣5B.1C.﹣1D.﹣5或13.计算:|﹣4|=()A.0B.﹣4C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或25.如果|a|=﹣a,那么a的取值范围是()A.a>0B.a<0C.a≤0D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A.1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A.1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A.1B.0C.﹣1D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A.原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A.|a|>|b|B.|a|≥|b|C.|a|<|b|D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A.3B.±3C.﹣3D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b|C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13B.13或﹣13C.3或﹣3D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A.正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A.3B.﹣1C.±1或±3D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A.正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A.a>0B.a≥0C.a<0D.自然数24.若|m﹣1|=5,则m的值为()A.6B.﹣4C.6或﹣4D.﹣6或425.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3C.4D.2或427.a<0时,化简结果为()A.B.0C.﹣1D.﹣2a28.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A.B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A.7或﹣7B.1或﹣1C.7或1D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.033.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n|C.若m<n<0,则|m|>|n|D.若|m|>|n|,则m>n34.绝对值小于4的整数有()A.3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A.7B.6C.5D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A.0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A.0B.3.14﹣πC.π﹣3.14D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A.a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31.∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0x﹣20≤0x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56.∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a=2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。
绝对值练习题及答案
绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。
答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。
答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。
答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。
解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。
解得 x = 11 或 x = -1。
8. 已知 |3x + 1| = 8,求 x 的值。
解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。
解得 x = 7/3 或 x = -3。
9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。
证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。
- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。
- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。
- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。
综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。
初一数学绝对值专项练习带答案解析
绝对值一.选择题(共16小题)1.相反数不不小于它自身旳数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数旳是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数旳一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不对旳旳是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数旳数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数旳一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣旳相反数是()A.﹣ B.C.±D .﹣8.﹣旳相反数是()A.B.﹣C .D .﹣9.下列各组数中,互为相反数旳是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴旳单位长度为1.如果点B,C表达旳数旳绝对值相等,那么点A表达旳数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所相应旳点,其中有一点是原点,并且MN=NP=PR=1.数a相应旳点在M与N之间,数b相应旳点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么如下判断对旳旳是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上旳位置如图所示,其相应旳数分别是a和b.对于如下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中对旳旳是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上旳位置如图所示,则下列各式中错误旳是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3旳绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|旳值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y旳值等于.19.﹣2旳绝对值是,﹣2旳相反数是.20.一种数旳绝对值是4,则这个数是.21.﹣旳绝对值是.22.如果x、y都是不为0旳有理数,则代数式旳最大值是.23.已知+=0,则旳值为.24.计算:|﹣5+3|旳成果是.25.已知|x|=3,则x旳值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们懂得,|m|=.目前我们可以用这一结论来化简具有绝对值旳代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|旳零点值).在实数范畴内,零点值m=﹣1和m=2可将全体实数提成不反复且不漏掉旳如下3种状况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分如下3种状况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决如下问题:(1)分别求出|x﹣5|和|x﹣4|旳零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|旳最小值.28.同窗们都懂得|5﹣(﹣2)|表达5与(﹣2)之差旳绝对值,也可理解为5与﹣2两数在数轴上所对旳两点之间旳距离,试摸索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件旳整数x,使得|x+5|+|x﹣2|=7成立旳整数是.(3)由以上摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|与否有最小值?如果有,写出最小值;如果没有,阐明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)旳值.30.求下列各数旳绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值旳知识回答问题:(1)探究:①数轴上表达5和2旳两点之间旳距离是;②数轴上表达﹣2和﹣6旳两点之间旳距离是;③数轴上表达﹣4和3旳两点之间旳距离是;(2)归纳:一般地,数轴上表达数m和数n旳两点之间旳距离等于|m﹣n|.(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表达数a旳点位于﹣4与3之间,求|a+4|+|a﹣3|旳值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|旳值最小,最小值是多少?请阐明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表达旳数分别为﹣3,0,1,点P为数轴上任意一点,其表达旳数为x.(1)如果点P到点A,点B旳距离相等,那么x=;(2)当x=时,点P到点A,点B旳距离之和是6;(3)若点P到点A,点B旳距离之和最小,则x旳取值范畴是;(4)在数轴上,点M ,N表达旳数分别为x1,x2,我们把x1,x2之差旳绝对值叫做点M,N之间旳距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度旳速度从点O沿着数轴旳负方向运动时,点E以每秒1个单位长度旳速度从点A沿着数轴旳负方向运动、点F 以每秒4个单位长度旳速度从点B沿着数轴旳负方向运动,且三个点同步出发,那么运动秒时,点P 到点E,点F旳距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表达有理数a、b,则A、B两点之间旳距离可以表达为|a﹣b|.根据阅读材料与你旳理解回答问题:(1)数轴上表达3与﹣2旳两点之间旳距离是.(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为.(3)代数式|x+8|可以表达数轴上有理数x与有理数所相应旳两点之间旳距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|旳最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a旳值.36.如图,数轴上旳三点A,B,C分别表达有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求旳值;(2)若b≠0,且,求旳值.参照答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21..22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|旳零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式旳最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范畴内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范畴内不成立)∴综上所述,符合条件旳整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)旳摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表达5和2旳两点之间旳距离是3,②数轴上表达﹣2和﹣6旳两点之间旳距离是4,③数轴上表达﹣4和3旳两点之间旳距离是7;(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表达数a旳点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间旳距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B旳距离之和是6,∴点P在点A旳左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B旳右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B旳距离之和最小,因此x旳取值范畴是﹣3≤x≤1;(4)设运动时间为t,点P表达旳数为﹣3t,点E表达旳数为﹣3﹣t,点F表达旳数为1﹣4t,∵点P到点E,点F旳距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为|x﹣7|,(3)代数式|x+8|可以表达数轴上有理数x与有理数﹣8所相应旳两点之间旳距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|旳最小值即|1007﹣(﹣1008)|=.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,由于a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,由于a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,由于a﹣b=﹣10<0,符题意;因此a+b=﹣6;④当a=﹣8,b=﹣2时,由于a﹣b=﹣6<0,符题意,因此a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一种0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
七年级数学上册《绝对值》练习题(附答案解析)
七年级数学上册《绝对值》练习题(附答案解析)一、选择题(共13小题)1. −3的绝对值是( )A. 3B. −3C. −13D. 132. −2的绝对值是( )A. 2B. −2C. ±2D. √23. 绝对值不大于3的正整数有( )A. 1个B. 2个C. 3个D. 4个4. 若∣x∣=∣y∣,则x与y的关系是( )A. 都是零B. 互为相反数C. 相等D. 相等或互为相反数5. 下列大小关系中错误的是( )A. −1<−1.5B. −12<−13C. ∣∣−12∣∣>∣∣−13∣∣ D. π>3.146. 小明和小兰玩游戏,小兰说出一个数,小明要说出它的相反数,如果小兰说出的数是−2021,那么小明要说出的数是( )A. 12021B. −12021C. 2021D. −20217. 如图,数轴上有A,B,C,D四个点,其中表示的数互为相反数的点是( )A. 点A与点DB. 点A与点CC. 点B与点DD. 点B与点C8. 已知∣x∣=3,∣y∣=8,且xy<0,则x+y的值等于( )A. ±5B. ±11C. −5或11D. −5或−119. 在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A. 2或6B. 5或3C. 2D. 310. 在−3,−1,1,3四个数中,比−2小的数是( )A. −3B. −1C. 1D. 311. 下面两个数互为相反数的是( )A. −(+2015) 与 +(−2015)B. −0.8 和 −(+0.8)C. −1.25 和 45 D. +(−0.02) 与 −(−150)12. −2021 的绝对值是 ( )A. −2021B. 2021C. ±2021D. 1202113. 有理数 a 、 b 、 c 表示的点在数轴上的位置如下图所示,则 ∣a +c∣−∣c −b∣−2∣b +a∣= ( )A. 3a −bB. −a −bC. a +3b −2cD. a −b −2c二、填空题(共7小题)14. −12 的相反数是 .15. 方程 ∣x −3∣=2 的解是 .16. 若 x <y <0,则 −x y ,x −y ,∣x ∣ ∣y ∣.(填“>”“<”或“=”)17. 若 ∣a ∣=5,b =3,且 a <b ,则 a = .18. 数轴上到原点的距离小于 3.2 的点中,表示整数的点共有 个.19. 若有理数 a ,b 满足 ab ≠0,则 m =a∣a∣+∣b∣b 的值为 .20. 如图,在数轴上,点 A 表示的数是 ,其绝对值是 ;点 B 表示的数是 ,其绝对值是 ;点 C 表示的数是 ,其绝对值是 .三、解答题(共5小题)21. 求下列各数的绝对值:−5,4.5,−0.5,+1,0,π−3.22. 若点 A ,B ,C ,D 分别表示 −(−52),−(+12),+(−4),+(+712),点 E ,F 分别表示 +(−4) 与 +(+712) 的相反数,请画出数轴并在数轴上标出点 A ,B ,C ,D ,E ,F .23. 如果 1<x <2,求代数式 ∣x−2∣x−2−∣x−1∣1−x +∣x∣x 的值.24. 已知a>0,b<0,且a+b<0,请利用数轴比较a,b,−a,−b的大小,并用“<”号连接.25. 比较下列每组数的大小:(1)−334和−323;(2)−∣∣212∣∣和−(−314);(3)−1327和−3029;(4)−5.34和−∣∣−513∣∣.参考答案与解析1. A【解析】负数的绝对值是它的相反数,−3的绝对值是3.2. A【解析】负数的绝对值是它的相反数,故−2的绝对值是2.3. C4. D【解析】因为∣x∣=∣y∣,所以x,y在数轴上对应的点到原点的距离相等,则x=y或x=−y.5. A【解析】∵−1>−1.5,故选项A错误;∵∣∣−12∣∣=12,∣∣−13∣∣=13,且12>13,∴−12<−13,选项B和C都是正确的.选项D中π>3.14故选项D正确.故选:A.6. C7. A【解析】由题图可知,点A,B,C,D到原点的距离分别为2,1,0.5,2,到原点的距离相等的点是点A与点D,故选A.8. A【解析】∵∣x∣=3,∣y∣=8,∴x=±3,y=±8.∵xy<0,∴当x=3时,y=−8,当x=−3时,y=8.当x=3,y=−8时,x+y=3+(−8)=−5;当x=−3,y=8时.x+y=−3+8=5.9. A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.10. A11. D【解析】−(+2015)=−2015,+(−2015)=−2015,两数相等,A不合题意;−(+0.8)=−0.8,两数相等,B不合题意;−1.25和45不是互为相反数,C不合题意;+(−0.02)=−150,−(−150)=150,两个数互为相反数,D符合题意.12. B13. C14. 12【解析】根据只有符号不同的两个数叫做互为相反数,可得一个数的相反数.所以−12的相反数是12.15. x1=1,x2=516. >,<,>17. −5【解析】因为∣a∣=5,所以a=±5.又b=3,且a<b,所以a=−5.18. 719. 2或0或−220. 5.5,5.5,−3,3,−0.5,0.521. 5;4.5;0.5;1;0;π−3.22. −(−52)=52,−(+12)=−12,+(−4)=−4,+(+712)=712,+(−4) 的相反数是 4,+(+712) 的相反数是 −712,画出的数轴及各点在数轴上的位置如图.23. 当 1<x <2 时,x >0,x −1>0,x −2<0,原式=∣x−2∣x−2+∣x−1∣x−1+∣x∣x=−1+1+1=1.24. ∵a >0,b <0,且 a +b <0, ∴∣b ∣>∣a ∣, 在数轴上表示为:b <−a <a <−b . 25. (1) −334<−323;(2) −∣∣212∣∣<−(−314); (3) −1327>−3029;(4) −5.34<−∣∣−513∣∣.。
初中数学绝对值专项练习题(有答案)
1、据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有℃2、甲、乙两人在一条笔直的公路上,同时从A地出发,记向右为正,甲走了+48m,乙走了—32m,则此时甲、乙之间的距离是m3、比较大小:--(填“>”、“<”或“=”)4、大于-2而小于3的非负整数是5、从正有理数集合中去掉正分数集合,得到集合.6、一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是多少?7、绝对值不小于3又不大于5的所有整数之和为__________8、写出一个值,使你写出的值为 .9、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 .10、如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是.11、下表是我市某一天在不同时段测得的气温情况:则这一天气温的极差是℃.时间0:00 4:00 8:00 12:00 16:00 20:00气温18℃17℃19℃26℃27℃22℃12、已知A,B两点之间的距离是5 cm,C是线段AB上的任意一点,则AC中点与BC中点间距离是.13、绝对值大于2,且小于4的整数有_______.14、若│a—4│+│b+5│=0,则a—b=15、数轴上表示数和表示的两点之间的距离是__________。
二、简答题16、某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( )A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+10017、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
最新初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做 .2.绝对值等于5的数有 .3.若︱a︱= a , 则 a .4.的绝对值是2004,0的绝对值是 .5一个数的绝对值是指在上表示这个数的点到的距离.6.如果 x < y < 0, 那么︱x ︱︱y︱.7.︱x - 1 ︱ =3 ,则 x =.8.若︱x+3︱+︱y -4︱= 0,则 x + y = .9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱.10.︱x ︱<л,则整数x = .11.已知︱x︱-︱y︱=2,且y =-4,则 x = .12.已知︱x︱=2 ,︱y︱=3,则x +y = .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= .14. 式子︱x +1 ︱的最小值是,这时,x值为 .15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值.19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱ .2.绝对值等于5的数有±5 .3.若︱a︱= a , 则 a ≥ 0 .4.±2004 的绝对值是2004,0的绝对值是0 .5.一个数的绝对值是指在数轴上表示这个数的点到原点的距离. 6.如果 x < y < 0, 那么︱x ︱> ︱y︱.7.︱x -1 ︱ =3 ,则 x =4或-2 .x -1 = 3,x = 4 ;—(x -1) = 3,x = -28.若︱x+3︱+︱y -4︱= 0,则 x + y = 1 .x+3 = 0 ,x = -3;y-4= 0,y = 4;x + y = 19.有理数a ,b在数轴上的位置如图所示,则a < b,︱a︱> ︱b︱.10.︱x ︱<л,则整数x = 0, ±1, ±2, ±3 .11.已知︱x︱-︱y︱=2,且y =-4,则 x = ±6 .︱x︱-4 = 2,︱x︱= 6,x = ±612.已知︱x︱=2 ,︱y︱=3,则x +y = ±1, ±5 .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 3 ..互为相反数:|x+1|+|y-2|=0x+1=0,x=-1;y-2=0,y=2 ;︱x ︱+︱y︱= 1 + 2 = 314. 式子︱x +1 ︱的最小值是 0 ,这时,x值为—1 .15. 下列说法错误的是( c )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数错:0的绝对值是0,非正非负.D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( A )(1) 绝对值是它本身的数有两个,是0和1错:所有非正数的绝对值都是它本身.(2) 任何有理数的绝对值都不是负数 对:任何有理数的绝对值都是正数或0(3) 一个有理数的绝对值必为正数 错:0非正非负.(4) 绝对值等于相反数的数一定是非负数错:绝对值等于相反数的数一定是非正数.A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( B )A -1B 0C 1D 2解析:最小的正整数:1,最大的负整数:-1,绝对值最小的有理数:0拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值. 解:a,b 互为相反数:b=-ac, d 互为倒数:d=1/c| m | = 2: m=±2a b a b c+++ + m -cd =0 + (±2) - 1=1或-319.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,—5, —15 ,+ 30 ,—20 ,—16 ,+14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?西最后停车位置解:总共行驶路程为:| +10 | + | —5 | + | —15 | + | + 30 | + | —20 | + | —16 | + | +14 |=110(公里)油耗为:110*(3/100)=3.3(升)(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?解:A地为原点:+10 —5 —15+ 30 —20 —16 +14 = —2负方向为西方,他在A点的西方,距A点2千米.20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接解:| A | =| 0.01 | = 0.01| B | =| —0.02 | = 0.02| C | =| —0.01 | = 0.01| D | =| 0.04 | = 0.01| E | =| —0.03| = 0.03根据绝对值计算结果,A,B球最接近标准.。
完整版)绝对值练习题(含答案)
完整版)绝对值练习题(含答案)2.3 绝对值一、选择题1.下列说法中正确的个数是(。
)1) 一个正数的绝对值是它本身;2) 一个非正数的绝对值是它的相反数;3) 两个负数比较,绝对值大的反而小;4) 一个非正数的绝对值是它本身。
A。
1个 B。
2个 C。
3个 D。
4个2.若 -│a│ = -3.2,则 a 是(。
)A。
3.2 B。
-3.2 C。
±3.2 D。
以上都不对3.若│a│=8,│b│=5,且 a+b>0,那么 a-b 的值是(。
) A。
3 或 13 B。
13 或 -13 C。
3 或 -3 D。
-3 或 -134.一个数的绝对值等于它的相反数的数一定是(。
)A。
负数 B。
正数 C。
负数或零 D。
正数或零5.当 a<0 时,化简 a+|a| 的结果为(。
)A。
3a/2 B。
0 C。
-1 D。
-2a/3二、填空题6.绝对值小于 5 而不小于 2 的所有整数有_________。
4,-3,-2,2,3,47.绝对值和相反数都等于它本身的数是_________。
8.已知│a-2│+(b-3)+│c-4│=0,则 3a+2b-c=_________。
179.比较下列各对数的大小(用“)”或“〈”填空〉1) -3/2 〈 -3211/1000.2) -1 〈 -1.167.3) -5/369 〈 |-1|。
10.有理数 a,b,c 在数轴上的位置如图所示:试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________。
2三、解答题11.计算1) │-6.25│+│+2.7│=6.25+2.7=8.95;2) |-8|+|-3|+|-20|=8+3+20=31.12.比较下列各组数的大小:1) -1/2 〈 -2/3 〈 -0.3;2) -2/33 〈 -2 〈 -3/10.13.已知│a-3│+│-b+5│+│c-2│=0,计算 2a+b+c 的值。
a+b+c=0,代入得 2a+b+c=2a-2b+8.14.如果 a、b 互为相反数,c、d 互为倒数,x 的绝对值是1,求代数式 x+(a+b)x-•cd 的值。
绝对值练习题及答案
绝对值练习题及答案1. 计算下列各数的绝对值:- |-5|- |3|- |-12|- |0|2. 如果一个数的绝对值是5,那么这个数可能是什么?3. 解释绝对值的性质,并给出一个例子。
4. 计算以下表达式的值:- |-7 - 3|- |-8 + 2|5. 如果 |a| = 4,a 可能等于什么?6. 一个数的绝对值是它本身,这个数可能是什么?7. 计算以下表达式的值:- |-x| 如果 x = 3- |-y| 如果 y = -48. 如果 |x - 5| = 3,求 x 的所有可能值。
9. 一个数的绝对值是它相反数的3倍,这个数是什么?10. 计算以下表达式的值:- |-2x| 如果 x = -1答案1. 计算结果如下:- |-5| = 5- |3| = 3- |-12| = 12- |0| = 02. 如果一个数的绝对值是5,那么这个数可能是5或-5。
3. 绝对值的性质包括:- 非负性:绝对值总是非负的。
- 正数的绝对值是其本身。
- 负数的绝对值是其相反数。
- 零的绝对值是零。
例子:|-7| = 7,|7| = 7,|0| = 0。
4. 计算结果如下:- |-7 - 3| = |-10| = 10- |-8 + 2| = |-6| = 65. 如果 |a| = 4,a 可能等于4或-4。
6. 如果一个数的绝对值是它本身,这个数可能是正数或零。
7. 计算结果如下:- |-x| = 3 当 x = 3- |-y| = 4 当 y = -48. 如果 |x - 5| = 3,那么 x - 5 = 3 或 x - 5 = -3,解得 x = 8 或 x = 2。
9. 如果一个数的绝对值是它相反数的3倍,设这个数为 a,那么 |a| = 3|-a|,解得 a = 0。
10. 计算结果如下:- |-2x| = 2 当 x = -1通过这些练习题,学生可以更好地理解绝对值的概念,并提高解决相关问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一绝对值练习题及答案初一数学上册学习资料第三讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论绝对值几何意义的使用绝对值的定义:绝对值的性质:绝对值的非负性,可以用下式表示|a|=若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,若|a|=|b|,则|ab|= ;|ab|= ;|a|2= = ;|a+b||a|+|b| |a-b|||a|-|b|| |a|+|b||a+b| |a|+|b||a-b|[例1]绝对值大于2.1而小于4.2的整数有多少个?若ab A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab <0下列各组判断中,正确的是A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2=设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?[巩固] 绝对值小于 3.1的整数有哪些?它们的和为多少?[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确A.a>bB.a=bC.a [巩固] 若|x-3|=3-x,则x的取值范围是____________[巩固] 若a>b,且|a| A.a<0B.a>0 C.b<0 D.b >0[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?[例2]若3|x-2|+|y+3|=0,则若|x+3|+2=0,求2+2=0,则;若|x-a|+2=0,则;若|x-a|+|x-b|=0,则;已知x是有理数,且|x|=|-4|,那么x=____已知x是有理数,且-|x|=-|2|,那么x=____已知x是有理数,且-|-x|=-|2|,那么x=____如果x,y表示有理数,且x,y满足条件|x|=5,|y|=2,|x-y|=y-x,那么x+y的值是多少?巩固|x|=4,|y|=6,求代数式|x+y|的值3解方程:|x?5|?5?0 |4x+8|=1 |3x+2|=-1y的值是多少? x?4n)的值 y?x已知|x-1|=2,|y|=3,且x与y互为相反数,求13x2?xy?4y的值若已知a与b互为相反数,且|a-b|=4,求a?ab?b a2?ab?1的值已知a=-1|2a?4b2,b=-13,求|2?4|a?2b|?2|4b?3?|2a?3||的值若|a|=b,求|a+b|的值化简:|a-b|化简:|3.14-π| |8-x|有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| C B 0 A已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|数a,b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||若a b?0,化简|a|-|b|+|a+b|+|ab|若-2≤a≤0,化简|a+2|+|a-2|已知x0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值如果0 已知x 若a ||3a|?a|若abc≠0,则abc|a|?|b|?|c|的所有可能值有理数a,b,c,d,满足|abcd||a||b||c||d|abcd??1,求a?b?c?d的值化简|x+5|+|2x-3|化简:|2x-1|求|m|+|m-1+|m-2|的值例1求下列各数的绝对值:-38; 0.15;a; 3b;a-2; a-b.例2判断下列各式是否正确:|-a|=|a|;-|a|=|-a|;若|a|=|b|,则a=b;若a=b,则|a|=|b|;若|a|>|b|,则a>b;若a>b,则|a|>|b|;若a>b,则|b-a|=a-b.例3判断对错.如果一个数的相反数是它本身,那么这个数是0.如果一个数的倒数是它本身,那么这个数是1和0.如果一个数的绝对值是它本身,那么这个数是0或1.如果说“一个数的绝对值是负数”,那么这句话是错的.如果一个数的绝对值是它的相反数,那么这个数是负数.例已知2+|b+3|=0,求a、b.例5填空:若|a|=6,则a=______;若|-b|=0.87,则b=______;若x+|x|=0,则x是______数.例判断对错:没有最大的自然数.有最小的偶数0.没有最小的正有理数.没有最小的正整数.有最大的负有理数.有最大的负整数-1.没有最小的有理数.有绝对值最小的有理数.例比较下列每组数的大小,在横线上填上适当的关系符号|-0.01|______-|100|;-______-|-3|;-[-]_______0;当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围:|x|≥4;|x|<3;2<|x|≤5.例求绝对值不大于2的整数;已知x是整数,且2.5<|x|<7,求x.例10解方程:已知|14-x|=6,求x;*已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:|-38|=38;|+0.15|=0.15;∵a<0,∴|a|=-a;∵b>0,∴3b>0,|3b|=3b;∵a<2,∴a-2<0,|a-2|=-=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数一个结论是错误的,只要能举出反例即可.如第小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第小题中取a=-1,b=0,在第、小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第、、小题要注意字母取零的情况.2,解:其中第、、、小题不正确,、、、小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:T. F.-1的倒数也是它本身,0没有倒数. F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0.T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的.F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点:必须“紧扣”概念进行判断;要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵2≥0,|b+3|≥0,又2+|b+3|=0∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.,解:∵|a|=6,∴a=±6;∵|-b|=0.87,∴b=±0.87;∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:6,解:T.F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数,所以0不是最小的偶数,偶数没有最小的.T. F.有最小的正整数1. F.没有最大的负有理数. T. T. T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较.,解:|-0.01|>-|100|;->-|-3|;-[-]<0;当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.绝对值综合练习题一姓名___________1、有理数的绝对值一定是A、正数B、整数C、正数或零D、自然数、绝对值等于它本身的数有A、0个B、1个C、2个D、无数个、下列说法正确的是A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数、比较 1112、3、4的大小,结果正确的是A、111112<3<4B、12<4<3C、1<1<1D、1<1<14233245、若|a|=|b|,则a=b。
若a为任意有理数,则|a|=a。
如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数)|_13|和_13互为相反数。
7、相反数等于-5的数是______,绝对值等于5的数是________。
、-4的倒数的相反数是______。
、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
11、实数的大小关系是_______。
12、比较下列各组有理数的大小。
-0.60○-60-3.8○-3.9○|-2| ?34○?5413、已知|a|+|b|=9,且|a|=2,求b的值。
14、已知|a|=3,|b|=2,|c|=1,且 a 绝对值综合练姓名:一、选择题1、如果m>0, nm>-m>nB.m>n>-m>-n C.-n>m>n>-mD.n>m>-n>-m、绝对值等于其相反数的数一定是A.负数 B.正数 C.负数或零 D.正数或零、给出下列说法: ①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有A.0个 B.1个 C.2个 D.3个、如果,则的取值范围是A、1B、-1C、0D、不存在、在有理数中,绝对值等于它本身的数有A、1个B、2个C、3个D、无数多个))8、下列各数中,互为相反数的是A、│-│和-B、│-│和-C、│-│和D、│-│和3233233223222329、下列说法错误的是A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数 10、│a│= -a,a一定是A、正数B、负数C、非正数D、非负数 11、下列说法正确的是A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。