高考数学复习重点知识点汇总
高考数学知识点总结(全而精-一轮复习必备)
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
数学高考知识点重点
数学高考知识点重点高考数学知识点重点一、函数及其图像1. 函数与映射函数的概念及性质,映射的概念与判断2. 函数的表示与运算函数的解析式、图像、性质;函数的四则运算、复合与反函数3. 初等函数幂函数、指数函数、对数函数、三角函数、反三角函数等初等函数及其性质二、数列与数学归纳法1. 等差数列与等比数列数列的概念、通项公式、求和公式、性质及应用2. 递推数列与数学归纳法递推数列的概念与性质,利用数学归纳法证明命题三、函数的极限与连续性1. 函数的极限函数的极限定义、性质与计算方法;无穷大与无穷小概念2. 函数的连续性函数连续性的概念、性质与判断条件;间断点的分类与分析四、导数与微分1. 导数的概念与运算法则导数定义、基本性质、四则运算法则、复合函数求导2. 函数的几何意义与应用函数图像的切线与法线,导数在图像研究中的应用;利用导数解分析几何问题3. 微分学基本定理函数的可微性与导数的等价性定理;微分的概念与计算方法五、不等式与线性规划1. 一元二次不等式一元二次不等式的解法及应用2. 线性规划线性规划的基本概念、最优解的确定与图形解法六、概率与统计1. 随机试验与事件随机试验的概念、样本空间、事件及其运算2. 概率的概念与性质概率的定义、性质、计算方法及应用3. 随机变量与分布律随机变量的概念与性质,离散型随机变量的分布律与期望4. 抽样与统计推断样本、抽样的方法与调查法,统计推断中的基本概念七、数与数论1. 整除与同余整数的整除性及性质,同余关系的定义与应用2. 递推与逼近递推数列的构造及性质,实数逼近的基本性质与方法八、向量与立体几何1. 向量的概念与运算向量的定义、运算法则及性质;向量的线性运算与几何应用2. 空间几何中的基本概念平面与直线的方程、位置关系、线面垂直与平行关系的判断以上是数学高考的重点知识点,掌握这些知识将有助于应对高考数学考试。
在学习过程中,建议多做相关的练习题,并及时解答疑惑,加深对知识的理解与运用。
75个高中数学高考知识点总结
75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。
2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。
4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。
5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。
6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。
7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。
8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。
9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。
10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。
11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。
12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。
13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。
14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。
15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。
以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。
高考数学必考知识点归纳
高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高考数学必考知识点归纳全
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学最全知识点
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
高考数学高频必背知识点(掌握)
高考数学高频必背知识点(把握)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,下面我给大家带来高考数学高频必背知识点,期望大家宠爱!高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
高考数学知识点全归纳
高考数学知识点全归纳
一、函数与方程
1.一次函数与二次函数的性质及应用
2.指数函数与对数函数的性质及应用
3.三角函数的性质及应用
4.常用函数及其图像
5.函数的定义与性质
6.方程与不等式的解法
7.方程与不等式的应用
二、数列与数学归纳法
1.数列的概念与性质
2.等差数列与等比数列的性质及应用
3.递推数列与通项公式
4.数学归纳法的原理与应用
三、平面几何
1.平面图形的性质与判定
2.平面图形的面积与周长
3.空间几何的基本概念与性质
4.空间几何的体积与表面积
5.空间几何的投影与旋转
四、立体几何
1.空间几何的基本概念与性质
2.空间几何的体积与表面积
3.空间几何的投影与旋转
4.立体几何的组合图形
5.立体几何的体积计算
五、概率与统计
1.概率的基本概念与性质
2.事件与概率的计算
3.概率的应用与问题解决
4.统计的基本概念与性质
5.统计的数据处理与分析
六、解析几何
1.平面直角坐标系与距离计算
2.点、线、平面的位置关系与性质
3.曲线的方程与性质
4.二次曲线的方程及性质
5.解析几何的应用与问题解决
七、数论与离散数学
1.整数与整数运算
2.素数与最大公约数、最小公倍数
3.同余与模运算
4.离散数学的基本概念与性质
5.离散数学的应用与问题解决
八、数学思维与证明
1.数学思维与问题解决方法
2.定理、引理、推论的证明方法
3.逻辑与证明的基本概念与性质
4.数学思想与发展历程。
高考数学 知识点汇总
高考数学知识点汇总一、代数与函数1. 整式与分式a) 同类项与合并同类项b) 四则运算规则c) 分式的基本性质2. 方程与不等式a) 一元一次方程与一元一次不等式的解法b) 一元二次方程与一元二次不等式的解法c) 绝对值方程与不等式的解法3. 函数基本概念a) 函数的定义与性质b) 一次函数与二次函数的图像、性质与应用c) 三角函数的定义、性质及图像4. 幂与指数函数a) 幂函数的性质与图像b) 指数函数的性质与图像c) 对数函数的性质与图像二、空间与几何1. 直线与曲线a) 直线的性质与方程b) 圆的性质与方程c) 椭圆、双曲线、抛物线的性质2. 空间图形a) 空间直角坐标系与三维空间几何体的坐标表示b) 等腰三角形、直角三角形、正方体、棱锥等的性质与计算3. 相似与相等a) 三角形相似的判定与性质b) 直线与平面的相似性质c) 圆的相似性质4. 三角函数a) 三角函数的定义与性质b) 三角函数的图像、周期性与性质c) 三角函数的应用三、概率与统计1. 概率基本概念a) 随机事件与样本空间的定义b) 概率的基本性质与计算c) 条件概率与事件独立性的判定2. 排列与组合a) 排列与组合的基本原理与性质b) 组合恒等式的应用c) 排列与组合在计数问题中的应用3. 随机变量与概率分布a) 随机变量的定义与性质b) 离散型与连续型随机变量的概率分布c) 期望与方差的计算4. 统计基本概念a) 总体与样本的定义b) 参数与统计量的区别与计算c) 样本调查与统计推断的基本原理四、向量与三角恒等式1. 向量的基本概念与运算a) 向量的定义与性质b) 向量的加法、减法与数量乘法c) 向量的模与方向的计算2. 平面向量的坐标表示a) 平面向量的坐标表示方式b) 向量之间的线性运算c) 向量的数量积与夹角的计算3. 三角恒等式与解三角形a) 三角函数的基本关系式b) 特殊角的三角函数值c) 解三角形的基本原理与应用以上是高考数学的知识点汇总,主要涵盖了代数与函数、空间与几何、概率与统计、向量与三角恒等式等内容。
高考数学知识点归纳总结大全
高考数学知识点归纳总结大全高考数学是众多考生面临的重要挑战之一,涵盖了丰富而广泛的知识点。
以下为大家详细归纳总结高考数学的主要知识点,帮助大家更好地复习和掌握。
一、函数1、函数的概念包括函数的定义、定义域、值域和对应法则。
要理解函数是一种特殊的对应关系,一个自变量只能对应一个函数值。
2、函数的性质单调性:函数在某个区间上单调递增或单调递减的性质。
奇偶性:判断函数是奇函数、偶函数还是非奇非偶函数。
周期性:函数按照一定规律重复出现的性质。
3、常见函数一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数等。
要掌握它们的图像、性质和表达式。
二、三角函数1、三角函数的定义正弦函数、余弦函数、正切函数等的定义,以及它们在单位圆中的表示。
2、三角函数的图像和性质包括周期性、单调性、奇偶性、值域和定义域等。
3、三角恒等变换同角三角函数的基本关系、两角和与差的三角函数公式、二倍角公式等,用于化简和求值。
三、数列1、数列的概念数列的定义、通项公式和前 n 项和公式。
2、等差数列和等比数列等差数列的通项公式、前 n 项和公式,以及性质;等比数列的通项公式、前 n 项和公式,以及性质。
四、不等式1、不等式的性质包括传递性、加法和乘法法则等。
2、一元二次不等式求解的方法和步骤,以及与二次函数的关系。
3、均值不等式用于求最值和证明不等式。
五、立体几何1、空间几何体棱柱、棱锥、圆柱、圆锥、球等的结构特征和表面积、体积公式。
2、空间直线与平面的位置关系平行、垂直的判定和性质定理。
六、解析几何1、直线方程点斜式、斜截式、两点式、一般式等直线方程的形式和应用。
2、圆的方程标准方程和一般方程,以及直线与圆的位置关系。
3、椭圆、双曲线、抛物线它们的标准方程、性质和图像特点。
七、概率与统计1、随机事件和概率基本事件、古典概型和几何概型的概率计算。
2、统计抽样方法、用样本估计总体(均值、方差、众数、中位数等)。
八、导数1、导数的定义和几何意义了解导数是函数在某一点的变化率,以及切线的斜率。
高考数学必考知识点汇总
高考数学必考知识点汇总高考数学必考知识点一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.2.绝对值不等式的解法及其几何意义是什么?3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
2024高考数学知识点归纳总结
2024高考数学知识点归纳总结一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。
- 集合的运算:交集、并集、补集的定义、性质和运算规则。
例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。
2. 常用逻辑用语。
- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。
例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。
2. 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学知识点总结(最新11篇)
高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。
需要特别注意能够对含有一个量词的全称命题进行否定。
2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。
3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。
第二部分的位置关系侧重于利用空间向量来进行证明和计算。
4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。
5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。
6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。
我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。
7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。
会用基本不等式解决简单的最大(小)值问题。
9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。
10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。
11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。
要想成功就必须付出汗水。
12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。
高考数学必考知识点大全
高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高考数学重要知识点归纳总结
高考数学重要知识点归纳总结一、函数与方程1. 函数的概念和性质- 定义:函数是一种关系,每个自变量都对应唯一的因变量。
- 性质:可逆性、奇偶性、周期性等。
2. 四则运算与复合函数- 加法、减法、乘法、除法的运算规则。
- 复合函数的构成和求值方法。
3. 一次函数和二次函数- 一次函数:形如y = kx + b的函数,其特点和图像。
- 二次函数:形如y = ax^2 + bx + c的函数,其特点和图像。
4. 指数与对数函数- 指数函数:形如y = a^x的函数,指数规律和图像特点。
- 对数函数:形如y = loga(x)的函数,对数规律和图像特点。
5. 三角函数- 正弦、余弦、正切函数的定义和性质。
- 周期性、图像特点和恒等式。
二、空间几何1. 平面与立体图形- 二维平面图形:三角形、四边形、圆等的性质和计算公式。
- 三维立体图形:长方体、正方体、圆柱体等的性质和计算公式。
2. 空间直线和平面- 空间直线的方程和性质。
- 平面方程的表示方法和性质。
3. 空间向量- 向量的定义和表示方法。
- 向量的加法、减法和数量积的计算方法。
4. 空间几何应用- 距离公式和角度计算。
- 位置关系、相交关系和投影关系的判定方法。
三、概率与统计1. 随机事件与概率- 随机事件的定义和性质。
- 概率的定义和计算方法。
2. 概率统计- 频率和概率的关系和计算方法。
- 抽样调查和数据分析的基本概念。
3. 正态分布和抽样分布- 正态分布的特点和应用。
- 抽样分布的概念和统计推断方法。
4. 统计图表和误差分析- 数据的整理和统计图表的绘制方法。
- 误差来源和误差分析方法。
四、解析几何1. 平面直角坐标系与曲线方程- 坐标系的建立和曲线方程的表示。
- 直线、圆、抛物线、椭圆、双曲线方程的特点和图像。
2. 参数方程与极坐标方程- 参数方程的概念和表示方法。
- 极坐标方程的概念和性质。
3. 弧长、曲率和切线方程- 弧长的计算方法和性质。
高考数学重点知识点归纳总结大全
高考数学重点知识点归纳总结大全一、函数与方程1. 函数的性质和图像- 定义域、值域和奇偶性- 函数的图像与平移、伸缩关系2. 一次函数与二次函数- 一次函数的表示和性质- 二次函数的标准式、一般式和顶点式- 二次函数的图像与平移、翻转、伸缩关系3. 幂函数与指数函数- 幂函数的表示和性质- 指数函数的表示和性质- 幂函数与指数函数的图像特点4. 对数函数与指数方程- 对数函数的定义和性质- 对数函数的图像与平移、伸缩关系- 指数方程的解法5. 三角函数与三角方程- 基本三角函数的定义和性质- 三角函数的图像与平移、伸缩关系- 三角方程的解法二、平面几何1. 直线和角度- 直线的性质和分类- 直线与角度的关系2. 三角形- 三角形的分类和性质- 三角形的周长和面积计算方法- 三角形中的角平分线、垂心、外心等概念3. 四边形和多边形- 四边形的分类和性质- 多边形的内角和外角和公式- 多边形的对称性和相似性4. 圆的性质- 圆的元素和性质- 弧长、扇形面积、圆心角的计算方法 - 圆与直线的位置关系三、立体几何1. 空间几何基本概念- 空间的基本元素和性质- 点、线、面的特征和分类2. 空间图形的计算- 直线与平面的位置关系- 线段、面积、体积的计算方法- 空间图形的投影和截面3. 空间几何的应用- 空间几何与解题方法- 空间几何在实际问题中的应用四、概率与统计1. 概率的基本概念- 随机事件与概率的关系- 概率的性质和计算方法2. 随机变量与概率分布- 随机变量的概念和分类- 离散型随机变量的概率分布- 连续型随机变量的概率密度函数3. 统计与抽样- 样本与总体的概念- 统计参数与统计量的计算方法- 抽样方法和样本调查的应用4. 统计分析与推断- 统计数据的处理和分析方法- 参数估计和假设检验的原理和步骤 - 统计推断的应用和局限性五、数列与数学归纳法1. 数列的概念和性质- 数列的定义和分类- 数列的通项公式和递推关系- 数列的性质和特征2. 数学归纳法的应用- 数学归纳法的原理和步骤- 数学归纳法在数列证明和推理中的应用 - 数学归纳法的一般性质和局限性六、解析几何1. 坐标系与向量- 坐标系的原理和基本性质- 向量的定义和运算法则- 坐标系和向量与几何图形的关系2. 平面与直线- 平面的方程和性质- 直线的方程和性质- 平面和直线的位置关系和相交性质3. 空间中的几何体- 空间几何体的元素和性质- 空间几何体的投影和截面- 空间几何体的相似性和对称性4. 解析几何的应用- 解析几何和实际问题的关系- 解析几何在几何证明和计算中的应用- 解析几何的优点和局限性以上是高考数学的重点知识点归纳总结,希望对你的复习有所帮助。
高考重点的数学知识点总结
高考重点的数学知识点总结一、基本概念和运算1.数的基本概念2.数的分类及数的性质3.四则运算4.分数与分数的加减乘除5.无理数与实数6.绝对值7.等式与不等式8.整式的加减乘除9.方程的基本概念10.一元二次方程11.函数的概念二、平面几何1.平面直角坐标系2.直线和圆的方程3.向量4.平面向量的数量积和数量积的性质5.平面向量的应用6.三角形的性质7.多边形的性质8.圆的性质三、立体几何1.空间直角坐标系2.直线和平面的方程3.三棱锥与四棱锥4.三棱柱与四棱柱5.棱台与棱锥6.球的性质7.空间向量四、解析几何1.直线的方程2.圆的方程3.双曲线、抛物线与椭圆4.极坐标系五、数列和数学归纳法1.数列的概念与性质2.等差数列和等比数列3.数学归纳法六、集合与常用逻辑命题1.集合的概念与基本运算2.集合的关系与集合的运算3.命题及其连接词4.充分条件与必要条件5.充要条件七、概率与数理统计1.概率的概念、性质及计算方法2.事件的概率及事件的关系3.排列组合4.基本统计概念5.频率分布6.统计图八、三角函数1.角度的概念2.三角函数的概念及性质3.常用三角函数的计算4.三角函数图象及性质九、导数与微积分1.导数与微分的概念2.导数与微分的计算3.函数的求导法则4.不定积分的计算5.定积分的计算6.微分方程的基本概念以上是高考数学的主要知识点,希望考生在备考过程中着重复习理解这些知识点,提高数学水平,取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习重点知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个第二章 函数 1、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=, 幂的对数:M n M a n a log log =;b mnb a n a m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;)(3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2b a A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a q q a a q na S n n n(4)、等比中项: G 是a 与b 的等比中项:Gba G =,即ab G =2(或ab G ±=,等比中项有两个) 第四章 三角函数1、弧度制:(1)、π= 180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan = 1cot tan =αα5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆(2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→ 数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量的模||:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+ (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a (3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1)21PP P P λ= ,则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧=y x 第六章:不等式1、均值不等式:(1)、 ab b a 222≥+ (222ba ab +≤)(2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=;(3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC-3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200BA C By Ax d +++=(直线方程必须化为一般式)6、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r (2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++)0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x ,半焦距:222b ac -= , 离心率的范围:10<<e ,准线方程:ca x 2±=,参数方程:⎩⎨⎧==ϕϕsin cos b y a x 2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距:222b a c +=,离心率的范围:1>e准线方程:c a x 2±=,渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p;px y 22-=:准线方程2px =焦点坐标)0,2(p -py x 22=:准线方程2p y -=焦点坐标)2,0(p;py x 22-=:准线方程2p y =焦点坐标)2,0(p - 第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 R V π=,球的表面积公式:24 R S π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十章 排列 组合 二项式定理1、排列:(1)、排列数公式: m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(3)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:m n C =mn n C - ;m n C +1-m n C =m n C 1+;A A ‘OBαβ AA ‘OB αβ3、二项式定理 :(1)、定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;(2)、二项展开式的通项公式(第r +1项):rr n r n r b a C T -+=1)210(n r ,,, =各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n (表示含n 个元素的集合的所有子集的个数)。