数学:5.4一次函数的应用(1)教案(苏科版八年级上)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§5.4一次函数的应用(1)

教学目标

1.能根据实际问题中变量之间的关系,确定一次函数关系式.

2.初步体会方程与函数的关系.

3.能通过函数图象获取信息,发展形象思维. 通过函数图象获取信息,培养学生的数形结合意识.

4.根据函数图象解决简单的实际问题,发展学生的教学应用能力. 教学重点

一次函数图象的应用 教学过程

1.新课导入

在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用.

2.讲授新课

例题1 某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值.那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为 .

例题2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元.

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式; (2)分别求出月通话50次、100次的电话费;

(3)如果某月的电话费是27.8元,求该月通话的次数.

例题3 如图中的直线ABC ,为甲地向乙地打长途电话所需付的电话费y (元)与通话时间t (分钟)之间的函数关系式的图象.当t ≥2时,该图象的解析式为 ;从图象中可知,通话2分钟需付电话费 元;,通话7分钟需付电话费 元;

3、练一练 书P158练习1,2

(1)某种储蓄的月利率是0.8%,存入100元本金后,本

5

息和y(元)与所存月数x之间的函数关系式是;

(2)假如甲、乙两人在一次赛跑中,路程S与时间t的关系如图⑵所示,那么可以知道:①这是一次米赛跑;②甲乙两人中先到达终点的是;③乙在这次赛跑中的速度为米/秒;

(3)如图,温度计上表示了摄氏温度与华氏温度的刻度,能否用

函数解析式表示摄氏温度与华氏温度的关系?如果今天的气温是摄氏

32度,那么华氏是多少度?

(4)遥控赛车在“争先”杯赛中,电脑记录了速度的变化过程如图所示.

能否用函数解析式表示这段记录?

(6)小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里.下面图形中表示小明的父亲离家的时间与距离之间的关系是()

总结:

1、通过函数图象获取信息.

2、利用函数图象解决简单的实际问题.

3、初步体会方程与函数的关系.

补充练习:

1、设一个等腰三角形的周长为45,一腰为

x,底为y,

⑴写出y用x表示函数关系式.确定自变量x的取值范围.

⑵求出当x=15时,y的值,并指出此时三角形是什么三角形?

0F

0C

4 –2

32

50 122

212 100

7

(C)

(B)

(A)(D)

2、设等腰三角形的顶角为y,底角为x,写出x与y的函数关系式,并确定x的

取值范围.若300<x<600,求出y的范围.

3、下表是某个体户卖鱼的斤数与所得钱的关系:

斤鱼得元钱.

⑵若设所卖鱼的斤数为自变量x,所得钱数为y,请你列出函数关系式,并求出自变量的取值范围.

4、某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格(元)的一次函数.

⑴根据下表提供的数据,求y与x的函数关系式.当水价为每吨10元时,10吨水生产出的饮料所获的利润是多少?

⑵为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t吨,当日所获利润为W元,求W与t的函数关系式.

相关文档
最新文档