二次函数最大利润问题应用题
专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】
专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。
二次函数利润最大问题
1. (2011湖南怀化,16,3)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.【答案】4【思路分析】总利润=单件产品利润×销售数量,因此y =x (8-x )=-(x -4)2+16,当x =4时,总利润y 有最大值16.【方法规律】①了解总利润的计算方法;②运用配方法求二次三项式的最值是解本题的难点;③解实际问题,要考虑所求的解是否符合实际意义.【易错点分析】配方过程易出现错误.【关键词】二次函数,二次函数与实际问题.【推荐指数】★★★☆☆【题型】常规题1. (2011广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p (元/千克)与销售月份x 的关系如图所示:②销售收入q (元/千克)与销售月份x 满足q=-32x+15 ③销售量m (千克)与销售月份x 满足m=100x+200.试解决以下问题:(1)根据图形,求与p 与x 之间的函数关系式:(2)求该种商品每月的销售利润y (元)与销售月份X 的函数关系式,并求出哪个月的销售利润最大?【答案】解:(1)根据图形可知;p 与x 之间的关系符合一次函数.故可设为p=kx+b ,并有946k b k b =+⎧⎨=+⎩解得110k b =-⎧⎨=⎩故p 与x 的函数关系式为p=-x +10.(2)根据题意,月销售利润y=(q-p)m=[(-32x+15)-(-x+10)](100x+200),化简得y=-50x²+400x+10000,所以4月份销售利润最大。
【思路分析】(1)观察图象,可以判断p 与x 之间的关系符合一次函数,于是设出其解析式,选取其中两组点坐标,利用待定系数法求解.(2)依题意,有月销售利润y=(q-p)m ,进而可以得到二次函数,并利用二次函数的性质求解.【方法规律】利用对问题的转化和待定系数法,结合函数性质求解.【易错点分析】对于(2)容易错误地认为销售利润y=pm.【关键词】一次函数、二次函数的应用 【难度】★★★★☆ 【题型】好题、综合题.3. (2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.16p (元/千克)x (月份) 49o型 号金 额Ⅰ型设备 Ⅱ型设备 投资金额x (万元)x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0)2 y 2=ax 2+bx(a≠0) 2.4 3.2 (1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【答案】解:(1)由题意得:①5k =2,k =52 ∴x y 521= ②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-= (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-= 529)3(5158515242221+--=+--=+=t t t t y y Q ∴当t =3时,Q 有最大值为529,此时10-t =7(万元) 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.【思路分析】第(1)小题考查学生求函数解析式的能力,坡度设置合理,学生上手容易,只需根据函数的解析式,直接代入就可求出,对于(2)主要考查了学生自己用函数关系表示题目中的数量关系,并进一步求二次函数的极值的方法.【方法规律】掌握待定系数法求解析式的基本方法,以及求二次函数最值的方法,即当ab x 2-=时,y 有最大(小)值a b ac 442-. 【易错点分析】对于第(2)不能正确列出函数关系式【关键词】待定系数法求函数解析式 二次函数的极值【推荐指数】★★★☆☆【题型】常规题 好题4. (2011湖北随州,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)由代数式()216041100P x =--+可知当x =60时,可获得利润最大值,即可求出5年所获利润的最大值;3495万元.所以有实施价值.(2)前两年得利润加上后三年的利润再除去前两年每年拨出的利润50万元即可.(3)不开发5年所获利润的最大值是205万元;若按规划实施,5年所获利润(扣除修路后)的最大值是3475元,有极大的实施价值.【方法规律】二次函数的实际应用问题的解题关键是理解题意,找到合适函数;取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法,要考虑其它的费用.【易错点分析】配方时易出现计算错误.6. (2011江苏常州,26,7分)某商店以6元/千克的价格购进某干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为22y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 32y21 44 69 (1)求a 、b 的值.(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)此人第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)【答案】(1)选取表中两组数据,如当t=1时,y 2=21当t=2时,y 2=44;分别代入22y at bt =+,得⎩⎨⎧+=+=ba b a 244421,解得a=1,b=20. (2)设甲级干果与乙级干果n 天销完这批货.则1140204022=+++-n n n n ,即60n=1140,解之得n=19,当n=19时,1399y =,2y =741.毛利润=399×8+741×6-1140×6=798(元).(3)第n 天甲级干果的销售量为-2n+41,第n 天乙级干果的销售量为2n+19.(2n+19)-(-2n+41)≥6解之得n≥7.【思路分析】(1)选取表中两组数据,求得a=1,b=20.(2)设n 天消完这批货,根据“甲级干果销售量+乙级干果销售量=总量”可求出n ,计算出销售量,从而可求出毛利润.(3)用前n 天的销售量减去前(n-1)天的销售量,即可求出甲、乙两种干果第n 天的的销售量,从而可列出不等式求解.【方法规律】本题第(1)问考查利用待定系数法,求二次函数关系式;(2)、(3)需要根据题目中提供的有关信息建立数学模型,进而解决问题.【易错点分析】第n 天的销售量会直接用总的销售量除以天数,从而导致错误.【关键词】待定系数法、二次函数【推荐指数】★★★☆☆【题型】应用题7. (2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?【答案】(1)y=(x -60)[300-10(x -80)]=(x -60)(300-10x+800)=(x -60)(1100-10x )=210170066000x x -+-即y=210170066000x x -+-(2)y=210170066000x x -+-=210(85)6250x --+.因为-10<0,所以当x =85时,y 有最大值,y 最大值=6250.即单价定为85元时,每月销售商品的利润最大,最大利润为6250元.【思路分析】(1)上涨x 元后,所销售的件数是[300-10(x -80)];每件的销售利润为(x -60)所以y=(x -60)[300-10(x -80)],整理得y=210170066000x x -+-;(2)根据二次函数的配方法可以求得最大利润.【方法规律】本题是综合考查二次函数的最值问题,需要熟悉二次函数的相关基本概念和配方法即可解题.要注意解题过程的完整性.【易错点分析】每件销售利润=每件销售收入-每件购进成本,这里销售利润只与进价 60元,不要把利润与定价80直接联系起来误把利润写成(x -80)元.【关键词】二次函数的应用.【推荐指数】★★★★★9. (2011山东菏泽,20,9分)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【答案】解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50;答:一次至少买50只,才能以最低价购买.(2) 220137(001[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪⎪-⎩<≤1)<<≥. (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)【思路分析】(1)由题意知最低价是16元,则可优惠4元,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可设一次购买x 只,才能以最低价购买,则可列方程0.1(x -10)=20-16求解;(2)由题意可知分3种情况,当0<x ≤10时不优惠,当10<x <50时,每多买1只,所买的全部计算器每只就降低0.10元,当x ≥50时,每只都是最低价16元;(3)当只数在10至50只之间时,y 是x 的二次函数,求出最大值即可.【方法规律】本题是考查学生用方程,函数的思想解决实际问题,本题关键要想到由自变量的取值不同分情况讨论.【易错点分析】学生不易想到分类讨论的思想【关键词】一元一次方程,函数,分类讨论【推荐指数】★★★★☆【题型】、新题,好题,难题10.(2011山东泰安,28 ,10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元.(1)当售价定为每件30元时,一个月可获利多少元?(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(30-20)[105-5(30-25)]=800(元)(2)设售价为每件x 元时,一个月的获利为y 元由题意,得:y =(x -20)[105-5(30-25)]=-5x 2+330x -4600=-5(x -33)2+845当x =33时,y 的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元.【思路分析】(1)可根据题意列出算术,并进行计算;(2)根据题意列出二次函数关系式,用配方法求得最值.【方法规律】考查了有理数的运算,二次函数最值的求法,运用了配方法求二次函数的最大值.【易错点分析】 最值时,凭直觉求得;列错算式.【关键词】二次函数的最值【推荐指数】★☆☆【题型】常规题.11. (2011山东潍坊,22,10分)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格元/千克与月份x 呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x ≤7和7≤x ≤12时,y 关于x 的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【解】(1)当17x ≤≤时,设y kx m =+,将点(1,8)、(7,26)分别代入y kx m =+,得8,726.k m k m +=⎧⎨+=⎩解之,得5,3.m k =⎧⎨=⎩ ∴函数解析式为35y x =+.当712x ≤≤时,设2y ax bx c =++,将(7,26)、(9,14)、(12,11)分别代入2y ax bx c =++,得: 49726,81914,1441211.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解之,得1,22,131.a b c =⎧⎪=-⎨⎪=⎩∴函数解析式为222131y x x =-+.(2)当17x ≤≤时,函数35y x =+中y 随x 的增大而增大,∴当1x =最小值时,3158y =⨯+=最小值.当712x ≤≤时,()22221311110y x x x =-+=-+, ∴当11x =时,10y =最小值.所以,该农产品平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值.将8x =,10x =和11x =分别代入222131y x x =-+,得19y =,11y =和10y =. ∴后5个月的月平均价格分别为19,14,11,10,11. ∴年平均价格为17719141110114615.3123y ⨯+++++==≈(元/千克). 当3x =时,1415.3y =<,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【思路分析】(1)当1≤x ≤7时,y 与x 间成一次函数关系,当7≤x ≤12时,y 与x 间成二次函数关系,运用待定系数法可求出相应的函数关系式.(2)分别结合一次函数与二次函数的性质,可确定在(1)中所求得的两个函数解析式中y 的最小值,由此可以进行分析判断.(3)要求年平均价格,需要知道该年月平均价格的和,由于1月份至7月份月平均价格呈一次函数,所以可取4x =时的月平均价格作为前7个月的平均值,在后5个月中,9月和12月的月平均价格一直,而其余3个月(8月,10月,11 月)的月平均价格可利用(1)中所求得的函数解析式求得.求出年平均价格后,把每月的平均价格与之相比即可作出判断.【规律总结】对于分段函数,在确定函数解析式时,要根据自变量的取值范围确定相对应的函数值,运用待定系数法确定函数解析式,利用函数解析式确定函数的最值时,要充分利用相应函数的性质.【易错点分析】计算量较大,在具体计算时易出现数据错误.【关键词】待定系数法,一次函数,二次函数,最值问题,平均数【推荐指数】★★★★☆【题型】新题,易错题13. (2011重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:月份x 1 2 3 45 6 7 8 9 价格y 1(元/件) 560 580 600620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025) 【解】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2( x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,设t= a﹪,整理,得10t2-99t+10=0,解得t=99940120,∵972=9409,962=9216,而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a ﹪)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.【思路分析】(1)用待定系数法求一次函数关系式;(2)分时间段求出销售该配件的利润w 关于的函数,再求出各自的最大值,最后通过比较求出去年12个月中利润的最大值;(3) 根据1至5月的总利润1700万元列一元二次方程,通过一元二次方程的解找出符合条件的答案.【方法规律】本题主要考查了用待定系数法求一次函数解析式、列代数式求二次函数的解析式,列一元二次方程求符合条件的解、二次函数的最值、合理估算等代数知识,采用了先局部后整体的思维策略解决问题,用到了待定系数法、方程思想、函数思想等数学思想方法,是一道综合性较强的题目.【易错点分析】不会分析分时间段列出二次函数的解析式,不会求分段函数的最值,不会根据题意列一元二次方程.【关键词】一次函数,二次函数及最值,一元二次方程 【难度】★★★★★ 【题型】常规题,易错题,难题,新题,综合题15. (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x=60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x,则外地投资额为100-x ,所以y=P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x=30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)根据题意把x = 60代入解析式就可以计算求出最大值;(2)根据二次函数的性质,利用其性质求解;(3)通过比较利润即可明晰何种方案的实施价值较大。
(完整版)二次函数的应用(利润问题)(答案)
二次函数的应用(利润问题)(答案)二次函数的实际应用1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据: 销售价x (元/千克) (25)24 23 22 … 销售量y (千克) … 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?二次函数的应用(利润问题)(答案)参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x )80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。
二次函数最大利润求法经典
分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60)问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x )问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为1(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为2W =(40)x -y= (40)x -(201500x -+)= 220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时, 1W =(40)x -(300 --60202x ⨯) = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W =(40)x -(300+60402x -⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。
第三章6第2课时用二次函数解决最大利润问题练习题含2021中考题
数学
(2)设商品每天的总利润为W(元),求W关于x的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大
利润是多少.
解:(2)根据题意,得W=y·(x-40)
=(-2x+200)·(x-40)
=-2x2+280x-8 000(40≤x≤80).
是 1 558 元.
数学
7.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的成本y(万元)与产品数量x(件)之
间具有函数关系y=ax2+bx+c,当x=10时,y=400;当x=20时,y=1 000.B城生产的产品每件的成本为
70万元.
(1)求a,b的值.
解:(1)由题意,得当产品的数量为 0 时,总成本也为 0,即当 x=0 时,y=0,
数学
第2课时
用二次函数解决最大利润问题
1.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件.若想获得最
大利润,则x的值为(
A.150
B.170
A )
C.200
D.210
2.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头
年中第n月获得的利润y和对应月份n之间的函数表达式为y=-n2+12n-11,则该公司一年12个月中应
停产的所有月份是(
D )
A.6月
B.1月,11月
C.1月,6月,11月
D.1月,11月,12月
6.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与销售单价x(元)之间的关系满足
二次函数的应用——利润最值问题
w … 60 x x … 40300 30 … x x 6000 x 30x 2 30 300 60-x
变式1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1 2 元,每星期可多卖30件,已知该童装每件成本40元,设该款童 款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大利 润为多少元?
降价 多售的件数 30×1 30×3 现在售价 60-1 60-3 现在销售量 300+30 300+30×3 … 300+30x 1 (2)设利润为 w 3
30×2 300+30×2 2 =(每件售价 60-2 利润 -每件进价)×销售量
30x x5 6750 y=300+30 所以,当降价5时x 20 2x 80 2 2x 30 200 因为 20 x 28 所以由二次函数的性质可知,当x≤30时,w随x的增大而增大 所以当x=28时,w取得最大值,最大值为
w 228 30 200 192
2
练习1:草莓是云南多地盛产的一种水果,今年水果销售店在草莓 销售旺季,试销售成本为每千克20元的草莓,规定试销售时间单 价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,如图y与x的函数 关系图象 (1)求y与x函数解析式。 (2)设该水果销售店试销售草莓 获得利润为w元,求w的最大值。
例1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1元,每星期可多卖30件,已知该童装每件成本40元,设该 款童款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大 利润为多少元? 解(1)
二次函数最大利润问题
二次函数最大利润问题44.这家企业制作一种工艺品,每件成本50元。
为了合理定价,他们进行市场试销。
市场调查表明,当销售单价为100元时,每天销售50件。
如果销售单价每降低1元,每天就会多售出5件,但是销售单价不能低于成本。
1) 求出每天销售利润y(元)与销售单价x(元)之间的函数关系式。
2) 求出销售单价为多少元时,每天销售利润最大?最大利润是多少?3) 如果该企业要使每天销售利润不低于4000元,且每天总成本不超过7000元,那么销售单价应控制在什么范围内?(每天总成本=每件的成本×每天的销售量)45.一家水果批发商场销售一种高档水果,每千克盈利10元,每天可售出500千克。
市场调查发现,在进货价不变的情况下,如果每千克涨价1元,日销售量将减少20千克。
1) 设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?2) 如果该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?46.某市政府大力扶持大学生创业。
___在政府的扶持下投资销售一种进价为每件20元的护眼台灯。
销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.1) 设___每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?2) 如果___想要每月获得2000元的利润,那么销售单价应定为多少元?3) 根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果___想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)47.某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件。
后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件。
1) 求商场经营该商品原来一天可获利润多少元?2) 设后来该商品每件降价x元,商场一天可获利润y元。
九年级数学上册二次函数的应用——最大利润问题同步练习及答案
最大利润问题——典型题专项训练知识点 1 利润最大化问题1.毕节某旅行社在十一黄金周期间接团去外地旅游,经计算所获营业额y(元)与旅行团人员x(人)之间满足关系式y=-x2+100x+28400,要使所获营业额最大,则旅行团应有( )A.30人B.40人C.50人D.55人2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.36元3.2017·贵阳模拟某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式.(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?知识点 2 利用二次函数的最值解决其他实际问题4.两个数的和为6,这两个数的积最大可以达到________.5.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.6.生物学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测量出这种植物高度的增长情况(如下表).科学家经过猜想,推测出y与x之间是二次函数关系.(1)求y与x之间的函数表达式;(2)推测最适合这种植物生长的温度,并说明理由.图2-4-127.如图2-4-13所示,正方形ABCD的边长为4,E,F分别是边BC,CD上的两个动点,且AE⊥EF,则AF的最小值是________.图2-4-138.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小明和小华提出的问题.图2-4-149.经市场调查,某种商品在第x天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求y与x之间的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?10.东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p=\f(1412)t+48(25≤t≤48,t为整数),且其日销售量y(千克)与时间t(天)的关系如下表:(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t的增大而增大,求n的取值范围.详解1.C 2.A3.解:(1)根据题意,得65k+b=55,75k+b=45,)解得k=-1,b=120.)∴一次函数的表达式为y=-x+120.(2)根据题意,得W=(x-60)(-x+120)=-x2+180x-7200=-(x-90)2+900.∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而60≤x≤87,∴当x=87时,W最大=-(87-90)2+900=891.∴当销售单价定为87元/件时,商场可获得最大利润,最大利润是891元.4.95.20 [解析] 设果园里增种x棵橘子树,那么果园里共有(x+90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x)个橘子.∴y=(x+90)(520-4x)=-4x2+160x+46800,∴当x=-b2a=-1602×(-4)=20时,y最大,橘子总个数最多.6.解:(1)设y=ax2+bx+c(a≠0),选(0,49),(2,41),(-2,49)代入后得方程组c=49,4a-2b+c=49,4a+2b+c=41,解得a=-1,b=-2,c=49,∴y与x之间的函数表达式为y=-x2-2x+49.(2)最适合这种植物生长的温度是-1 ℃.理由:由(1)可知,当x=-b2a=-1时,y取最大值50,即说明最适合这种植物生长的温度是-1 ℃.7.5 [解析] 在Rt△ADF中,AF2=AD2+DF2=42+(4-CF)2,若AF最小,则CF最大.设BE=x,CF=y,∵∠B=∠AEF=90°,则∠BAE+∠AEB=∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴ABEC=BECF,即44-x=xy,化简得y=-x2+4x4=-14(x-2)2+1,∴当x=2时,y有最大值为1,此时DF最小,为3,由勾股定理得到AF=AD2+DF2=5.8.解:(1)小华的问题解答:设利润为W元,每个定价为x元,则W=(x-2)·[500-100(x-3)]=-100x2+1000x -1600=-100(x-5)2+900.当W=800时,解得x=4或x=6,又因为2×240%=4.8(元),所以x=6不符合题意,舍去,故每个定价为4元时,每天的利润为800元.(2)小明的问题解答:当x<5时,W随x的增大而增大.所以当x=4.8时,W最大,为-100(4.8-5)2+900=896(元).所以800元销售利润不是最多,每个定价为4.8元时,才会使每天利润最大.9.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.(2)当1≤x<50时,二次函数图象的开口向下,对称轴为直线x=-b2a=45,∴当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y随x的增大而减小,∴当x=50时,y最大=-120×50+12000=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.10.解:(1)依题意,得y=120-2t.当t=30时,y=120-60=60.答:在第30天的日销售量为60千克.(2)设日销售利润为W元,则W=(p-20)y.当1≤t≤24时,W=(14t+30-20)(120-2t)=-12t2+10t+1200=-12(t-10)2+1250.当t=10时,W最大=1250.当25≤t≤48时,W=(-12t+48-20)(120-2t)=t2-116t+3360=(t-58)2-4.由二次函数的图象及性质知,当t=25时,W最大=1085.∵1250>1085,∴在第10天的销售利润最大,最大日销售利润为1250元.(3)依题意,得每天扣除捐款后的日销售利润W=(14t+30-20-n)(120-2t)=-12t2+2(n+5)t+1200-120n.其图象对称轴为直线t=2n+10,要使W随t的增大而增大.由二次函数的图象及性质知,2n+10≥24,解得n≥7.又∵n<9,∴7≤n<9.。
二次函数最大利润问题
一.解答题(共7小题)1.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?2.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?3.进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?4.某商店准备进一批小工艺品,每件的成本是40元,经市场调查,销售单价为50元,每天销售量为100个,若销售单价每增加1元,销售量将减少10个.(1)求每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式;(2)商店若准备每天销售小工艺品获利960元,则每天销售多少个?销售单价定为多少元?(3)直接写出销售单价为多少元时,每天销售小工艺品的利润最大?最大利润是多少?5.某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?6.2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?7.某商品的进价为每件20元,当销售单价是25元时,每天的销售量为250件,如果调整价格,销售单价每上涨1元,每天的销售量就减少10件.①求每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式,并写出x的取值范围.②求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?③若商场要每天获得销售利润2000元,同时让利于顾客,销售单价应定为多少元?一.解答题(共7小题)1.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.2.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.3.进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?【分析】(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.【解答】解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+3125∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为3125,即当售价x(元/包)定为4,5元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3125元.【点评】本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.4.某商店准备进一批小工艺品,每件的成本是40元,经市场调查,销售单价为50元,每天销售量为100个,若销售单价每增加1元,销售量将减少10个.(1)求每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式;(2)商店若准备每天销售小工艺品获利960元,则每天销售多少个?销售单价定为多少元?(3)直接写出销售单价为多少元时,每天销售小工艺品的利润最大?最大利润是多少?【分析】(1)根据题意可以得到y与x的函数关系式,从而可以解答本题;(2)根据(1)中的函数关系式,令y=960,求出相应的x的值,即可解答本题;(3)根据(1)中关系式,将它化为顶点式即可解答本题.【解答】解:(1)销售单价为x元时,每销售一个获利(x﹣40)元,每天共销售[100﹣10(x﹣50)]个,∴y=(x﹣40)[100﹣10(x﹣50)]=﹣10x2+1000x﹣24000,即每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式是y=﹣10x2+1000x﹣24000;(2)根据题意,得(x﹣40)[100﹣10(x﹣50)]=960,解得,x1=48,x2=52,当x1=48时,销售量为100﹣10(x﹣50)=120(个),当x2=52时,销售量为100﹣10(x﹣50)=80(个),答:每天销售120个,定价为48元或每天销售80个,定价为52元;(3)∵y=﹣10x2+1000x﹣24000=﹣10(x﹣50)2+1000,∴销售单价为50元时,每天的销售利润最大,最大利润是1000元,答:销售单价为50元时,每天的销售利润最大,最大利润是1000元.【点评】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数和方程的思想解答.5.某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【解答】解:(1)由题意可得:y=200+20(60﹣x)=﹣20x+1400(0<x<60);(2)设每星期利润为W元,W=(x﹣40)(﹣20x+1400)=﹣20(x﹣55)2+4500,∵﹣20x+1400≥400,∴x≤50,∵﹣20<0,抛物线开口向下,=4000.∴x=50时,W最大值∴每箱售价定为50元时,每星期的销售利润最大,最大利润4000元.【点评】本题考查二次函数的应用,解题的关键是构建二次函数解决最值问题,属于中考常考题型.6.2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?【分析】(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=﹣10(x﹣20)2+1000,根据二次函数的性质即可解决最值问题.【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.【点评】本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出y 关于x的函数关系式;(2)根据数量关系找出W关于x的函数关系式;(3)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数的关系式是关键.7.某商品的进价为每件20元,当销售单价是25元时,每天的销售量为250件,如果调整价格,销售单价每上涨1元,每天的销售量就减少10件.①求每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式,并写出x的取值范围.②求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?③若商场要每天获得销售利润2000元,同时让利于顾客,销售单价应定为多少元?【分析】①直接利用总利润=每件商品利润×每天的销售量,进而得出答案.②将以上所得函数解析式配方成顶点式,再利用二次函数的性质求解可得;③在所求函数解析式中令w=2000,得出关于x的方程,解之可得,根据“让利给顾客”对所求x的值取舍即可得.【解答】解:①w=(25+x﹣20)(250﹣10x)=﹣10x2+200x+1250(0≤x≤25 );②w=﹣10x2+200x+1250=﹣10(x﹣10)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=10时,w max=2250,故当单价为35元时,该文具每天的利润最大,最大利润为2250元.③当w=2000时,得﹣10x2+200x+1250=2000解得:x1=5,x2=15,因为让利给顾客,所以,商场要每天获得销售利润2000元,销售单价应定为30元;【点评】本题考查了二次函数的应用、一元二次方程的应用等知识,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.。
二次函数的应用(1)利润问题高品质版
何时获得最大利润
问题一:某商场销售一批衬衫,平均每天 可以售出20件, 每件赢利40元,为了扩大销售,增加盈利,尽快减少库存, 商场决定采取适当的降价措施,经过市场调查发现,如果 每件衬衫每降价1元,商场平均每天可以多售出2件。求每 件衬衫降价多少元时,商场平均每天赢利最多? 问题二:某商场将进价40元一个的某种商品按50元一个售 出时,能卖出500个.商场想采用提高售价的方法来增加利 润。已知这种商品每个涨价1元,销量减少10个,为赚得最 大利润,售价定为多少?最大利润是多少?
总利润=单利数量
单利=售价- 进价
请想一想:(1)问题解决的过程 是怎样的? (2)是否售价越高或越低,利润越小?
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一 些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵 树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵 就会少结5个橙子. (1)问题中有那些变量?其中哪些是自变量?哪些是因量? (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平 均每棵树结多少个橙子?
(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.
(4)种多少棵橙子树,可以使果园橙子的总产量最多? (5)增种多少棵橙子,可以使橙子的总产量在60400个以上?
练 某商店经营T恤衫,已知成批购进时单价是 习 2.5元.根据市场调查,销售量与单价满足如下 1 关系:在一时间内,单价是13.5元时,销售量是
若你是商店经理,你需要多长时间定出这 个销售单价?
作业
P26练习第2 题,P34第10题
谢谢大家,再会!
结束寄语
•生活是数学的源泉.
(完整版)有关二次函数的利润最值问题
有关二次函数的利润最值问题1.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.2.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.3.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?4.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?5.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?6.某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数,如表,月销量x(件)1500 2000销售价格y(元/件)185 180成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W甲(元)(利润=销售额﹣成本﹣广告费).若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a 为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为W乙(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y甲=元/件,w甲=元;(2)分别求出W甲,W乙与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?7.某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,不低于每件30元.经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该服装店销售这批秋衣日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?8.某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x (天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?9.某机器零件经销商,购进甲型零件600个,其进价为200元,甲型零件有两种售货渠道:A渠道是批发给其他小型经销商;B渠道是零售,零售价为250元.该经销商准备用A渠道销售甲型零件所得的全部销售款购进一批乙型零件,乙型零件的进价为150元,零售价为300元.已知该经销商用A渠道销售甲型零件时,其批发价y(元/个)与批发个数x(个)之间的函数关系为y=﹣x+200.(1)求该经销商用B渠道销售的甲型零件的销售额p1(元)与批发个数x(个)之间的函数关系式;(2)求零售乙型零件的销售额p2(元)与批发个数x(个)之间的函数关系式;(3)求该经销商售完这批甲型、乙型零件后的总利润w(元)与批发个数x(个)之间的函数关系式,并求出当批发多少个甲型零件时,利润最大,最大利润是多少?10.某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:天数1≤x≤5 6≤x≤10 销售价格y x+24 30②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.有关二次函数利润的最值问题参考答案与试题解析一.解答题(共10小题)1.(2017•高安市一模)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.【分析】(1)利润=单件利润×销售量;(2)根据利润的计算方法表示出关系式,解方程、画图回答问题.【解答】解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元);(3分)(2)①依题意得:(100﹣80﹣x)(100+10x)=2160(5分)即x2﹣10x+16=0解得:x1=2,x2=8(6分)经检验:x1=2,x2=8都是方程的解,且符合题意,(7分)答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(8分)②依题意得:y=(100﹣80﹣x)(100+10x)(9分)∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250 (10分)画草图:观察图象可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.(13分)【点评】本题关键是求出利润的表达式,体现了函数与方程、不等式的关系.2.(2017•南通一模)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【分析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将x=45代入求出即可;(3)当y=10000时,代入求出即可;(4)利用配方法求出二次函数最值即可得出答案.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.【点评】此题主要考查了二次函数的应用以及配方法求二次函数最值,得出y与x的函数关系是解题关键.3.(2017•山东一模)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x<140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140),(3)当50≤x≤80时,w=﹣x2+300x﹣10400,当x=80有最大值,最大值为7200,当80<x<140时,w=﹣3x2+540x﹣16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.【点评】本题主要考查二次函数的应用,应用二次函数解决实际问题比较简单.4.(2017•利辛县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y (万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【分析】(1)根据题意此抛物线的顶点坐标为(4,﹣16),设出抛物线的顶点式,把(10,20)代入即可求出a的值,把a的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)相邻两个月份的总利润的差即为某月利润.(3)根据前x个月内所获得的利润减去前x﹣1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x取最大为12时,把x=12代入即可求出最多的利润.【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)【点评】本题考查了二次函数的应用,主要考查学生会利用待定系数法求函数的解析式,灵活运用二次函数的图象与性质解决实际问题,是一道综合题.5.(2017•高台县模拟)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】(1)根据进价为每件40元,售价为每件50元,每个月可卖出210件,再根据每件商品的售价每上涨1元,则每个月少卖10件和销售利润=件数×每件的利润列出关系式,即可得出答案.(2)根据(1)得出的函数关系式,再进行配方得出y=﹣10(x﹣5.5)2+2402.5,当x=5.5时y有最大值,从而得出答案.【解答】解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)根据(1)得:y=﹣10x2+110x+2100,y=﹣10(x﹣5.5)2+2402.5,∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.【点评】本题考查二次函数的实际应用,关键是读懂题意,找出之间的等量关系,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.6.(2017•微山县模拟)某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数,如表,月销量x(件)15002000销售价格y(元/件)185180成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W (元)甲(利润=销售额﹣成本﹣广告费).若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,40≤a ≤70),当月销量为x (件)时,每月还需缴纳x 2元的附加费,设月利润为W 乙(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y 甲= 190 元/件,w 甲= 67500 元;(2)分别求出W 甲,W 乙与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?【分析】(1)设y 甲=kx +b ,列出方程组即可解决,再根据w 甲=x (y ﹣50)﹣72500,求出w 甲的解析式,分别求出x=1000时,y 甲,w 甲,即可.(2)根据利润=销售额﹣成本﹣附加费,即可解决问题.(3)①x=﹣,y 最大值=进行计算即可.②利用公式列出方程即可计算.(4)当x=5000时,w 甲=427500,w 乙=﹣5000a +750000,再列出不等式或方程即可解决问题.【解答】解:(1)设y 甲=kx +b ,由题意,解得, ∴y 甲=﹣x +200, ∴x=1000时,y 甲=190,w 甲=x (y ﹣50)﹣72500=﹣x 2+150x ﹣72500,x=1000时,w 甲=67500,故答案分别为190,67500.(2)w 甲=x (y ﹣50)﹣72500=﹣x 2+150x ﹣72500, w 乙=﹣x 2+(200﹣a )x ,(3)∵0<x<15000∴当x=﹣=7500时,w甲最大;由题意得,=,解得a1=60,a2=340(不合题意,舍去).所以a=60.(4)当x=5000时,w甲=427500,w乙=﹣5000a+750000,若w甲<w乙,427500<﹣5000a+750000,解得a<64.5;若w甲=w乙,427500=﹣5000a+750000,解得a=64.5;若w甲>w乙,427500>﹣5000a+750000,解得a>64.5.所以,当40≤a<64.5时,选择在乙销售;当a=64.5时,在甲和乙销售都一样;当64.5<a≤70时,选择在甲销售.【点评】本题考查二次函数的应用、一次函数的应用、待定系数法,解题的关键是学会利用二次函数求函数的最值问题,学会利用不等式或方程解决方案问题,属于中考常考题型.7.(2017•宁波一模)某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,不低于每件30元.经市场调查发现:日销售量y (件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该服装店销售这批秋衣日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,故y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该服装店日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.8.(2017•新野县一模)某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x (天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【分析】(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20;针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;①0≤x<10时p=25,10≤x≤20时,设解析式为p=mx+n,利用待定系数法求解;(2)日销售金额=日销售单价×日销售量.日销售量不低于36千克,即y≥36.先解不等式3x≥36,得x≥12,再解不等式﹣9x+180≥36,得x≤16,则求出“最佳销售期”共有4天;然后根据p=﹣x+35(10≤x≤20),利用一次函数的性质,即可解答.【解答】解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,45),∴15k1=45,解得k1=3,∴y=3x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,45),(20,0)在y=k2x+b的图象上,∴解得:∴y=﹣9x+180(15<x≤20);综上,可知y与x之间的函数关系式为:y=.①当0≤x<10时,p=25,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,25),(20,15)在p=mx+n的图象上,∴,解得:,∴p=﹣x+35(10≤x≤20),∴p=;(2)若日销售量不低于36千克,则y≥36.当0≤x≤15时,y=3x,解不等式:3x≥36,得,x≥12;当15<x≤20时,y=﹣9x+180,解不等式:﹣9x+180≥36,得x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+35(10≤x≤20),k=﹣1<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣12+35=23(元/千克).答:此次销售过程中“最佳销售期”共有5天,在此期间销售金额最高是第12天.【点评】此题考查了一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.9.(2017•临沭县校级模拟)某机器零件经销商,购进甲型零件600个,其进价为200元,甲型零件有两种售货渠道:A渠道是批发给其他小型经销商;B渠道是零售,零售价为250元.该经销商准备用A渠道销售甲型零件所得的全部销售款购进一批乙型零件,乙型零件的进价为150元,零售价为300元.已知该经销商用A渠道销售甲型零件时,其批发价y(元/个)与批发个数x(个)之间的函数关系为y=﹣x+200.(1)求该经销商用B渠道销售的甲型零件的销售额p1(元)与批发个数x(个)之间的函数关系式;(2)求零售乙型零件的销售额p2(元)与批发个数x(个)之间的函数关系式;(3)求该经销商售完这批甲型、乙型零件后的总利润w(元)与批发个数x(个)之间的函数关系式,并求出当批发多少个甲型零件时,利润最大,最大利润是多少?【分析】(1)根据题意知用B渠道销售甲零件(600﹣x)个,由销售额=销售价×销售量可得;(2)先求得A渠道销售甲型零件的全部销售款,再求得购进乙型零件的总数量,从而得到零售乙型零件的销售额;(3)根据“总利润=B渠道销售所得利润+A渠道销售所得利润+销售乙零件所得利润”列出函数解析式,再根据二次函数的性质可得答案.【解答】解:(1)当经销商用A渠道销售甲型零件x个时,则用B渠道销售甲零件(600﹣x)个,∴p1=250(600﹣x)=﹣250x+150000;(2)∵经销商用A渠道销售甲型零件的全部销售款为(﹣x+200)x,∴购进乙型零件的总数量为,则零售乙型零件的销售额p2=×300=﹣x2+400x;(3)根据题意,得:w=(600﹣x)(250﹣200)+(﹣x+200﹣200)x+(300﹣150)•=﹣x2+150x+30000=﹣(x﹣)2+,∵x为整数,∴x=187或x=188时,w取得最大值,最大值为44062.4,答:当批发187或188个甲型零件时,利润最大,最大利润是44062.4元.【点评】本题主要考查二次函数的应用,根据题意弄清销售过程中A渠道、B渠道及销售乙产品的销售价及销售量等基本量是解题的关键.10.(2017•安徽模拟)某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:天数1≤x≤56≤x≤10销售价格y x+2430②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.【分析】(1)待定系数法求解可得;(2)根据“总利润=单件利润×销售量”结合x的范围分别求解可得.【解答】解:(1)设销售量p与销售天数x关系式为p=kx+b,由图象可得,解得:,∴每天的销售量p与销售天数x之间函数关系式为p=﹣2x+24;(2)当1≤x≤5时,s=(y﹣20)p=(x+24﹣20)(﹣2x+24)=﹣(x﹣2)2+100,当x=2时,s取得最大值100;当6≤x≤10时,s=(y﹣20)p=(30﹣20)(﹣2x+24)=﹣20x+240,当x=6时,s取得最大值120;综上,试营销期间一天的最大利润为120元.【点评】本题主要考查二次函数的应用,根据x的范围分情况得到s关于x的函数解析式及熟练掌握二次函数和一次函数的性质是解题的关键.。
利润问题(二次函数应用题)含答案
利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/千克)的变化而变化,具体的变化如下表:(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。
(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。
(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
二次函数--(利润最大值问题)-顶点在范围内
22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。
二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。
二次函数与实际问题中利润问题(附答案)
②T恤衫何时获得最大利润,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利润最大:
8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
设销售价为x元(x≤13.5元),利润是y元,则
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
二次函数y=ax2+bx+c(a≠0)的性质:
二次函数最大利润求法经典
问题2:售价为x元,售价涨了多少元?可表示为(x-60 )因为xf 0一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。
已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润X销售数量问题1:售价为x元时,每件的利润可表示为(x-40 )问题3:售价为x元,销售数量会减少,减少的件数为兰60 20 (件)2问题4:售价为x元,销售数量为y (件),那么y与x的函数关系式可表示为y 300 弓0 20= 300 10(x 60)= 10x 900x 60 0自变量x的取值范围是x 60问题4:售价为x元,销售数量为y (件),销售总利润为W(元),那么W与x的函数关系式为W (x 40) y(x 40)( 10x 900)10x2 1300x 36000问题5:售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?因为W (x 40) y(x 40)( 10x 900)210x 1300x 36000210(x 130x) 3600010 (x2130x 652) 6523600010(x 65)242250 3600010(x 65)26250所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元分析:本题用到的数量关系是: (1) (2) 问题 问题 利润=售价-进价销售总利润=单件利润X 销售数量1:售价为 2:售价为 x 元时,每件的利润可表示为 x 元, 问题 3:售价为 x 元, (x-40 ) 售价降了多少元?可表示为 (60-x ) 竺上40(件)2销售数量会增加,增加的件数为 问题 4:售价为y 300x 元, 60 销售数量为y x 40= 3002(件),那么y 与x 的函数关系式可表示为20(60 x)= 20x 1500因为xf 60自变量x 的取值范围是问题4:售价为x 元, 所以, 销售数量为y 0 x 60(件),销售总利润为 W (元),那么 W 与 x 的函数关系式为、某商品现在的售价为每件 60元,每星期可卖出 300件,市场调查反映:每降价2元,每星期可多卖出 40件,已知商品的进价为每件 40元,如何定价才能使利润最大?W (x 40) y= (x 40) ( 20x 1500)=20x 2 2300x 60000问题5:售价为x 元,销售总利润为 W (元)时,可获得的最大利润是多少?因为 W (x 40) y= (x 40) ( 20x 1500)2=20x2300x 600002=20( x 115x) 600002 22115 115=20 x 2115x) 600002 2115=20( x)266125 60000 22=20( x 57.5)66125 60000=20(x 57.5)26125所以可知,当售价为 57.5元时,可获得最大利润,且最大利润为 6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降精品资料60W (元),那么W 与x 的函数关系式为所以可知,当售价为 65元时,可获得最大利润,且最大利润为 6250 元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为价2元,每星期可多卖出 40件,已知商品的进价为每件 40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1) 涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2) 降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加 本题用到的数量关系是: (1) 利润=售价-进价(2) 销售总利润=单件利润X 销售数量 根据题目内容,完成下列各题: 1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为y 300 竺6020= 300 10(x 60)=10x 9002r , xf因为x 自变量x 的取值范围是 x 6010( x 65)2 42250 3600010( x 65)26250w (x 40) y =(x 40)( 10x 900) =210x1300x 36000(3)售价为 x 兀,销售总利润为 W (兀)时,可获得的最大利润是多少?w = (x 40)( 10x 900) = 210x1300x 36000= 210(x 130x) 36000=10 (x 2130x 652) 65236000(2)售价为x 元,销售数量为 y (件),销售总利润为60 xy 300 2 40= 300 20(60 x)= 20x 1500因为xf 0 60 x 0所以,自变量x的取值范围是0 x 60(2)售价为x元,销售数量为y (件),销售总利润为W(元),那么W与x的函数关系式为W2= (x 40) y(x 40)( 20x 1500)220x 2300x 60000(3)售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?因为W4 = (x 40) ( 300 6^-x40) 2=(x 40) ( 20x 1500)20x22300x6000020(x2115x)6000022115、11520 x115x)22 115 220(x2)6612560000 20(x57.5)26612560000 20(x57.5)26125600006125 元所以可知,当售价为57.5元时,可获得最大利润,且最大利润为本题解题过程如下:解:设售价为x元,利润为W(1)涨价时,2x-60W1= (x 40) (300 -20)2=(x 40)( 10x 900)= 10x21300x 3600010(x2130x) 3600010 (x2130x 652) 652360002= 10( x 65) 42250 36000= 10(x 65)2 6250所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时,60 xW2= (x 40) (300+ 40)2=(x 40) ( 20x 1500)= 20x 2300x 6000020( x2115x) 600002 22 115 115=20 x 115x ) 600002 2=20( x 115)22 )66125 60000=20( x 57.5)266125 60000=20( x 57.5)26125所以可知,当售价为57.5兀时,可获得最大利润,且最大利润为6125 元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。
二次函数与实际问题中利润问题(附答案)
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利Βιβλιοθήκη 最大:8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
如果设果园增种x棵橙子树,总产量为y个,则
二次函数中的最大利润问题练习
二次函数中的最大利润问题练习1.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售。
若只在国内销售,销售价格y元/件与销售量x件的函数关系式为y=-X+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润内(元)。
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销售量为x件时,每月还需要缴纳元的附加费,设月利润为外(元)。
(1)当x=1000时,y= 元/件,内= 元(2)分别求出内,外与x间的函数关系式(不必写出x的取值范围)(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值。
2.蚌埠某个体商户购进某种电子产品的进价时50元/个,根据市场调研发现售价时80元/个时,每周可卖出160个。
若销售单价每个降低2元,则每周可多卖出20个。
设销售价格每个降低x元(x为偶数),每周销售量为y个。
(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得利润为w元,当销售单价定为多少元时,每周销售利润最大,最大利润为多少元?(3)若商户计划下周利润不低于5200元,则他至少要准备多少元进货成本?3.杨广大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变。
杨广计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为w1,w2(单位:元)。
(1)用含有x的代数式分别表示w1,w2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润w最大,最大总利润为多少?4.好又多水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1元与销售时间第x月存在如图(1)所示(一条线段)的变化趋势,每千克成本y2元与销售时间第x月满足函数关系式y2=m-8mx+n,其变化趋势如图(2)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最大利润问题应用题
1. 国庆黄金周期间,某旅行社为吸引市民组团去香港旅游,推出如下收费标准:如果人数
不超过25人,人均旅游费用为1000元。
如果人数超过25人,每增加1人,人均旅游
费用降低20元,但人均旅游费用不得低于700元。
某企业组织员工去香港旅游,共支
付给旅行社27000元,请问该企业共有多少员工参加香港旅游,
,.水果店以,元/千克的价格购进一批小型西瓜,以,元/千克的价格出售,每天可售出,,,千克。
为了促销,该店决定降价销售。
经调查发现,这种小西瓜每降价0.1元/千克每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元,
3.(扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克(经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元,
4.某商场服装柜销售某一品牌童装,平均每天可售出20件,每件盈利40元,为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经调查发现,如果每件童装每降价4元,商场平均每天可多售出8件,若商场平均每天要盈利1200元,每件童装应降价多少元,
5.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价,减少进货量的方法增加利润。
已知这种商品每涨价0.5元,其销售量就减少10件,问将售价定为多少元时,才能是所赚利润最大,并求出最大利润
6((本题8分)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获
利50%(商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,
已知每天销售数量y(件)与降价x元之间的函数关系为y,20,4x(x,0)
(1)求M型服装的进价;(3分)
(2)求促销期间每天销售M型服装所获得的利润W的最大值((5分)
销售,已知每天销售数量与降价
7((8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)(4分)该工艺品每件的进价、标价分别是多少元,
(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100 件(若每件工艺品降价1元,则每天可多售出该工艺品4件(问每件工艺品降价多少元出售,每天获得的利润最大,获得的最大利润是多少元?
8.已知一次函数y=2x-k与反比例函数y=k+2/x的图像交于A和B两点,如果有一个交点A的横坐标为,,(1)求k的值;(2)求A、B两点的坐标;(3)求?AOB的面积(
C 9(如图5,某货船以24海里/时的速度将一批重要物资从
A处运往正东方向的M处,在点A处测得某岛C在北 30? 60? 偏东60?的方向上.该货船航行30分钟后到达B点,此 M A B 时再测得该岛在北偏东30?的方向上,已知在C岛周围
9海里的区域内有暗礁(若继续向正东方向航行,该货船
有无触礁危险,试说明理由(
图5。