人教版七年级下册数学第五章检测试题(有答案)

合集下载

(完整版)人教版七年级下册数学第五章测试题及答案[1].docx

(完整版)人教版七年级下册数学第五章测试题及答案[1].docx

七年级数学下册第五章测试题姓名________成绩 _______一、单项选择题(每小题 3 分,共 30分)1、如图所示,∠ 1 和∠ 2 是对顶角的是()12 B 1C11A DD2A22 1 2B342、如图 AB∥ CD 可以得到()C(第 2题)A 、∠1=∠ 2B、∠ 2=∠ 3C、∠1=∠ 4D、∠3=∠ 43、直线 AB、 CD、 EF 相交于 O,则∠ 1+∠ 2+∠ 3()。

A 、90°B、120°C、 180°D、140°4、如图所示,直线 a 、b 被直线 c 所截,现给出下列四种条件:①∠ 2=∠ 6 ②∠ 2=∠ 8 ③∠ 1+∠ 4=180°④∠ 3=∠ 8,其中能123(第三题)判断是 a∥b 的条件的序号是()A 、①②B、①③C、①④D、③④2c13 4 b 6578a (第4题)5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A 、第一次左拐30°,第二次右拐 30°B、第一次右拐50°,第二次左拐 130°C、第一次右拐50°,第二次右拐 130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()A B C D7、如图,在一个有4×4 个小正方形组成的正方形网格中,阴影部分面积与正方形 ABCD 面积的比是()D CA 、3:4B、5:8C、 9: 16D、1: 28、下列现象属于平移的是()A(第7题)B① 打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A 、③B、②③C、①②④D、①②⑤9、下列说法正确的是()A 、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这A B 条直线的距离。

七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

人教版七年级下册数学第五章测试题及答案

人教版七年级下册数学第五章测试题及答案

人教版七年级下册数学第五章测试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-123(第三题)12345678(第4题)ab c七年级数学下册第五章测试题姓名 ________ 成绩 _______一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( ) 2、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。

A 、90° B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130°A B C DE(第10题)ADEF G HABCD(第7题)D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。

【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。

人教版七年级数学下册第五章测试卷(含答案)

人教版七年级数学下册第五章测试卷(含答案)

人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。

最新人教版七年级下册第五章《相交线与平行线》单元检测试题(含答案解析)

最新人教版七年级下册第五章《相交线与平行线》单元检测试题(含答案解析)

人教版七年级下册数学单元检测卷:第五章相交线与平行线一.填空题(共6小题)1.如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是.(填“内错角”或“同旁内角”)2.如图,AB∥CD,CF交AB于点E,∠AEC与∠C互余,则∠CEB是度.3.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.4.把命题“等角的余角相等”写成“如果……,那么……”的形式为.5.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段PC的长,理由是.6.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).二.选择题(共10小题)7.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′8.图中∠1和∠2是对顶角的是()A.B.C.D.9.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A.B.C.D.10.下列命题中是假命题的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行11.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D12.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°13.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠E=45°,∠B=60°,若AE∥BC,则∠AFD=()A.75°B.85°C.90°D.65°14.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下16.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48三.解答题(共6小题)17.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.18.如图,已知直线AB,CD,EF相交于点O.(1)若∠COF=120°,∠AOD=100°,求∠AOF的度数;(2)若∠BOC-∠BOD=20°,求∠AOC的度数.19.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD ( )∴∠A=()( )∵∠A=∠D(已知)∴=∠D ( )∴AE∥BD ( )20.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?21.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.22.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.23.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答;问题迁移:如图3,点A、B在射线OM上,点C、D在射线ON上,AD∥BC,点P在射线OM上运动(点P与A、B、O三点不重合).(2)当点P在线段AB上运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由;(3)当点P在线段AB外运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由.参考答案1. 同旁内角2.1353.154. 如果两个角相等,那么这两个角的余角相等5. 垂线段最短6. ⑤⑥7-11 CADDD12-16 CACAD17. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.18.解:(1)∵∠COF=120°,∴∠2=180°-120°=60°,∴∠DOF=∠2=60°,∵∠AOD=100°,∴∠AOF=100°-60°=40°;(2)∵∠BOC+∠BOD=180°,∠BOC-∠BOD=20°,∴∠BOC=100°,∠BOD=80°,∴∠AOC=∠BOD=80°.19. 内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.20. 解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).21. 解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5,22.解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,又∵DF平分∠ADE,∴∠EDF=∠ADE=30°,∴△DEF中,∠DFE=180°-∠EDF-∠DEF=180°-30°-80°=70°.23.解:(1)∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠ADP +∠BCP,理由如下:如图3,过P作PE∥AD交CD于点E,图3∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠ADP,∠CPE=∠BCP,∴∠CPD=∠DPE+∠CPE=∠ADP +∠BCP;(3)①当点P在射线AM上时,∠CPD=∠BCP-∠ADP;理由:如图4,过点P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C. ①③④D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。

(完整)人教版七年级数学下册第五章测试题(含答案),推荐文档

(完整)人教版七年级数学下册第五章测试题(含答案),推荐文档

第五章相交线与平行线检测题8 .如图,DH I EG // BC, DC I EF ,那么与2 DCB 相等的角的个数为()A . 2个B . 3个C . 4个D . 5个③相等的角是对顶角; ④同位角相等. 其中错误的有( ) A . 1个 B . 2个 C. 3个 D. 4个 一、选择题(每小题 3分,共30分)1下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;,且 PA=4 cm , C .大于4 cm 2•点P 是直线丨外一点,A 为垂足, A .小于4 cm B .等于4 cm 则点P 到直线丨的距离(D .不确定 9.下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A .①②B .②③C .②D .③级 班 校 学 3. ( 2013 ?安徽)如图,AB II CD , / A+ / E=75 ° , 则/ C 为( D . 80 °6题 答 得h封不*内B . 65 °C . 75 °10.两平行直线被第三条直线所截,同位角的平分线(A .互相重合 B.互相平行 C.互相垂直D.相交二、填空题(共 8小题,每小题3分,满分24分) 11•如图,直线 a 、b 相交,2 1=36°,则2 2= __________第11题图第3题图 第4题图4. ( 2013 ?襄阳)如图,BD 平分/ ABC ,CD I AB ,若/ BCD=70 °,则/ ABD 的度数为()A . 55 °B . 50 °C . 45 °D . 40 ° 5. ( 2013 ?孝感)如图,/ 仁 / 2, / 3=40 °,则/ 4 等于( )A . 120 °B . 130 °C . 140 °D . 40 ° 6.如图,AB I CD, AC 丄BC,图中与/ CAB互余的角有()A . 1个B . 2个C. 3个D. 4个12. ( 2013 ?镇江)如图,AD 平分△ ABC 的外角 2 EAC,且 AD// BC,若 2 BAC =80 则 2 B= _________________ ° .第12题图第13题图第5题图7•如图,点 E 在CD 的延长线上, A . 2 1 = 2 2 C .2 5=2下列条件中不能判定第6题图AB I CD 的是(B.Z D .Z 3=2 4+ Z BDC=180°H G13 •如图,计划把河水引到水池A 中,先作AB 丄CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 ___________ .14 •如图,直线 AB , CD, EF 相交于点 0,且AB 丄CD,2 1与2 2的关系是 _____________ .15. ( 2013 ?江西)如图,在△ ABC 中,2 A =90 °,点 D 在 AC 边上,DE I BC,若 2 1=155 ° 则2 B 的度数为 _________________c:第8题图21 . (8 分)已知:如图,/ BAP+Z APD=180 °,/ 1 = / 2.求证:/ E = / F.第15题图第16题图C P D16•如图,AB// CD,直线EF分别交AB、CD于E、F, EG平分Z BEF,若Z 1=72°,则Z 2=级班校学6题答得h封不*内9线封■-密密+*17.如图,直线a// b,则Z ACB= _______ABC /5D第18题图22. (8 分)已知:如图,Z 1 = Z 2, Z 3 = Z 4,Z 5 = Z 6.求证:ED // FB.第17题图18. (2012 ?郴州)如图,已知AB// CD Z 1=60 °,则Z 2= ______________ 度.三、解答题(共6小题,满分46分)19. (7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ// CD,交AB于点Q;(2)过点P作PR丄CD,垂足为R;(3)若Z DCB=120°,猜想Z PQC是多少度?并说明理由.20. (7分)如图,方格中有一条美丽可爱的小金鱼.1)若方格的边长为1 ,则小鱼的面积为 __________第19题图(2)画岀小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图23. (8 分)如图,CD平分Z ACB, DE// BC,Z AED=80 °,求Z EDC的度数.第23题图24. (8 分)如图,已知AB / CD,Z B=65°, CM 平分Z BCE Z MCN=90°,求Z DCN 的度数.J BE C DX第五章 相交线与平行线检测题参考答案 1. B 解析:①是正确的,对顶角相等;② 正确,在同一平面内,垂直于同一条直线的两直线平行; ③ 错误,角平分线分成的两个角相等但不是对顶角;④ 错误,同位角只有在两直线平行的情况下才相等. 故①②正确,③④错误,所以错误的有两个, 故选B .2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短) , 所以点P 到直线I 的距离等于4 cm,故选B.3. C 解析:I / A+Z E=75°,•••/ EOB=Z A+Z E=75° .••• AB// CD, •••/ C=Z EOB=75,故选 C .4. A 解析::CD// AB ,A Z ABC Z DCB=180 . vZ BCD=70 ,•••/ ABC=180 -70° =110° . ••• BD 平分Z ABC, •••/ ABD=55 .5. C 解析:如题图所示,vZ 仁Z 2, /• a / b ,:Z 3=Z 5. vZ 3=40°,AZ 5=40°, /-Z 4=180° -Z 5=180° -40° =140°, 故选C .6. C 解析:v AB// CD, / Z ABC=Z BCD. 设Z ABC 的对顶角为Z 1,则Z ABC=/ 1. 又v AC 丄 BC,/. Z ACB=90 ,/ Z CAB+Z ABC=/ CAB+Z BCD=/ CAB+Z 1=90°, 因此与Z CAB 互余的角为/ ABC,Z BCD , / 1 . 故选C .7. A 解析:选项B 中,v / 3=Z 4,/. AB / CD (内错角相等,两直线平行), 故正确;选项C 中,v / 5=Z B ,/. AB / CD (内错角相等,两直线平行),故正确; 选项D 中,v / B+Z BDC=180,•/ AB / CD (同旁内角互补,两直线平行),故 正确;而选项A 中,/ 1与/2是直线AC BD 被直线AD 所截形成的内错角,v /仁/2, •/ AC// BD,故 A 错误.选 A .8. D 解析:如题图所示,v DC// EF,./ / DCB=Z EFB.v DH// EG// BC,•/ / GEF Z EFB / DCB=/ HDC, / DCB=Z CMG=Z DME,故与/ DCB 相等的角共有5个.故选D .9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断. 10. B 解析:v 两条平行直线被第三条直线所截,同位角相等,•/它们角的平分线形成的同位角相等,•/ 同位角相等的平分线平行. 故选B.11. 144°解析:由题图得,/ 1与/2互为邻补角,即/ 1+Z 2=180° . 又vZ 1=36°,/ /2=180° 36° =144°.12. 50 解析:vZ BAC=80,/•/ EAC=100 .v AD 平分△ ABC 的外角/ EAC , /-Z EAD=Z DAC=50 . v AD // BC,./Z B=Z EAD=50 . 故答案为50.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短, •/沿AB 开渠,能使所开的渠道最短. 14. Z 1+Z 2=90° 解析:v 直线 AB 、EF 相交于 O 点,•/ Z 仁Z DOF. 又v AB 丄 CD,/. Z 2+Z DOF=90,•/ Z 1+Z 2=90°. 15.65° 解析:vZ 1=155°,./Z EDC=180 -155° =25° . v DE// BC, ./Z C=Z EDC=25 . •••在厶 ABC 中,Z A=90°,Z C=25°, /•Z B=180° -90° -25° =65°. 故答案为65°. 16. 54° 解析:v AB// CD, •/ Z BEF=180 Z 仁 180° 72° =108°,Z 2=Z BEG. 又 v EG 平分Z BEF •/ Z BEG=/ BEF=< 108° =54°, 故Z 2=Z BEG=54 . 17. 78° 解析:延长BC 与直线a 相交于点D ,v a // b ,./ Z ADC=Z DBE=50 . •/ Z ACB=/ ADC +28 =50° +28° =78° . 故应填78° . 18. 120 解析:v AB// CD,/.Z 仁Z 3, 而Z 仁60°,/.Z 3=60° . 又vZ 2+Z 3=180°,/.Z 2=180° -60° =120°. 故答案为120.19. 解:(1) (2)如图所示.第19题答图(3)Z PQC=60 . 理由:v PQ// CD /. Z DCB+Z PQC=180 . v Z DCB=120,•/ Z PQC=180 120 ° =60° .20. 解:(1)小鱼的面积为 7 X 6 X 5 X 6 X 2 X 5 X 4 X 2 X 1.5X 1 X 11=16. (2)将每个关键点向左平移3个单位,连接即可.级 班 校 学;答 •得I封不i 4-内 Pi-题I线 封第20题答图21. 证明:: / BAP+Z APD = 180,二AB// CD/. / BAP =/ APC.又••• Z 1 =/ 2,/ Z BAP-Z 1 =Z APC-Z 2.即Z EAP Z APF/ AE// FP/ Z E =Z F.22. 证明::Z 3 =Z 4,/ AC// BD./ Z 6+Z 2+Z 3 = 180° .••• Z 6 =Z 5,Z 2 =Z 1,/ Z 5+Z 1+Z 3 = 180° ./ ED// FB.23. 解::DE// BC,Z AED=80,/ Z EDC Z BCD Z ACB=/ AED=80 ••• CD平分Z ACB/ Z BCD= Z ACB=40,/ Z EDC Z BCD=40 .24. 解::AB// CD, / Z B+Z BCE=180 (两直线平行,同旁内角互补)••• Z B=65°,/ Z BCE=115 .••• CM 平分Z BCE / Z ECM= Z BCE =57.5 .••• Z ECM +Z MCN +Z NCD =180,Z MCN=90°, / Z NCD=180 - Z ECM-Z MCN=180° -57.5°-90°=32.5°.I封不-内p:线级班校学-题I q;答打。

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。

人教版七年级下册数学第五章测试题及答案完整版

人教版七年级下册数学第五章测试题及答案完整版

人教版七年级下册数学第五章测试题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】123(第三题)12345678(第4题)ab cCD七年级数学下册第五章测试题姓名 ________ 成绩 _______一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( ) 2、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。

A 、90° B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A B C DE(第10题)ABCDE F G H 第13题A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。

人教版七年级数学下册第五章相交线与平行线单元检测卷(解析版)

人教版七年级数学下册第五章相交线与平行线单元检测卷(解析版)

人教版七年级数学下册第五章相交线与平行线单元检测卷一.选择题(共10小题,每小题3分,共30分)1.下列各图中,∠1与∠2是对顶角的是()A. B. C. D.【答案】A【解析】【分析】根据对顶角的定义对各图形判断即可.【详解】A、∠1和∠2是对顶角,故选项正确;B、∠1和∠2不是对顶角,故选项错误;C、∠1和∠2不是对顶角,故选项错误;D、∠1和∠2不是对顶角,故选项错误.故选:A.【点睛】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.2.如图,直线AD,BE 相交于点O,CO⊥AD 于点O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为A. 29°B. 30°C. 31°D. 32°【答案】A【解析】【分析】由CO⊥AD 于点O,得∠AOC=90,由已知∠AOB=32可求出∠BOC的度数,利用OF平分∠BOC可得∠BOF=,即可得∠AOF 的度数.【详解】∵CO⊥AD 于点O,∴∠AOC=90,∵∠AOB=32,∴∠BOC=122,∵OF 平分∠BOC,∴∠BOF=,∴∠AOF=∠BOF-∠AOB=32.故选A.【点睛】本题考查垂线,角平分线的定义.3.下列运动属于平移的是()A. 转动的电风扇的叶片B. 行驶的自行车的后轮C. 打气筒打气时活塞的运动D. 在游乐场荡秋千的小朋友【答案】C【解析】试题解析:A、转动的电风扇的叶片,是旋转,故此选项错误;B、行驶的自行车的后轮是旋转,故此选项错误;C、打气筒打气时活塞的运动,符合平移定义,属于平移,故本选项正确;D、在游乐场荡秋千的小朋友,是旋转,故此选项错误.故选C.点睛:平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.4.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.5.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.6.下列命题是真命题的是()A. 如果a+b=0,那么a=b=0B. 两直线平行,同旁内角互补C. 有公共顶点的两个角是对顶角D. 相等的角都是对顶角【答案】B【解析】【分析】利用等式的性质、平形线的性质、对顶角的定义及性质分别判断后即可确定正确的选项.【详解】A.如果a+b=0,那么a、b互为相反数,故错误,是假命题;B.两直线平行,同旁内角互补,正确,是真命题;C.有公共顶点的两个角不一定是对顶角,故错误,是假命题;D.相等的角不一定是对顶角,故错误,是假命题.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是了解等式的性质、平形线的性质、对顶角的定义及性质等知识,难度不大.7.如图,为一长条形纸带,,将沿折叠,两点分别与对应.若,则的度数为A. 60°B. 65°C. 72°D. 75°【答案】C【解析】【分析】由得=,根据翻折的特点得∠FEA’=∠AEF,又,再利用平角的定义得+∠FEA’+=180°即可求出∠AEF的度数.【详解】∵,∴=,∵翻折,∴∠FEA’=∠AEF=,又∵,A、E、B在一条直线上,∴+∠FEA’+=180°,即++=180°,故解得即=72°,选C.【点睛】此题主要考察平行线的性质,根据翻折来得出角度关系是解题的关键.8.如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A. 70B. 60C. 48D. 18【答案】B【解析】【分析】把矩形小路左边的部分沿小路向右平移2m构成一个新矩形,草地面积=新矩形的面积.【详解】把矩形小路左边的部分沿小路向右平移2m构成一个新矩形,草地面积=新矩形的面积=(12﹣2)×6=60(m2).故选B.【点睛】本题考查了生活中的平移现象,通过平移构成新矩形是解答此题的关键.9.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A. 10B. 20C. 36D. 45【答案】D【解析】【分析】根据直线的条数与交点的个数写出关系式,然后把10代入关系式进行计算即可得解.【详解】2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有个交点,n=10时,45.故选D.【点睛】本题考查了直线、射线、线段,写出直线条数与交点个数的表达式是解题的关键.10.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最大值为()A. 5B. 4C. 3D. 2【答案】C【解析】【分析】根据垂线段最短得出结论.【详解】根据垂线段最短可知:PC≤3,∴CP长的最大值为3.故选C.【点睛】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.二.填空题(共5小题,每小题2分,共10分)11.如图,直线AD与BE相交于点O,∠COD=90°,∠COE=70°,则∠AOB= _______.【答案】20°【解析】【分析】由题意可知∠DOE=90°-∠COE,∠AOB与∠DOE是对顶角相等,由此即可得解.【详解】∵已知∠COD=90°,∠COE=70°,∴∠DOE=90°-70°=20°,又∵∠AOB与∠DOE是对顶角,∴∠AOB=∠DOE=20°,故答案为:20°.【点睛】本题考查了余角、对顶角的定义和性质,熟练掌握两角互余与对顶角的定义和性质是解题的关键.12.如图,直线AB、CD相交于点O,OE平分∠AOD,OF⊥OC,∠1与∠3的度数之比为3:4,则∠EOC=___________,∠2=_________.【答案】(1). 153°(2). 54°【解析】【分析】由垂线的定义和角平分线的定义即可得出结果.【详解】∵OF⊥OC,∴∠DOF=∠COF=90°.∵OE平分∠AOD,∴∠AOD=2∠1.∵∠1与∠3的度数之比为3:4,∴∠AOD:∠3=3:2.∵∠3+∠AOD=90°,∴∠3=36°,∠AOD=54°,∴∠2=∠AOD=54°,∠1∠AOD=27°,∴∠EOC=180°-∠1=180°-27°=153°.故答案为:153°,54°.【点睛】本题考查了垂线,角平分线定义,对顶角的性质,正确的识别图形是解题的关键.13.如图,△ABC的面积为10,BC=4,现将△ABC沿着射线BC平移a个单位(a>0),得到新的△A'B'C',则△ABC所扫过的面积为__________【答案】10+5a【解析】【分析】要求△ABC所扫过的面积,即求梯形A BC′A′的面积,根据题意,可得AH=a,BC′=4+a,所以重点是求该梯形的高,根据直角三角形的面积公式即可求解;【详解】解:△ABC所扫过面积即梯形ABC′A′的面积,作AH⊥BC于H,∵S△ABC=10,即BC•AH=10∴AH=5,∴S梯形ABFD=×(AA′+BC′)×AH=(a+4+a)×5=10+5a;故答案为:10+5a.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.把命题“两直线平行,内错角相等”改成“如果……那么……”的形式:____________________【答案】如果两直线平行,那么内错角相等【解析】【分析】根据命题“两直线平行,内错角相等”的题设和结论进行分析解答即可.【详解】把命题“两直线平行,内错角相等”改写成“如果那么”的形式为:如果两直线平行,那么内错角相等.【点睛】知道命题“两直线平行,内错角相等”的题设是“两直线平行”,结论是“内错角相等”是解答本题的关键.15.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为____时,可以使∠OEB=∠OCA.【答案】60°【解析】【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.三.解答题(共9小题,共60分)16.如图,直线AB、CD相交于点O,OE平分∠BOD,∠BOE=36°.求∠AOC的度数.【答案】72°【解析】试题分析:根据OE平分∠BOD,∠BOE=36°可得:∠BOD=2×36°=72°,根据对顶角的性质可得∠AOC=∠BOD=72°.考点:角平分线的性质、对顶角的性质.17.如图,直线AB、CD、MN相交于O,FO⊥BO,OM平分∠DOF.(1)请直接写出图中所有与∠AON互余的角;(2)若∠AOC:∠FOM=5:2,求∠MOD与∠AON的度数.【答案】(1)与∠AON互余的角有:∠CON、∠DOM、∠MOF;(2)∠MOD =20°,∠AON =70°【解析】【分析】(1)根据垂线的性质可得∠BOF=∠AOF=90°,由角平分线和对顶角相等可得与∠AON互余的角有:∠CON、∠DOM、∠MOF;(2)先根据已知可得∠AOC=50°,∠DOM=20°,计算∠BOM的度数,所以可得∠AON的度数.【详解】(1)∵FO⊥BO,∴∠BOF=∠AOF=90°.∵∠AON=∠BOM,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM.∵∠DOM=∠CON,∴与∠AON互余的角有:∠CON、∠DOM、∠MOF;(2)∵∠AOF=∠AON+∠FOM=90°,∠AOC:∠FOM=5:2,∴∠AOC=50°,∠MOD =20°,∴∠BOD=∠AOC=50°,∴∠BOM=∠BOD+∠MOD=50°+20°=70°,∴∠AON=∠BOM=70°.【点睛】本题考查了垂线的定义,角的平分线的定义,互余以及对顶角相等,正确理解角平分线的定义是关键.18.如图所示,在△ABC中,AC=5,BC=6,BC边上高AD=4,若点P在边AC上(不含端点)移动,求BP 最短时的值.【答案】【解析】【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,利用面积法即可求出此时BP的长.【详解】根据垂线段最短可知,当BP⊥AC时,BP最短.∵S△ABC BC×AD AC×BP,∴6×4=5BP,∴PB,即BP最短时的值为:.【点睛】本题考查了垂线段最短,熟练掌握垂线段的性质是解答本题的关键.19.如图,将△ABC沿着从B到D的方向平移后得到△EDF,若AB=16cm,AE=12cm,CE=4cm.(1)指出△ABC平移的距离是多少?(2)求线段BD、DE、EF的长.【答案】(1)12cm;(2)BD=12cm,DE=16cm,EF=8cm.【解析】【分析】(1)找准平移前后的对应点即可确定平移的距离;(2)根据平移的性质分别求得相应的线段的长即可.【详解】(1)∵AE=12cm,∴平移的距离=AE=12cm;(2)∵三角形ABC沿着从B到D的方向平移后得到三角形EDF,∴BD=AE=12cm,DE=AB=16cm,EF=AC=AE ﹣CE=16﹣4=8(cm).【点睛】本题考查了平移的性质,熟练掌握平移的性质,数形结合,准确识图是解题的关键.20.如图,AD平分∠EAC,若∠C=55°,∠EAC=110°,AD与BC平行吗?为什么?请根据解答过程填空(理由或数学式)解:AD∥BC.理由:∵AD平分∠EAC(已知)∴∠DAC=∠EAC()∵∠EAC=110°(已知)∴∠DAC=∠EAC= °∵∠C=55°(已知)∴∠C=∠∴AD∥BC()【答案】见解析.【解析】【分析】根据角平分线定义求出∠DAC,求出∠C=∠DAC,根据平行线的判定(内错角相等;两直线平行)得出即可.【详解】角平分线的定义;55°;∠DAC;内错角相等;两直线平行【点睛】本题考查了平行线的性质和判定的应用,注意找角的等量关系从而得到平行关系.21.如图,已知∠1+∠2=180°,∠3=∠B,∠BAC与∠DEC相等吗?为什么?【答案】∠BAC=∠DEC,理由详见解析.【解析】【分析】根据等角的补角相等可得出∠1=∠DFE,利用“内错角相等,两直线平行”可得出EF∥BC,由“两直线平行,内厝角相等”可得出∠3=∠EDC,结合∠3=∠B可得出∠EDC=∠B,利用“同位角相等,两直线平行”可得出AB∥DE,再利用“两直线平行,同位角相等”可证出∠BAC=∠DEC.【详解】∠BAC=∠DEC,理由如下:∵∠1+∠2=180°,∠2+∠DFE=180°,∴∠1=∠DFE,∴EF∥BC,∴∠3=∠EDC.∵∠3=∠B,∴∠EDC=∠B,∴AB∥DE,∴∠BAC=∠DEC.【点睛】本题考查了平行线的判定与性质,根据平行线的判定定理找出EF∥BC、AB∥DE是解题的关键.22.如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC的三个顶点均在格点上,将三角形ABC向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF.(1)画出平移后的三角形DEF;(2)若点A向左平移n个单位长度在三角形DEF的内部,请直接写出所有符合条件的整数n的值.【答案】(1)见解析;(2)3或4.【解析】【分析】(1)根据平移的定义作出三顶点分别平移得到对应点,再顺次连接可得;(2)根据所作图形可得结论.【详解】(1)如图所示,△ABC即为所求;(2)由图知,n=3或4.【点睛】本题考查了利用平移变换作图,准确找出对应点的位置是解题的关键,熟悉网格结构对解题也很关键.23.如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.【答案】(1)AB//CD,理由见解析;(2)∠BEG∠MFD=90°,理由见解析;(3)∠BEG+∠MFD=90°.【解析】【分析】(1)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(2)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(3)根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论.【详解】(1)AB∥CD,理由如下:延长EG交CD于H,∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°.∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD;(2)∠BEG∠MFD=90°,理由如下:延长EG交CD于H.∵AB∥CD,∴∠BEG=∠GHF.∵EG⊥FG,∴∠GHF+∠GFH=90°.∵∠MFG=2∠DFG,∴∠BEG∠MFD=90°;(3)∠BEG+()∠MFD=90°,理由如下:∵AB∥CD,∴∠BEG=∠GHF.∵EG⊥FG,∴∠GHF+∠GFH=90°.∵∠MFG=n∠DFG,∴∠BEG∠MFG=∠BEG+()∠MFD=90°.【点睛】本题考查了平行线的判定,三角形的内角和,正确的作出辅助线是解题的关键.24.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°.【解析】【分析】(1)只要证明∠COA+∠OAB=180°即可;(2)Ⅰ)如图②,根据∠EOF=∠COF-∠COE,只要求出∠COF,∠COE即可;Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,构建方程即可解决问题;【详解】(1)∵BC∥OA,∴∠C+∠COA=180°,∠BAO+∠ABC=180°,∵∠C=∠BAO=100°,∴∠COA=∠ABC=80°,∴∠COA+∠OAB=180°,∴OC∥AB.(2)Ⅰ)∵∠AOB=∠EOB=30°,∠AOC=50°,∴∠COE=80°﹣60°=20°,∠COB=80°﹣30°=50°,∵CF平分∠COB,∴∠COF=∠COB=25°,∴∠EOF=25°﹣20°=5°,Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,∵∠AOB+∠BOC+∠OCB=180°,∴4x+6x+100°=180°,∴x=8°,∴∠ABO=∠BOC=6x=48°.【点睛】本题考查平行线的性质与判定、平移变换等知识,解题的关键是熟练掌握基本知识,学会利用此时构建方程解决问题,属于中考常考题型.。

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版数学七年级下册单元检测试卷第 5 章《相交线与平行线》班级:姓名:成绩:题号一二三四五六七八总分得分一.单项选择题。

(本大题共10 小题,每小题4 分,共40 分。

每小题只有一个正确答案,请将正确的答案的序号填入括号中。

)1.如图所示的图案分别是奔驰、宝马、大众、奥迪汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角;(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。

A.1 个B.2 个C.3 个D.4 个3.如图,若AB,CD 相交于点O,且AB⊥OE,则下列结论不正确的是()A.∠EOC 与∠BOC 互为余角B.∠EOC 与∠AOD 互为余角C.∠AOE 与∠EOC 互为补角D.∠AOE 与∠EOB 互为补角第3 题图第4 题图第5 题图4.下列说法错误的是()A.∠1 与∠A 是同旁内角B.∠3 与∠A 是同位角C.∠2 与∠3 是同位角D.∠3 与∠B 是内错角5.新农村建设中一项重要工程是“村村通自来水”,如图是某一段自来水管道,若经过每次拐弯后,管道保持平行(即AB∥CD∥EF,BC∥DE).若∠B=70°,则∠E 的度数为( )A.70°B.110°C.120°D.130°6.如图,直线AB、CD 相交于点O,OE 平分∠BOD,OF 平分∠COE,∠AOD:∠BOE=4:1,则∠AOF 的度数为()A.135°B.130°C.125°D.120°7.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD 的度数为()A.97°B.117°C.125°D.152°8.如图,AB⊥BD 于点B,BC⊥CD 于点C,已知AD=7,CD=4,则BD 的长可能为( )A.5 B.7 C.8 D.12第6 题图第7 题图第8 题图9.将一副三角板按如图放置,则下列结论①∠BAE+∠CAD=180°;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④第9 题图第10 题图第11 题图10.甲乙丙丁四位同学在在一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

人教版七年级数学下册第五章相交线与平行线单元卷附解析

人教版七年级数学下册第五章相交线与平行线单元卷附解析

人教版七年级数学下册第五章相交线与平行线单元卷附解析一、选择题(共12题;共36分)1.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A. 58°B. 70°C. 110°D. 116°2.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A. ∠AOC=40°B. ∠COE=130°C. ∠EOD=40°D. ∠BOE=90°3.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A. 50°B. 40°C. 30°D. 60°4.如图,a∥b,∠1=70°,则∠2等于()A. 20°B. 35°C. 70D. 110°5.下列说法正确的是()A. 若两条直线被第三条直线所截,则同旁内角互补B. 相等的角是对顶角C. 有一条公共边并且和为180°的两个角互为邻补角D. 若三条直线两两相交,则共有6对对顶角6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等7.下列说法错误的是()A. 无数条直线可交于一点B. 直线的垂线有无数条,但过一点与直线垂直的直线只有一条C. 直线的平行线有无数条,但过直线外一点的平行线只有一条D. 互为邻补角的两个角一个是钝角,一个是锐角8.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A. 相等B. 互补C. 相等或互补D. 无法确定10.如图,已知AB⊥BD,CB⊥CD,AD=14 cm,BC=10 cm,若线段BD的长度为偶数,则线段BD的长度为( )A. 8 cmB. 10 cmC. 12 cmD. 14 cm11.如图,已知直线a∥b,AC⊥AB,AC交直线b于点C,如果∠1=62°,则∠2的度数是()A. 36°B. 32°C. 30°D. 28°12.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。

人教版数学七年级下册第五章测试卷(含答案)

人教版数学七年级下册第五章测试卷(含答案)

初中数学人教版七年级下学期第五章测试卷一、单选题(共6题;共12分)1. ( 2分) 如图所示,下列条件中不能判定DE∥BC的是()A. ∠1=∠CB. ∠2=∠3C. ∠1=∠2D. ∠2+∠4=180°2. ( 2分) 下面四个图形中,∠1与∠2是对顶角的是()A. B. C.D.3. ( 2分) 如图,,若,则的度数是( )A. B. C.D.4. ( 2分) 下列命题中,为真命题的是( )A. 对角线互相垂直的四边形是菱形B. 四边相等的四边形是正方形C. 对角线相等的四边形是矩形D. 两组对角分别相等的四边形是平行四边形5. ( 2分) 如图,已知CD∥BE,如果∠1=60°,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°6. ( 2分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A,B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )A. 25°B. 30°C. 35°D. 55°二、填空题(共6题;共10分)7. ( 1分) 如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。

(填序号)8. ( 1分) 如图,直线a、b 被直线c所截,若满足________,则a∥b.9. ( 1分) 命题“等角的余角相等”的逆命题是________命题.10. ( 5分) 已知:如图,射线OA 与OB 被直线CD 和EF 所截,∠1+ ∠2 = 180°,求证:∠3 = ∠4 .11. ( 1分) 直角三角形从点出发沿着方向匀速平移得到三角形(如图1),当点平移至点时停止运动(如图2).若,当点恰好将分为两部分时,四边形的面积为,那么平移的距离是________.12. ( 1分) 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为________.三、解答题(共3题;共15分)13. ( 5分) 如图,已知∠B=∠C,∠B+∠D=180°,指出图中的平行线,并说明理由.14. ( 5分) 如图18,∠1=∠2,∠C=∠D,问∠A与∠F相等吗?为什么?15. ( 5分) 如图,,,,试求的大小.四、综合题(共2题;共21分)16. ( 10分) 如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.17. ( 11分) 问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.如图2,过点P作PE∥AB,∵PE∥AB(作图知)又∵AB∥CD,∴PE∥CD.________∴∠A+∠APE=180°.∠C+∠CPE=180°.________∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系.答案解析部分一、单选题1.【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】A、∵∠1=∠C,∴DE∥BC(同位角相等两直线平行),正确,不符合题意;B、∵∠2=∠3,∴DE∥BC(内错角相等两直线平行),正确,不符合题意;C、∠1=∠2,∴DF∥AC(内错角相等两直线平行),而不能得到DE∥BC,错误,符合题意;D、∠2+∠4=180°,∴DE∥BC(同旁内角互补两直线平行),正确,不符合题意;故答案为:C.【分析】根据平行线的判定定理分别分析判断即可,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行.2.【答案】B【考点】对顶角、邻补角【解析】【解答】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故答案为:B【分析】根据对顶角的概念,即可.3.【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】∵,∴.∵,∴,故答案为:B.【分析】根据互相平行的两条直线同位角相等、平角为180°的性质,可得出结果。

人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案

人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案

人教版数学七年级下册第五章相交线与平行线单元练习含答案人教版数学七年级下册第五章相交线与平行线单元练习1.下列说法中正确的是( )A.两条直线相交所成的角是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.不相等的角一定不是对顶角2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2与∠3互余 B.∠2与∠3互补C.∠2=∠3 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠57. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个 B.2个 C.3个 D.4个9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.11. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC =__________,∠AOC=___________.12. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是垂线段_____________13. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线_______所截得的_______角;(2)∠2和∠BAC是直线CE,AB被直线______所截得的________角;(3)∠3和∠ABC是直线_______,_______被直线_______所截得的__________角;14. 如图,过点A画直线l的平行线,能画条15. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是内错角,两直线 .16. 如图,四边形ABCD中,A D∥BC,∠A=110°,则∠B=___________.17. 两个锐角之和是钝角,其条件是两个锐角之和,结论是钝角,这是一个________命题(填“真”或“假”).18. 如图所示,将直角三角形ABC沿BC方向平移4 cm,得到直角三角形DEF,连接AD,若AB=5 cm,则图中阴影部分的面积为_____________.19. 如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.判断OD与AB的位置关系,并说明理由.20. 如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.21. 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.22. 如图,AD∥BC,且AD<BC,△ABC经过平移后到了△DEF,(1)平移的方向是射线___________的方向,平移距离是线段________________的长度;(2)在观察图形时,小明发现了AD+BC=BF这一结论,你觉得这一结论成立吗?为什么?参考答案:1---9 DABAD DBBC10. 3011. 28° 152°12. 最短13. (1) DB 同位(2) AC 内错(3) AB AC BC 同旁内14. 115. 相等平行16. 70°17. 假18. 20cm219. 解:OD⊥AB.理由:因为OC平分∠AOD,所以可设∠AOC=∠COD=x°,而∠AOC=13∠BOC,所以∠BOC=3∠AOC=3x°.因为∠AOC+∠BOC=180°,所以x+3x=180,所以x=45,所以∠AOD=2∠COD=90°,即OD⊥AB.20. 解:∵∠1=40°,∴∠3=∠1=40°,4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°. 21. 解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF 平分∠AED,∴∠DEF=∠AED=69°.又∵AB∥CD,∴∠AFE=∠DEF=69°.22. (1) BC BE或CF或AD(2) 解:结论成立.理由:∵△A BC经过平移后到了△DEF,∴AD =BE=CF,BC=EF,∴AD+BC=BE+EF=BF.人教版七年级数学下册第五章相交线平行线单元检测题一、选择题。

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题【含答案】

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题【含答案】

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题(满分120分时间100分钟)一、选择题(每题3分,共30分)1.如图1,以下说法错误的是()A.1∠,2∠是内错角B.2∠,3∠是同位角C.1∠,3∠是内错角D.2∠,4∠是同旁内角2.给出下列说法:①两条直线被第三条直线所截,则内错角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③平面内的三条直线任意两条都不平行,则它们一定有三个交点;④若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.其中正确的个数是()A.1B.2C.3D.43.如图2,点O 为正六边形ABCDEF 的中心,下列图形中可由△OBC 平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF4.欣赏并说出下列各商标图案,是利用平移来设计的有()A、2个B、3个C、5个D、6个5.如图4,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、AE 、ED 、EC 、DB 中,相互平行的线段有().(A )4组(B )3组(C )2组(D )1组6.两条平行线被第三条直线所截,则()A 、一对内错角的平分线互相平行B 、一对同旁内角的平分线互相平行C 、一对对顶角的平分线互相平行D、一对邻补角的平分线互相平行7.如图5,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关8.小明从家出来骑自行车上学,是先沿着一笔直的街道向正北方向骑2000米后,第一次向右拐45゜,大约骑500米后,又再向右拐45゜,此时小明是沿着()方向骑车。

A.正北B.北偏东45゜C.正东D.北偏西45゜9.如图6,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°。

人教版七年级数学下册第五章章节综合检测卷及答案

人教版七年级数学下册第五章章节综合检测卷及答案

第五章检测卷考试时间:120分钟满分:120分一、选择题(每小题3分,共10小题,满分30分)1.下列语句是命题的是( )A.连接A、B两点B.画一个角等于已知角C.过点C作直线AB的垂线D.两直线相交,有且只有一个交点2.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角第2题图第3题图3.如图,已知直线a∥b,直线c与a、b分别交于点A、点B,且∠1=120°,则∠2=( )A.60°B.120°C.30°D.150°4.下列各组图形可以通过平移互相得到的是( )5.如图,BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°,则∠ABD的度数为( )A.60°B.50°C.40°D.30°第5题图第6题图第7题图6.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,两角的和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行(或在同一直线上)且相等9.如图,可由三角形BOC平移得到的三角形有A.2个B.3个C.4个D.5个第9题图第10题图10.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为A.①②B.③④C.②④D.①③④二、填空题(每小题3分,共8小题,满分24分)11.把命题“三角形内角和为180°”写成“如果……那么……”的形式是.12.如图,CD⊥AB,垂足为C,∠1=130°,则∠2= 度.第12题图第13题图13.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠CED= .14.如图所示,将线段b向右平移3格,再向上平移格,能与线段重合.第14题图第15题图15.如图,FE∥ON,OE平分∠MON,若∠FEO=28°,则∠MFE= .16.如图,若计划把河水引到水池A中,可以先作AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是.第16题图第17题图第18题图17.如图,一只船从点A出发,沿北偏东60°方向航行到点B,再沿南偏西25°方向航行到点C,则∠ABC= .18.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于.三、解答题(本大题共7小题,满分66分)19.(8分)(山东淄博中考)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.20.(8分)如图,三角形ABC的顶点都在方格纸的格点上.将三角形ABC向左平移2格,再向上平移4格.请在图中画出平移后的三角形A′B′C′,再在图中画出三角形A′B′C′的高C′D′.21.(8分)如图所示,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是多少?22.(10分)已知:如图所示,AB∥CD,∠A=∠C.求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠(),∵∠A=∠C(已知),∴(),∴BC∥AD().23.(10分)如图,直线AB交CD于点O,由点O引射线OG、OE、OF,使OC平分∠EOG,∠AOG=∠FOE,∠BOD=56°,求∠FOC.24.(10分)如图,EF∥CD,∠1+∠2=180°,试判断∠BGD与∠BCA 的大小,并给予证明.25.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别为∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别为∠ABE2和∠DCE2的平分线,交点为E3,…第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n. (1)如图①,求证:∠BEC=∠ABE+∠DCE;∠BEC;(2)如图②,求证:∠BE2C=14(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级下册数学第五章检测试题(有答案)一、单选题(共20题;共39分)1.如图,将△ABC沿射线AB平移到△DEF的位置,则以下结论不正确的是( )1题图2题图A. ∠C=∠FB. BC∥EFC. AD=BED. AC=DB2.如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=( )A. 15°B. 20°C. 25°D. 30°3.如图,直线m,n被直线l所截,则∠1的同位角是( )A.∠2B. ∠3B. C. ∠4 D. ∠54.下列各图案中,是由一个基本图形通过平移得到的是()A. B. C. D.5.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()5题图6题图A. ∠D+∠BB. ∠B﹣∠DC. 180°+∠D﹣∠BD. 180°+∠B﹣∠D6.如图,若,则,判断依据是( )A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 同位角相等,两直线平行D. 内错角相等,两直线平行7.如图1,当光线在空气进入水中时,会发生折射,满足入射角与折射角的度数比为﹒如图2,在同一平面上,两条光线同时从空气进入水中,两条入射光线与水面夹角分别为,,在水中两条折射光线的夹角为,则,,三者之间的数量关系为()A. B. C. D.8.如图,直线//b,下列各角中与相等的是()A. B.B.C. D.9.把平面直角坐标系中的一点( ,)向上平移2个单位长度后,点P的对应点P′刚好落在x轴上,则的值为()A. B. 0 C. D.10.如图,梯子的各条横档互相平行,若∠1=∠2+20°,则∠3=________ 。

11.在下列图形中,∠1与∠2是同位角的是( )A. B. C. D.12.已知∠1和∠2是同旁内角.若∠1=40°,则∠2的度数是()A. 40°B. 140°C. 160°D. 无法确定13.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A. 如果a∥b,a⊥c,那么b⊥cB. 如果b∥a,c∥a,那么b∥cC. 如果b⊥a,c⊥a,那么b⊥cD. 如果b⊥a,c⊥a,那么b∥c14.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A. B. C. D.15.如图,直线a,b被直线c所截,∠1的内错角是( )A.∠2B. ∠3B. C. ∠4 D. ∠516.如图,直线l∥m∥n,三角形ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,且∠ACB=60°,则∠a的度数为()A. 25°B. 30°B.C. 35° D. 45°17.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠418.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需要将方向调整到与出发时一致,则方向的调整应为()18题图19题图A. 左转80°B. 右转80°C. 左转100°D. 右转100°19.已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC于点E,若∠ABC=84°,∠CDE=20°,则∠ADC的度数为( )A. 104°B. 76°C. 104°或64°D. 104°或76°20.在5×5方格纸中,将图1中的图形N平移至图2所示的位置,下列操作正确的是( )A. 先向下平移1格,再向左平移1格B. 先向下平移1格,再向左平移2格C. 先向下平移2格,再向左平移1格D. 先向下平移2格,再向左平移2格二、填空题(共10题;共20分)21.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a上,含90°角的顶点落在直线b上.若a∥b,∠2=2∠1,则∠1=________ °.22.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为________.23.如图,若,,则________.24.已知∠A与∠B(∠A,∠B都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且2∠A-∠B=18°,则∠A的度数为________。

25.如图,若l1∥l2,∠1=x°,则∠2=________ .26.如图,将△ABC沿BC方向向右平移得到△DEF,连结AD.若BF=10cm,EC=4cm.则线段AD的长度为________cm。

27.将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠1=60°,则有BC∥AD④如果∠2=45°,必有∠4=∠C其中正确的有________。

28.如图一个合格的弯形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=120°,则另一个拐角∠BCD =________时,这个管道才符合要求.29.如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1= ________.30.将点P(﹣1,1)向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P的坐标是________.三、作图题(共1题;共11分)31.如图,已知在每个小正方形边长为1的网格图形中,△ABC的顶点都在格点上,D为格点.(1)求△ABC的面积;(2)经过平移,使△ABC的顶点A平移到点D的位置,请在图中画出平移后的△DEF.(温馨提示:请画在答题卷相对应的图上)四、综合题(共2题;共30分)32.问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.小明的思路是:(1)初步尝试:按小明的思路,求得∠AEC的度数;(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D之间有何数量关系?请说明理由;(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B与∠D之问的数量关系.33.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA 的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.答案一、单选题1. A2. D3. B4. D5. C6. D7. B8. C9. A 10. 100°11. B 12. D 13. C14. C 15. A 16. C 17. A 18. B 19. C 20. C二、填空题21. 2022. 15 23. (180﹣x)°24. 36°或96°25. (180-x)026. 3 27. ①② 28. 60°29. 70°30. (0,3)三、作图题31. (1)解:S△ABC=(2)解:如下图四、综合题32. (1)解:如图,过E作EM∥AB,∵AB∥CD,∴AB∥ME∥CD,∴∠A =∠AEM,∠C=∠CEM,∴∠AEC=∠A+∠C=70°;(2)解:∠A+∠EFD =∠AEF+∠D理由如下:过点E作EM∥AB, 过点F作FN∥AB∵AB∥CD,∴AB∥ME∥FN∥CD,∴∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,∴∠A+∠EFD =∠AEF+∠D;(3)∠B+∠D=160°33. (1)解:如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)解:如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC﹣90°,∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.即α+β﹣γ=90°.。

相关文档
最新文档