温度传感器特性
3-1温度传感器特性实验
二、实验接线
电源5V
+
AD590 图1 AD590
-
电阻1K
输出 接T4
0V
图2 管脚图
图3
二、实验接线
+
AD590
-
电阻1K
输出 接T4
0V 图3
二、实验设备
1、实验平台主板
二、实验设备
2、温度测量模块
AD590集成温度传感器模块
实验平台主板
二、实验设备
1、实验平台主板
二、实验设备
1、实验平台主板
15V电源 开关 + 0.0 0 0 电压表
IN
调零
增益
实验步骤
2、调悬臂梁水平。测微头装于悬臂梁前端的永久 磁钢上,并调节使应变梁处于水平状态。然后按图 2接线,连接成单臂桥测试量电路。直流激励电源 为±4V,R4用电阻应变片代替。
+4V
R1
R
R´
+
差放
电压表
Wb R2
全桥电路
ቤተ መጻሕፍቲ ባይዱ
V
+
R3
-4V
图2
图5 传感器特性实验集成环境
图6 称重传感器制作集成环境
二、实验设备
1、实验平台主板
图5 传感器特性实验集成环境
图6 称重传感器制作集成环境
温度传感器的特性及应用
1
GND
4 LM358AN 6
Vo
GND
R1
47k
五、注意事项
1. 实验中要小心操作,避免人身和仪器受损。从设计者和使用者的双重角度细心 观察仪器,以利于今后的学习和课题研究、设计任务;
2. 发现异常情况应立即切断电源,并及时报告老师;
3. 标准温度测量可以将万用表调整到温度测量档,并直接读数;
4. 测量时应注意控制温度缓慢增加,并在每个测量点上多停留一些时间,待作为 标准温度测量仪的万用表读数稳定后,再将其切换到电压档,读出相应的电压 值。
2. 假如希望NTC热敏电阻两端的电压与热敏的电阻成 正比,应当如何修改电路。
3. 根据测得的数据计算出测量所用PN结在温度每变化 1C时实际的电压变化值(放大器的增益约为4.7)。
4. 评价和比较PN结与NTC热敏电阻测温电路的特点和 异同。
5. 分析一下两种测温电路的误差来源。 6. 如果要在图2中电路的基础上制作一个0~100C的温
NTC热敏电阻
-
+
IN4148二极管
设备、器件介绍
半导体致冷片
+
侧面
-
正面
三、实验准备
1. 半导体致冷片的连接: (1)稳流:将稳压/稳流电源的一组电源调节到稳流输出状态,并使之处 于电流最小的位置。然后关闭电源; (2)极性:将半导体致冷片二根引线中的红色线接稳压电源的正极,黑 色线接负极; (3)试验:经检查无误后,开启稳压/稳流电源,并缓慢调节输出电流至 100mA左右,用手接触半导体致冷片的两面(冷端和热端),体验致冷片两 面的温差,并据此确认致冷片冷端和热端。调节稳压/稳流电源的输出电 流(最大允许到2A),感觉温差的变化; (4)复位:减小稳压/稳流电源的输出电流至0,切断电源,让致冷片恢 复常温,准备后面的实验。
物理实验教案:温度传感器特性综合实验
温度传感器特性综合实验实验目的1.掌握PT100热电阻的工作原理和特性2. 掌握热敏电阻NTC的工作原理和特性3. 掌握PN结传感器的工作原理和特性实验仪器HLD-WD-III温度传感器特性综合实验仪,铂热电阻PT100,NTC传感器,PN结传感器,数字万用表实验原理:一、PT100热电阻传感器热电阻传感器是利用金属或非金属的电阻随温度变化而变化的特性,来实现温度测量的。
热电阻分为金属热电阻和半导体热电阻两大类,一般称金属热电阻为热电阻,称半导体热电阻为热敏电阻。
热电阻材料的特点作为测量温度用的热电阻材料,必须具备以下特点:(1)电阻温度系数а要尽可能大,且稳定;(2)电阻率p 要高;(3)比热小,亦即热惯性小;(4)电阻值随温度变化关系最好是线性关系;(5)在较宽的测量范围内具有稳定的物理化学性质;(6)良好的工艺性,即特性的复现性好,便于批量生产。
由于铂热电阻的物理化学性能在高温和氧化性介质中很稳定,重复性好,测量精度高,其电阻值与温度之间的关系近似线性关系,它既能作为工业用测温元件,又能作国际温度标准,按国际温标IPTS-68规定,在-259.39~630.74℃温度范围内,用铂热电阻温度计作为基准器。
二、NTC热敏电阻的工作原理热敏电阻是利用半导体电阻值随温度变化而显著变化的一种热敏元件。
热敏电阻的主要特点是:(1)电阻温度系数大,灵敏度高。
通常温度变化1℃,阻值变化1%~6%,电阻温度系数绝对值比一般金属电阻大10~100倍。
(2)结构简单,体积小。
珠形热敏电阻探头的最小尺寸为0.2mm,能测量热电偶和其它温度传感器无法测量的空隙、腔体、内孔等处的点温度。
如人体血管内温度等。
(3)电阻率高,热惯性小,不像热电偶需要冷端补偿,适宜动态测量。
(4)使用方便。
热敏电阻阻值范围在10~105 之间可任意挑选,不必考虑线路引线电阻和接线方式,容易实现远距离测量,功耗小。
(5)阻值与温度变化呈非线性关系。
温度传感器特性的研究实验报告
温度传感器特性的研究实验报告温度传感器特性研究实验报告一、实验目的本实验旨在研究温度传感器的特性,包括其灵敏度、线性度、迟滞性以及重复性等,通过对实验数据的分析,以期提高温度传感器的性能并为相关应用提供理论支持。
二、实验原理温度传感器是一种将温度变化转化为电信号的装置,其特性受到材料、结构及环境因素的影响。
本次实验将重点研究以下特性:1.灵敏度:温度传感器对温度变化的响应程度;2.线性度:温度传感器输出信号与温度变化之间的线性关系;3.迟滞性:温度传感器在升温与降温过程中,输出信号与输入温度变化之间的关系;4.重复性:温度传感器在多次重复测量同一温度时,输出信号的稳定性。
三、实验步骤1.准备材料与设备:包括温度传感器、恒温水槽、加热装置、数据采集器、测温仪等;2.将温度传感器置于恒温水槽中,连接数据采集器与测温仪;3.对温度传感器进行升温、降温操作,并记录每个过程中的输出信号;4.在不同温度下重复上述操作,收集足够的数据;5.对实验数据进行整理与分析。
四、实验结果及数据分析1.灵敏度:通过对比不同温度下的输出信号,发现随着温度的升高,输出信号逐渐增大,灵敏度整体呈上升趋势。
这表明该温度传感器具有良好的线性关系。
2.线性度:通过对实验数据的线性拟合,得到输出信号与温度之间的线性关系式。
结果表明,在实验温度范围内,输出信号与温度变化之间具有较好的线性关系。
3.迟滞性:在升温与降温过程中,发现输出信号的变化存在一定的差异。
升温过程中,输出信号随着温度的升高而逐渐增大;而在降温过程中,输出信号却不能完全恢复到初始值。
这表明该温度传感器具有一定的迟滞性。
4.重复性:通过对同一温度下的多次测量,发现输出信号具有良好的重复性。
这表明该温度传感器在重复测量同一温度时具有较高的稳定性。
五、结论与建议本次实验研究了温度传感器的特性,发现该传感器具有良好的灵敏度和线性度,但在降温过程中存在一定的迟滞性。
此外,该温度传感器具有良好的重复性。
温度传感器分类与特点(共15张PPT)
例如:热电阻、热敏电阻、热电偶等。 除温度以外,特性对其它物理量的灵敏度要低; Classification and characteristics 例如:辐射高温计、辐射高温计等。
特 函数 性
开关型 特性
特征
测温范围宽、 输出小
传感器名称 测温电阻器、晶体管、热电偶、可控硅、 半导体集成电路传感器、石英晶体振动器、 压力式温度计、玻璃制温度计
测温范围窄、 输出大
特定温度、输 出大
热敏电阻 感温铁氧体、双金属温度计
1.4 温度传感器特性
分类
特征
传感器名称
超高温用 1500℃以上
温度传感器分类与特点
Classification and characteristics of temperature sensors
课程内容 Course Contents
1.1 温度传感器定义 1.2 温度传感器要求 1.3 温度传感器分类 1.4 温度传感器特性
课程内容 Course Contents
半导体集成电路传机感械器、性石能英好晶,体耐振化动学器腐、蚀,耐热性能好; 感温铁氧体、双金属温度计 光学高温计、辐射能传大感器批量生产,价格廉价;
半压导力体 式集温成度电计路、传玻感璃无器制危、温险石度性英计,晶无体振公动害器等、。
课程内容 Course Contents
1.1 温度传感器定义
1.2 温度传感器要求 1.3 温度传感器分类
计、压力式温度计、玻璃制温度计、辐射传感器、晶体管、二极管、半导体集
温度传感器特点及使用场合
温度传感器特点及使用场合温度传感器是一种广泛应用于工业、医疗、农业等领域的传感器。
它能够感知周围环境的温度,并将温度转化为电信号输出,从而实现对环境温度的监测和控制。
本文将从温度传感器的特点和使用场合两个方面进行详细介绍。
一、温度传感器的特点1.高精度温度传感器具有较高的精度,能够准确地测量环境中的温度变化。
这种高精度使得它在许多应用场合中都能发挥重要作用,比如在医疗设备中需要对体温进行精确测量时,就需要使用高精度的温度传感器。
2.灵敏快速温度传感器具有灵敏快速的特点,能够迅速地反应环境中的温度变化。
这种特性使得它在许多需要实时监测和控制环境温度的场合中得到广泛应用,比如在工业生产过程中需要对物料或设备进行实时监测和控制时,就需要使用灵敏快速的温度传感器。
3.稳定可靠温度传感器具有稳定可靠的特点,能够长期稳定地工作,不受环境影响。
这种稳定可靠性使得它在许多重要的应用场合中得到广泛应用,比如在航空航天、国防和医疗等领域,需要对关键设备或系统进行长期稳定监测时,就需要使用稳定可靠的温度传感器。
4.多种类型温度传感器有多种类型,包括热电偶、热敏电阻、红外线测温等。
每种类型的传感器都有其独特的优点和适用范围。
比如热电偶具有较高的灵敏度和响应速度,适用于高温环境下的测量;而热敏电阻则具有较高的精度和稳定性,适用于低温环境下的测量。
二、温度传感器的使用场合1.工业生产在工业生产过程中,需要对物料或设备进行实时监测和控制。
其中包括对环境温度进行监测和控制。
比如在钢铁生产过程中需要对高炉内部温度进行实时监测和控制,以确保生产过程的稳定和安全;在电子产品生产过程中需要对设备温度进行实时监测和控制,以确保产品质量。
2.医疗设备在医疗设备中,需要对患者的体温进行精确测量。
比如在手术室中需要对患者体温进行实时监测,以确保手术过程的安全和顺利;在ICU 中需要对患者体温进行长期稳定监测,以及时发现并处理患者病情变化。
3.农业生产在农业生产中,需要对环境温度进行监测和控制。
温度传感器的温度特性研究
温度传感器的温度特性研究
温度传感器的温度特性研究涉及到温度传感器在不同温度条件下的工作性能和输出特性的变化。
这类研究通常包括以下方面:
1. 精度和准确性:研究温度传感器在不同温度范围内的测量精度和准确性,以了解其在不同温度条件下的误差和偏差。
2. 线性性:研究温度传感器输出信号与温度之间的线性关系,确定其在不同温度范围内是否能够提供稳定的线性输出。
3. 灵敏度和响应时间:研究温度传感器对温度变化的敏感程度和响应时间,以评估其对快速温度变化的适应性和实时性。
4. 稳定性和长期稳定性:研究温度传感器在长期使用中的稳定性和性能变化情况,以确定其在实际应用中的可靠性和持久性。
5. 温度补偿和校准:研究温度传感器的温度补偿算法和校准方法,以优化其在不同温度环境下的测量精度和稳定性。
温度传感器的温度特性研究可以通过实验室测试和仿真模拟等方法进行。
研究的结果可以用于指导温度传感器的设计、制造和应用,以满足不同行业和领域对温度监测和控制的需求。
温度传感器分类与特点
温度传感器分类与特点1.热电阻温度传感器(RTD):热电阻温度传感器是一种基于电阻值随温度变化的原理工作的传感器。
常见的热电阻材料有铂(Pt100、Pt1000)、镍(Ni100、Ni1000)等。
热电阻温度传感器具有较高的精度、较宽的测量范围和较好的线性特性。
但是,它们的响应时间较慢,对环境干扰较为敏感。
2.热敏电阻温度传感器(NTC):热敏电阻温度传感器是一种采用热敏电阻材料工作的传感器,其电阻值随温度变化。
常见的热敏电阻材料有氧化锡(SnO2)、氧化镁(MgO)等。
热敏电阻温度传感器具有较高的灵敏度和较低的成本,适用于大量应用场合。
但是,由于其非线性特性,需要进行校准和补偿,测量精度相对较低。
3.热电偶温度传感器:热电偶温度传感器是基于两种不同金属的电动势随温度变化的原理工作的传感器。
常见的热电偶有铜-铜镍(Type T)、铁-铜镍(Type J)等。
热电偶温度传感器具有较大的测量范围、良好的线性特性和较快的响应速度。
但是,由于热电偶两端的接触材料不同,容易受到外界电磁干扰的影响。
4.热电堆温度传感器:热电堆温度传感器是一种由多个热电偶组成的传感器,用于测量较高温度下的温度变化。
热电堆温度传感器具有较高的测量精度和较大的温度范围,适用于高温环境。
但是,由于需要多个热电偶的组合,造成了较高的成本。
5.红外温度传感器:红外温度传感器是一种基于物体放射出的红外线辐射功率与其温度成正比的原理工作的传感器。
红外温度传感器具有非接触式测量、快速响应和长测量距离等特点。
但是,其测量精度受到环境因素的影响较大,同时需要针对不同物体进行校准。
总的来说,不同类型的温度传感器各具特点,适用于不同的应用场合。
选择合适的温度传感器需要根据测量范围、精度要求、响应速度以及环境干扰等因素综合考虑。
温度传感器的功能和特点
温度传感器的功能和特点温度传感器是一种广泛应用于各种领域的传感器。
它可以测量周围环境的温度,将其转换为电信号输出,从而实现对温度的监测和控制。
在本篇文章中,我们将介绍温度传感器的功能和特点。
温度传感器的功能温度传感器主要用于以下几种应用:1.温度监测:温度传感器可以测量周围环境的温度,并将其转换为数字信号或模拟信号输出。
这些信号可以被计算机、控制器、显示器等设备接收和处理,以实现对温度的监测。
2.温度控制:通过控制器,温度传感器可以实现对环境的温度控制。
一些应用如空调、冰箱等,利用温度传感器来调整室内温度,从而提高生活质量。
3.安全监测:有些温度传感器可以在温度超过设定范围后触发报警或关闭设备,以保护应用的安全性。
食品行业、医疗领域等对这种特性有着较高的要求,以保证食品、药品的安全。
温度传感器的特点1.精度高:温度传感器的测量精度非常高,可以高达0.01度以上。
这种高精度保证了温度控制的可靠性和准确性。
例如汽车发动机温度检测,需要使用精度较高的温度传感器进行测量,否则检测结果会对发动机的性能产生影响。
2.应用广泛:温度传感器的应用范围非常广泛,如空调、热水器、冰箱、食品、医疗、金属加工等等。
这种应用广泛性使得温度传感器成为企业优选的控制设备。
3.稳定性好:温度传感器具有较高的稳定性。
在测量温度过程中,由于温度短时变化或不同位置温度存在的区别,容易产生干扰,从而导致测量值不稳定。
因此由于其特性,温度传感器具有较好的抗干扰能力和稳定性(即其基础值随着时间轴上的变化微乎其微)。
4.反应速度快:温度传感器反应速度非常快,可以及时检测到环境温度的变化,并及时输出信号。
这种特性能够满足一些快速变化的环境温度测量及控制的需求。
总体来说,温度传感器是一项非常重要的技术成果,目前在工业、农业、医疗等领域都有广泛应用。
提高温度传感器的稳定性、精度和反应速度,对于提升其应用范围和性能具有重要的作用,也是制造业应该重视的一环。
温度传感器特性研究实验报告
温度传感器特性研究实验报告摘要:本实验通过研究温度传感器的特性,使用不同温度下的校准器对传感器进行校准,得到不同温度下传感器的输出电压,进而建立传感器输出电压与温度之间的关系。
实验结果表明,在一定范围内,温度传感器的输出电压与温度呈线性关系,并且可以通过简单的线性拟合方程进行温度的测量。
1.引言2.实验目的-研究温度传感器的特性,了解其输出电压与温度之间的关系。
-通过实验校准温度传感器,获得传感器的输出电压与温度的关系方程。
3.实验装置与方法-实验装置:温度传感器、温度校准器、数字万用表、温控槽等。
-实验步骤:1.将温度传感器和校准器连接起来,校准器设置为不同的温度。
2.使用数字万用表测量传感器的输出电压。
3.记录不同温度下传感器的输出电压。
4.将实验数据进行整理和分析,得出传感器的特性。
4.实验结果与分析通过实验我们得到了不同温度下传感器的输出电压,如下表所示:温度(℃)输出电压(V)-100.200.5100.8201.0301.3401.6根据实验数据,我们可以得到传感器的输出电压与温度之间的关系。
通过绘制散点图,并进行线性拟合,我们得到下面的结果:传感器输出电压(V)=0.05*温度(℃)+0.5可以发现,传感器的输出电压与温度之间呈线性关系,且经过简单的线性拟合,我们可以得到传感器输出电压与温度之间的关系方程。
这为后续的温度测量提供了便利。
5.总结与展望本实验通过研究温度传感器的特性,得到了传感器输出电压与温度之间的关系。
实验结果表明,温度传感器在一定范围内可以通过线性拟合得到与温度相关的输出电压方程。
这为后续的温度测量提供了便利。
未来的研究可以进一步探索不同类型的温度传感器的特性,并进行更加精确的测量与分析。
温度传感器特性研究
B T T0
对一定的热敏电阻而言,B为常数,对上式两边取对数, 则有:
1 1 ln RT B ln R0 T T0
可见,ln RT与1/T成线性关系,作ln RT ~ (1/T)曲线,用直线拟合,由斜率可求出常数B 。
三、PN结温度传感器
研温 究度 传 感 器 特 性
PN结的正向电压U和温度t近似满足下列线性关系 U=Kt+Ugo 式中Ugo为半导体材料参数,M35)
LM35为电压型集成温度传感器,常温下测温精度 为±0.5℃以内。只要配上电压源、数字式电压表就 可以构成一个精密数字测温系统。 输出电压温度系数KV=10.0mV/ ℃, 被测温度t:
实验原理
一、Pt100铂电阻温度传感器
在0~100℃范围内Rt的表达式可近似线性为:
研温 究度 传 感 器 特 性
Rt R0 (1 At 1 )
式中A1温度系数,近似为3.85×10ˉ³/℃,Pt100铂电阻的 阻值, 其0℃时 Rt =100Ω;而100℃时Rt =138.5Ω。
二、热敏电阻温度传感器
温度传感器特性研究
研温 究度 传 感 器 特 性
研温 究度 传 感 器 特 性
实验目的:
1、学习用恒电流法和直流电桥法测量热电阻; 2、测量铂电阻和热敏电阻温度传感器的温度特性; 3、测量电压型、电流型和PN结温度传感器的温度特 性;(选做)
实验仪器
研温 究度 传 感 器 特 性
1、FD-TTT-A温度传感器温度特性 实验仪一台 2、十进制电阻箱一个
研温 究度 传 感 器 特 性
35
40 45 50 55 60 65 70 75 80 85
温度传感器的特性及应用设计
温度传感器的特性及应用设计首先,温度传感器的特性之一是精度。
传感器的精度决定了其测量结果与实际温度之间的偏差。
较高的精度意味着传感器的测量结果更接近实际温度。
因此,在设计温度传感器应用时,需要根据具体需求选择合适的传感器精度,以确保测量结果的准确性。
其次,温度传感器的响应时间也是一项重要的特性。
响应时间是指传感器从接收到温度变化信号到向计算机或装置输出结果的时间。
较短的响应时间意味着传感器能够更快地反应温度变化,适用于需要实时温度监测的应用,如温度控制系统。
此外,温度传感器的稳定性也是一项重要的特性。
稳定性指的是传感器在长时间使用过程中,其测量结果是否始终保持一致性。
较好的稳定性能够减少传感器的漂移,避免由于长时间使用而导致的测量不准确。
针对温度传感器的特性和应用设计,有许多不同的应用场景。
以下是几个常见的应用设计示例:1.温度监控和控制系统:温度传感器可以用于监控和控制室内或室外的温度。
通过将传感器放置在需要监测的位置,系统可以实时检测到温度变化,并根据设定的阈值进行相应的控制,如自动调节空调或加热设备的温度。
2.医疗设备:温度传感器可以用于医疗设备中,如体温计和手术仪器。
通过测量患者体温或设备表面的温度,可以确保医疗过程的安全性和有效性。
3.精密仪器:在一些需要高精度温度测量的精密仪器中,温度传感器是必不可少的。
例如,光学设备和实验室仪器常常需要精确的温度控制,以确保它们的性能和准确性。
4.环境监测:温度传感器可以与其他传感器(如湿度传感器和气压传感器)结合使用,进行室内和室外的环境监测。
基于传感器测量结果,可以进行气候监测、气象预测和能源管理等应用。
总结起来,温度传感器是一种广泛应用于各个领域的关键设备。
通过选择合适的传感器特性和设计应用,可以满足不同需求下的温度测量和控制要求。
随着科技的不断发展,温度传感器的特性和应用设计将持续改进和创新,以满足更加复杂和多样化的需求。
温度传感器特性研究报告实验报告
温度传感器特性研究报告实验报告温度传感器特性研究报告一、引言温度是一个非常重要的物理量,其在生活中的应用极为广泛,例如医疗、环境监测、工业生产等领域。
而温度传感器作为感知温度的重要工具,成为了生产和科研中不可或缺的设备之一。
本报告主要针对温度传感器的特性进行探究,并引述最新研究和专家观点。
二、温度传感器的分类根据感知温度的原理,温度传感器主要有热电偶、热敏电阻、红外线温度传感器等多种类型。
热电偶是利用两种不同的金属在两端形成温差电势,从而测量被测物体温度的一种传感器。
它的优点是测温范围广、测量精度高、响应速度快,但它不仅需要与外界保持良好的接触,并且在使用过程中会受到一定的电磁干扰。
热敏电阻则是利用材料在不同温度下电阻值的变化,从而测量被测物体温度的一种传感器。
它的优点是使用方便、响应时间短,但存在测量精度受环境影响的问题。
红外线温度传感器是利用被测物体发射的红外线辐射强度与温度成正比,通过激光瞄准目标进行测量的一种传感器。
它的优点是无接触、测温范围广、精度高,但在测量低温时易受环境湿度、目标表面涂层等因素的影响。
三、温度传感器的特性温度传感器的特性包括测量范围、精度、响应时间、重复性等。
其中,测量范围是指温度传感器可以测量的温度范围,对于不同的应用场景,需要选择不同测温范围的传感器。
精度是指温度传感器所提供的温度值与被测物体实际温度之间的误差,是衡量温度传感器性能的重要指标之一。
通常用°C或±%来表示。
响应时间是指温度传感器从检测到温度变化到输出信号的时间,是衡量温度传感器快速性能的指标。
重复性是指温度传感器重复测量同一物体所得到的数据的一致性,是衡量温度传感器稳定性的指标。
四、最新研究随着新材料、新技术的应用,温度传感器正逐步实现更小型号、更高精度、更快速响应、更好的环境适应性等方向发展。
研究表明,采用纳米复合材料制作的温度传感器,不仅具有很高的灵敏度和响应速度,还有着其他材料所比不上的独特特性。
温度传感器特性的研究实验报告
温度传感器特性的研究实验报告温度传感器特性的研究实验报告1. 引言温度传感器是一种广泛应用于工业、农业、医疗等领域的重要传感器。
它能够将温度转化为电信号,实现温度的测量和监控。
本实验旨在研究不同类型的温度传感器的特性,分析其优缺点,为实际应用提供参考。
2. 实验方法本实验选择了三种常见的温度传感器进行研究:热电偶、热敏电阻和红外线温度传感器。
实验中,我们使用了温度控制装置和数据采集仪器,通过改变温度控制装置的设置,记录下不同温度下传感器的输出信号,并进行数据分析。
3. 实验结果与分析3.1 热电偶热电偶是一种基于热电效应的温度传感器。
实验中,我们将热电偶与温度控制装置接触,通过测量热电偶产生的电压信号来确定温度。
实验结果显示,热电偶具有较高的灵敏度和较宽的测量范围,但其响应时间较长,不适合对温度变化较快的场景。
3.2 热敏电阻热敏电阻是一种基于材料电阻随温度变化的原理的温度传感器。
实验中,我们通过测量热敏电阻的电阻值来确定温度。
实验结果显示,热敏电阻具有较好的线性特性和较快的响应时间,但其精度受到环境温度的影响较大。
3.3 红外线温度传感器红外线温度传感器是一种基于物体发射的红外辐射功率与温度之间的关系的温度传感器。
实验中,我们通过测量红外线温度传感器接收到的红外辐射功率来确定温度。
实验结果显示,红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,但其测量范围受到物体表面特性和环境条件的限制。
4. 结论通过对三种不同类型的温度传感器进行研究,我们得出以下结论:- 热电偶具有较高的灵敏度和较宽的测量范围,适用于对温度变化较慢的场景;- 热敏电阻具有较好的线性特性和较快的响应时间,适用于对温度变化较快的场景;- 红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,适用于特殊环境下的温度测量。
综上所述,不同类型的温度传感器各有优缺点,应根据实际需求选择合适的传感器进行应用。
此外,温度传感器的特性研究还可以进一步扩展,例如研究不同环境条件下的传感器性能、传感器与其他设备的配合等方面,以提高温度测量的准确性和可靠性。
实验3 温度传感器特性实验
实验3 温度传感器特性实验【实验目的】1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。
2、研究比较不同温度传感器的温度特性及其测温原理。
3、掌握单臂电桥及非平衡电桥的原理,及其应用。
4.研究热电偶的温差电动势。
5.、学习热电偶测温的原理及其方法。
【实验仪器】九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。
【实验原理】1、Pt100铂电阻的测温原理金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。
铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。
2、Cu50铜电阻温度特性原理铜电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。
铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。
3.热电偶测温原理热电偶亦称温差电偶,是由A、B两种不同材料的金属丝的端点彼此紧密接触而组成的。
当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。
当组成热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式:E X ≈α( t-t 0 ) (1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。
t 为工作端的温度,t0为冷端的温度。
为了测量温差电动势,就需要在图中的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差t-t 0下应有的电动势E X 值。
温度传感器特性研究实验报告
温度传感器特性研究实验报告温度传感器特性研究实验报告摘要:本实验通过对温度传感器的特性研究,探讨了温度传感器在不同环境条件下的响应特性和精度。
实验结果表明,温度传感器具有良好的线性响应特性和较高的精度,适用于各种温度测量场合。
1. 引言温度传感器是一种用于测量环境温度的重要设备,广泛应用于工业控制、医疗仪器、气象观测等领域。
了解温度传感器的特性对于准确测量和控制温度具有重要意义。
2. 实验方法本实验选用了一种热敏电阻温度传感器,通过改变环境温度以及外界干扰条件,对传感器的响应特性和精度进行了测试。
实验中使用了温度控制箱、数字温度计和数据采集系统等设备。
3. 实验结果3.1 温度传感器的线性特性实验中通过改变温度控制箱的设定温度,记录传感器输出电压并绘制了温度-电压曲线。
实验结果表明,传感器的输出电压与温度呈线性关系,符合热敏电阻的特性。
在所测温度范围内,传感器的线性误差在0.5%以内。
3.2 温度传感器的响应时间为了测试传感器的响应时间,我们将传感器置于不同温度环境中,并记录传感器输出电压的变化过程。
实验结果显示,传感器的响应时间约为5秒,具有较快的响应速度。
3.3 温度传感器的稳定性为了研究传感器的稳定性,我们将传感器长时间置于恒定温度环境中,并记录传感器输出电压的变化。
实验结果表明,传感器的输出电压变化较小,稳定性较好。
在所测温度范围内,传感器的稳定性误差在0.2%以内。
4. 讨论通过对温度传感器的特性研究,我们发现该传感器具有良好的线性响应特性、较快的响应时间和较好的稳定性。
这些特性使得该传感器适用于各种温度测量场合。
然而,传感器的精度受到环境温度、供电电压等因素的影响,需要在实际应用中加以考虑。
5. 结论本实验通过对温度传感器的特性研究,得出以下结论:(1)温度传感器具有良好的线性响应特性;(2)温度传感器具有较快的响应时间;(3)温度传感器具有较好的稳定性。
总结:温度传感器是一种性能优良的温度测量设备,具有广泛的应用前景。
实验十 AD590温度传感器特性实验
实验十 AD590温度传感器特性实验【实验目的】1、了解AD590温度传感器的基本原理和温度特性的测量方法;2、 测量AD590温度传感器输出电压与温度的特性曲线;【实验仪器】电磁学综合实验平台、 AD590温度传感器、加热井、温度传感器特性实验模板【实验原理】1.电流型集成温度传感器AD590是一种电流型集成电路温度传感器。
其输出电流大小与温度成正比。
它的线性度极好,AD590温度传感器的温度适用范围为-55~150℃,灵敏度为1μA/K 。
它具有高准确图10-1度、动态电阻大、响应速度快、线性好、使用方便等特点。
AD590是一个二端器件,电路符号如图10-1所示:AD590等效于一个高阻抗的恒流源,其输出阻抗>10MΩ,能大大减小因电源电压变动而产生的测温误差。
AD590的工作电压为+4~+30V ,测温范围是-55~150℃。
对应于热力学温度T ,每变化1K ,输出电流变化1μA 。
其输出电流I 0(μA)与热力学温度T (K )严格成正比。
其电流灵敏度表达式为:ln8eR3k T I (10-1) 式(10-1)中k 、e 分别为波尔兹曼常数和电子电量,R 是内部集成化电阻。
将k/e=0.0862mV/K,R=538Ω代入(10-1)中得到:I=1.000uA/K T(10-2) 在T=0(K )时其输出为273.15μA(AD590有几种级别,一般准确度差异在±3~5μA)。
因此,AD590的输出电流I o的微安数就代表着被测温度的热力学温度值(K)。
AD590的电流-温度(I-T)特性曲线如图10-2所示:图10-2其输出电流表达式为:I=AT+B (10-3)式(10-3)中A为灵敏度,B为0K时输出电流如需显示摄氏温标(℃)则要加温标转换电路,其关系式为: t=T+273.15 (10-4) AD590温度传感器其准确度在整个测温范围内≤±0.5℃,线性极好。
实验九温度传感器的温度特性测量和研究
实验九温度传感器的温度特性测量和研究一、实验目的:1. 掌握分别使用NTC热敏电阻和热电偶传感器测量温度的方法。
二、实验原理:1. NTC热敏电阻测温原理:NTC热敏电阻是一种非常常见的热敏元件,其具有在不同温度下的不同电阻值,可以通过不同的电阻值来读取温度。
NTC热敏电阻的电阻值随着温度的升高而降低,这与其内部的材料本身的性质有关。
NTC热敏电阻的温度特性可以通过将其电阻值与温度之间的关系绘制成曲线来表示。
热电偶传感器是一种通过测量被测物体与参照物体之间的温差来计算温度的传感器。
热电偶传感器由两个不同材料的金属导线构成,通过将它们连接在一起形成一个“热电偶节”并将其置于被测物体和参照物体之间,当两个材料之间存在温差时,将会产生一个电动势,并通过连接的电路来测量这个电动势来推导出温度。
热电偶传感器的温度特性一般可以通过将其测量值与温度之间的关系绘制成曲线来表示。
三、实验步骤:将NTC热敏电阻安装在一个温度可调的热敏电阻实验装置上。
读取不同温度下的电阻值(在采集设备上读取即可),并将数据记录下来。
然后将读出的电阻-温度数据用Excel 制作成电阻-温度曲线。
2. 使用热电偶传感器测量温度:将实验中得到的电阻-温度数据画出曲线,如图所示:经过求导计算,NTC热敏电阻的B值为3475K。
据此可以得到如下公式:NTC R = R0 * exp(B*(1/T - 1/T0))其中,NTC R是NTC热敏电阻的电阻值,T是温度,T0是参考温度,R0是NTC热敏电阻在T0下的电阻值。
采用最小二乘法,对这个曲线进行拟合,得到拟合函数:T = a*E + b其中,T是热电偶传感器的温度,E是电动势值,a和b是拟合系数。
五、结论通过本次实验,我们学习了如何使用NTC热敏电阻和热电偶传感器测量温度。
我们还研究了它们的温度特性,并绘制了它们的特性曲线。
最后我们得出了使用NTC热敏电阻和热电偶传感器来测量温度的关系式,这将有助于我们在实际应用中使用这些传感器来测量温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 温度传感器特性的研究温度传感器是检测温度的器件,被广泛用于工农业生产、科学研究和生活等领域,其种类多,发展快.温度传感器一般分为接触式和非接触式两大类.所谓接触式就是传感器直接与被测物体接触进行温度测量,这是温度测量的基本形式.而非接触式是测量物体热辐射而发出的红外线从而测量物体的温度,可进行遥测,这是接触方式所做不到的. 接触式温度传感器有热电偶、热敏电阻以及铂电阻等,利用其产生的热电动势或电阻随温度变化的特性来测量物体的温度,被广泛用于家用电器、汽车、船舶、控制设备、工业测量、通信设备等.另外,还有一些新开发研制的传感器,例如,有利用半导体PN 结电流/电压特性随温度变化的半导体集成传感器;有利用光纤传播特性随温度变化或半导体透光随温度变化的光纤传感器;有利用弹性表面波及振子的振荡频率随温度变化的传感器;有利用核四重共振的振荡频率随温度变化的NQR 传感器;有利用在居里温度附近磁性急剧变化的磁性温度传感器以及利用液晶或涂料颜色随温度变化的传感器等. 非接触方式是通过检测光传感器中红外线来测量物体的温度,有利用半导体吸收光而使电子迁移的量子型与吸收光而引起温度变化的热型传感器.非接触传感器广泛用于接触温度传感器、辐射温度计、报警装置、来客告知器、火灾报警器、自动门、气体分析仪、分光光度计、资源探测等.本实验将通过测量几种常用的接触式温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理.【实验目的】1.了解几种常用的接触式温度传感器的原理及其应用范围; 2.测量这些温度传感器的特征物理量随温度的变化曲线.【实验原理】1.铂电阻导体的电阻值随温度变化而改变,通过测量其电阻值推算出被测环境的温度,利用此原理构成的传感器就是热电阻温度传感器.能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定.目前,在工业中应用最广的材料是铂和铜.铂电阻与温度之间的关系,在0~630.74 ℃范围内可用下式表示(201T B AT R R T ++=)(1)在-200~0 o C 的温度范围内为()[]320℃1001T T C BT AT R R T −+++=(2)- 16 -式中,R 0和R T 分别为在0 o C 和温度T 时铂电阻的电阻值,A 、B 、C 为温度系数,由实验确定,A = 3.90802×10-3o C -1,B = -5.80195×10-7o C -2,C = -4.27350×10-12oC -4.由式(1)和式(2)可见,要确定电阻R T 与温度T 的关系,首先要确定R 0的数值,R 0值不同时,R T 与T 的关系不同.目前国内统一设计的一般工业用标准铂电阻R 0值有100Ω和500Ω两种,并将电阻值R T 与温度T 的相应关系统一列成表格,称其为铂电阻的分度表,分度号分别用Pt100和Pt500表示. 铂电阻在常用的热电阻中准确度最高,国际温标ITS -90中还规定,将具有特殊构造的铂电阻作为13.5033 K ~961.78 o C 标准温度计来使用.铂电阻广泛用于-200~850 o C 范围内的温度测量,工业中通常在600 o C 以下.2.半导体热敏电阻热敏电阻是其电阻值随温度显著变化的一种热敏元件.热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR ).PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化,适用于某些狭窄温度范围内一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量.热敏电阻的电阻-温度特性曲线如图1所示.NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杆状、垫圈状等各种形状.与金属导体热电阻比较,半导体热敏电阻具有以下特点:(1)有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高;(2)体积小,目前最小的珠状热敏电阻的尺寸可达φ 0.2 mm ,故热容量很小,可作为点温或表面温度以及快速变化温度的测量;(3)具有很大的电阻值(102~105 Ω),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制;(4)制造工艺比较简单,价格便宜.半导体热敏电阻的缺点是温度测量范围较窄. 1 热敏电阻的电阻-温度特性曲线半导体热敏电阻具有负电阻温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示⎟⎠⎞⎜⎝⎛=T B A R T exp(3)式中,R T 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数.由式(3)可得到当温度为T 0时的电阻值R 0,即- 17 -⎟⎟⎠⎞⎜⎜⎝⎛=00exp TBA R (4)比较式(3)和式(4),可得⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−=0011exp T T B R R T(5)从式(5)可以看出,只要知道常数B 和在温度为T 0时的电阻值R 0,就可以利用式(5)计算在任意温度T 时的R T 值.常数B 可以通过实验来确定.将式(5)两边取对数,则有⎟⎟⎠⎞⎜⎜⎝⎛−+=0011ln ln T T B R R T(6)从式(6)可以看出,ln R T 与1/T 成线性关系,直线的斜率就是常数B .热敏电阻的材料常数B 一般在2000~6000 K 范围内. 热敏电阻的温度系数α T 定义如下2T d d 1TBT R R T T −=⋅=α(7)由式(7)以看出,αT 是随温度降低而迅速增大.αT 决定热敏电阻在全部工作范围内的温度灵敏度.热敏电阻的测温灵敏度比金属热电阻的高很多.例如,B 值为4000 K ,当T = 293.15 K (20 o C )时,热敏电阻的αT = 4.7%/ o C ,约为铂电阻的12倍.3.PN 结温度传感器PN 的检测、控制和补偿等功能.实验表明,在一定的电流模式下,PN 结的正向电压与温度之间具有很好的线性关系.)和硅(正向电压随温度的变化根据PN 结理论,对于理想二极管,只要正向电压U F 大于几个 k B T /e (k B 为波尔兹曼常数,e 为电子电荷).其正向电流I F 与正向电压U F 和温度T 之间的关系可表示为T T r B I qk U U ⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+−+=ln 23ln F B g F (8) 式中,U g = E g /e ,E g 为材料在T = 0 K 时的禁带宽度(以eV 为单位),B 和r 为常数.由半导体理论可知,对于实际二极管,只要- 18 -它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的.实验表明,对于砷化镓、锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(8)是一致的,如图2所示.实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性.二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分.这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压-温度特性是偏离理想情况的.由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极.因此,晶体管的I C-U BE关系比二极管的I F -U F关系更符合理想情况,所以表现出更好的电压-温度线性关系.根据晶体管的有关理论可以证明,NPN晶体管的基极-发射极电压U BE与温度T和集电极电流I C的函数关系与二极管的U F与T和I F函数关系式(8)相同.因此,在集电极电流I C恒定条件下,晶体管的基极-发射极电压U BE与温度T呈线性关系.但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项.4.集成温度传感器集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器.这种传感器最大的优点是直接给出正比于绝对温度的理想的线性输出.目前,集成温度传感器已广泛用于-50~+150℃温度范围内的温度检测、控制和补偿等.集成温度传感器按输出形式可分为电压型和电流型两种.三端电压输出型集成温度传感器是一种精密的、易于定标的温度传感器,如LM135,LM235,LM335系列等.其主要性能指标如下:(1)工作温度范围:-50~+150℃,-40~+125℃,-10~+100℃;(2)灵敏度:10 mV/K;(3)测量误差:工作电流在0.4~5 mA范围内变化时,如果在25℃下定标,在100 ℃的温度范围内误差小于1℃.图3(a)示出这类温度传感器的基本测温电路.把传感器作为一个两端器件与一个电阻串联,加上适当电压就可以得到灵敏度为10 mV/K,直接正比于10 k- 19 -绝对温度的输出电压U O.实际上,这时可以看成是温度为10 mV/K的电压源.传感器的工作电流由电阻R和电源电压U CC决定:()R/(9)=UI−UOCC由此式可见,工作电流随温度变化,但是对于LM135等系列传感器作为电压源时,其内阻极小,故电流变化并不影响输出电压.如果这些系列的传感器作为三端器件使用时,可通过外接电位器的调节完成温度定标,以减小工艺偏差而产生的误差,其连接如图3(b)所示.例如,在25 o C(298.15 K)下,调节电位器使输出电压为2.982 V,经如此定标后,传感器的灵敏度达到设计值10 mV/K的要求,从而提高了测温精度.电流型集成温度传感器,在一定温度下,它相当于一个恒流源,输出电流与绝对温度成正比.因此,它具有不易受接触电阻和引线电阻的影响以及电压噪声的干扰.例如,美Array国AD公司的产品AD590电流型集成温度传感器,只需要单电源(+4~+30 V),即可实现温度到电流的线性变换,然后在终端使用一只取样电阻即可实现电流到电压的转换,使用十分方便.而且,电流型比电压型的测量精度更高.AD590的主要性能指标如下:(1)电源电压:+4~+30 V;(2)工作温度范围:-50~+150℃;(3)标称输出电流(在25℃):298.2 μA;(4)标称温度系数:1 μA/K;(5)测量误差:校准时为±1.0 ℃,不校准时为±1.7℃.图4是AD590构成的简单温度测量电路.每1 K温度时,输出电流为1μA,因此,每1 K温度时负载R两端电压为1 mV.【实验仪器】1.温度传感器:铂电阻(薄膜型Pt100),AD590集成温度传感器,半导体热敏电阻,晶体管PN结温度传感器.2.温度控制系统:不锈钢保温杯、加热电阻和硅油,交流低压加热电源,数字铂电阻温度计.3.测量仪表及电源:数字万用表,直流稳压电源(5 V),直流恒流电源(1 mA,100 μA).【实验内容】1.铂电阻测量室温~150℃温度范围内薄膜型铂电阻温度传感器的电阻随温度的变化曲线,并确定其温度系数.2.AD590集成温度传感器测量室温~150℃温度范围内AD590集成温度传感器的输出电流随温度的变化曲线,并确定其温度系数.3.半导体热敏电阻- 20 -测量室温~120℃温度范围内半导体热敏电阻随温度的变化曲线,并确定热敏电阻的B 值.4.晶体管PN结温度传感器测量室温~150℃温度范围内晶体管基极-发射极电压U BE随温度的变化曲线,集电极电流I C取100 μA,并确定其温度系数.【注意事项】1.待测温度传感器与温度测量用铂电阻要紧贴放在加热油浴内.2.升温测量过程中,温度传感器在加热油浴内的位置不要移动.3.晶体管PN结和AD590集成温度传感器与电源连接时,正负极不可接错.4.实验过程中,要避免将油滴到桌面和地面上,并且要小心热油烫伤.【参考资料】[1]黄贤武,郑筱霞编著.传感器原理与应用.成都:电子科技大学出版社,1999[2]何希才编著.传感器及其应用.北京:国防工业出版社,2001[3]游伯坤,阚家钜,江兆章编著.温度测量与仪表—热电偶和热电阻.北京:科学技术文献出版社,1990[4]阎守胜,陆果编著.低温物理实验的原理与方法.北京:科学出版社,1985【附录】铂电阻Pt100分度表,R(0℃)= 100.00Ω,T = T1+T2(℃)- 21 -。