指数与指数函数练习试题精选
高三数学指数与指数函数试题
高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
指数与指数函数测试题
修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四)(内容:指数与指数函数 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分:一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分)1. 化简[32)5(-]43的结果为 ( ) A .5 B .5 C .-5 D .-5 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成 ( ) A. 511个 B. 512个 C. 1023个 D. 1024个3.函数f(x)=x21-的定义域是 ( )A. (]0,∞-B. [0,+∞)C.(-∞,0)D.(-∞,+∞) 4. 设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<15.在同一平面直角坐标系中,函数ax x f =)(与xa x g =)(的图像可能是 ( )6.设dc b a ,,,都是不等于1的正数,xxxxd y c y by a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.7. 函数xa x f )1()(2-=在R 上是减函数,则a 的取值范围是 ( )1.>a A2.<a B 2.<a C 21.<<a D8.函数121-=x y 的值域是 ( ) )1,.(-∞A ),0()0,.(+∞-∞ B ),1.(+∞-C ),0()1,.(+∞--∞ D9.当1>a 时,函数11-+=x x a a y 是 ( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数10.函数0.(12>+=-a ay x 且)1≠a 的图像必经过点 ( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D11.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是 ( )n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(910.%12) 12.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8)D .[4,8)二、填空题(每题5分,共20分,把答案填在题中横线上)13.已知)(x f 是指数函数,且255)23(=-f ,则=)3(f . 14.设10<<a ,使不等式531222+-+->x xx x a a成立的x 的集合是 .15.函数x x y 28)13(0-+-=的定义域为 . 16.函数xx y -=22的单调递增区间为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本题满分10分) 已知函数f (x )=a -12x+1,且f (x )为定义在R 上的奇函数,试求a 的值。
指数与指数函数练习题
指数与指数函数练习题1. 指数运算练习题(1) 计算 $2^4$。
(2) 计算 $(-3)^2$。
(3) 计算 $(-2)^3$。
(4) 计算 $0^5$。
(5) 计算 $1^8$。
2. 指数运算规律练习题(1) 计算 $2^3 \cdot 2^5$。
(2) 计算 $\left(3^2\right)^4$。
(3) 计算 $5^2 \cdot 5^3$。
(4) 计算 $(-2)^4 \cdot (-2)^2$。
(5) 计算 $10^3 \cdot 10^0$。
3. 指数函数绘图练习题(1) 绘制函数 $y = 2^x$ 的图像。
(2) 绘制函数 $y = \left(\frac{1}{2}\right)^x$ 的图像。
(3) 绘制函数 $y = 3^x$ 的图像。
(4) 绘制函数 $y = \left(\frac{1}{3}\right)^x$ 的图像。
(5) 绘制函数 $y = 4^x$ 的图像。
4. 指数函数性质练习题(1) 函数 $y = 2^x$ 是否有对称轴?解释原因。
(2) 函数 $y = \left(\frac{1}{3}\right)^x$ 的图像位于哪个象限?解释原因。
(3) 函数 $y = 5^x$ 是否有零点?解释原因。
(4) 函数 $y = 2^x$ 是否有最大值或最小值?解释原因。
(5) 函数 $y = \left(\frac{1}{4}\right)^x$ 是否有水平渐近线?解释原因。
5. 指数函数方程练习题(1) 解方程 $2^x = 8$。
(2) 解方程 $5^x = 1$。
(3) 解方程 $3^x = 27$。
(4) 解方程 $2^x = \frac{1}{16}$。
(5) 解方程 $\left(\frac{1}{2}\right)^x = 4$。
以上是关于指数与指数函数的练习题,通过解答这些问题,可以加深对指数运算、指数函数绘图、指数函数性质以及解指数函数方程的理解和掌握。
高一数学指数运算及指数函数试题(有答案)
高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
(完整版)指数和指数函数练习题及答案
指数和指数函数一、选择题1.(36a 9)4(63a 9)4等于()(C)a 4(A)a 16(B)a b 8(D)a -b 22.若a>1,b<0,且a +a =22,则a -a 的值等于()-b b (A)6(B)±2(C)-2(D)22x 3.函数f(x)=(a -1)在R 上是减函数,则a 的取值范围是()(A)a >1(B)a <2(C)a<2(D)1<a <4.下列函数式中,满足f(x+1)=(A)21f(x)的是( )211x -x(x+1) (B)x+ (C)2(D)224x 25.下列f(x)=(1+a )⋅a -x 是()(A)奇函数(B)偶函数(C)非奇非偶函数(D)既奇且偶函数1a 1b116.已知a>b,ab ≠0下列不等式(1)a >b ,(2)2>2,(3)<,(4)a 3>b 3,(5)()<()33a b22a b 11中恒成立的有()(A)1个(B)2个(C)3个(D)4个2x -17.函数y=x 是()2+1(A)奇函数(B)偶函数(C)既奇又偶函数(D)非奇非偶函数8.函数y=1的值域是()x 2-1(A)(-∞,1)(B)(-∞,0)⋃(0,+∞)(C)(-1,+∞)(D)(-∞,-1)⋃(0,+∞)+9.下列函数中,值域为R 的是()(A)y=512-x(B)y=(1x 11-xx)(C)y=()-1(D)y=1-223e x -e -x10.函数y=的反函数是()2(A)奇函数且在R 上是减函数(B)偶函数且在R 上是减函数++(C)奇函数且在R 上是增函数(D)偶函数且在R 上是增函数11.下列关系中正确的是()++111111(A)()3<()3<()3(B)()3<()3<()3252225111111(C)()3<()3<()3(D)()3<()3<()352252221222122112212.若函数y=3+2的反函数的图像经过P 点,则P 点坐标是()(A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)x -113.函数f(x)=3+5,则f (x)的定义域是()(A)(0,+∞)(B)(5,+∞)(C)(6,+∞)(D)(-∞,+∞)x 14.若方程a -x-a=0有两个根,则a 的取值范围是()(A)(1,+∞)(B)(0,1)(C)(0,+∞)(D)φ15.已知函数f(x)=a +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()x x x x (A)f(x)=2+5 (B)f(x)=5+3 (C)f(x)=3+4 (D)f(x)=4+316.已知三个实数a,b=a ,c=a a x x-1a a ,其中0.9<a<1,则这三个数之间的大小关系是()(A)a<c<b (B)a<b<c (C)b<a<c (D)c<a<bx 17.已知0<a<1,b<-1,则函数y=a +b 的图像必定不经过()(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限二、填空题1.若a <ax 322,则a 的取值范围是。
高中数学:指数与指数函数练习
高中数学:指数与指数函数练习(时间:30分钟)1.函数y=a x-(a>0,且a≠1)的图象可能是( D )解析:若a>1时,y=a x-是增函数;当x=0时,y=1-∈(0,1),A,B不满足;若0<a<1时,y=a x-在R上是减函数;当x=0时,y=1-<0,C错,D项满足.故选D.2.(湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )(A)y=sin x (B)y=x3(C)y=()x (D)y=logx2解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,y=sin x不单调,y=logx定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定2义域、单调性、奇偶性与之一致.3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )(A)y= (B)y=|x-2|(2x)(C)y=2x-1 (D)y=log2解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).4.设x>0,且1<b x<a x,则( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m)=2m+2-m=3,m>0,所以2m=3-2-m>2,b=2f(m)=2×3=6,a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,所以b<a<c.故选D.7.下列说法正确的序号是.①函数y=的值域是[0,4);②(a>0,b>0)化简结果是-24;③+的值是2π-9;④若x<0,则=-x.解析:由于y=≥0(当x=2时取等号),又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;②中原式====-24,正确;由于+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2-x<2,即x2-x-2<0,解得-1<x<2.答案:{x|-1<x<2}9.(鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= . 解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,所以则a-1=0,无解.当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,所以解得因此a+b=-.答案:-能力提升(时间:15分钟)10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )(A)(-∞,2] (B)[2,+∞)(C)[-2,+∞) (D)(-∞,-2]解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.11.(湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )(A)(-∞,-)∪(2,+∞) (B)(2,+∞)(C)(-∞,)∪(2,+∞) (D)(-∞,2)解析:易知f(x)=e x-在R上是增函数,且f(-x)=e-x-=-(e x-)=-f(x),所以f(x)是奇函数.由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),因此2x-1>x+1,所以x>2.12.(衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )(A)(-2,1) (B)(-4,3)(C)(-3,4) (D)(-1,2)解析:因为(m2-m)·4x-2x<0在x∈(-∞,-1]上恒成立,所以(m2-m)<在x∈(-∞,-1]上恒成立,由于f(x)=在x∈(-∞,-1]上单调递减,所以f(x)≥2,所以m2-m<2,所以-1<m<2.故选D.13.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是. 解析:由于g(x)=a|x+b|是偶函数,知b=0,又g(x)=a|x|在(0,+∞)上单调递增,得a>1.则g(b-1)=g(-1)=g(1),故g(a)>g(1)=g(b-1).答案:g(a)>g(b-1)14.已知函数f(x)=a x(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)是单调增函数,则a= .解析:根据题意,得3-10m>0,解得m<;当a>1时,函数f(x)=a x在区间[-1,2]上单调递增,最大值为a2=8,解得a=2,最小值为m=a-1==>,不合题意,舍去;当0<a<1时,函数f(x)=a x在区间[-1,2]上单调递减,最大值为a-1=8,解得a=,最小值为m=a2=<,满足题意.综上,a=.答案:15.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是.解析:由f(x+1)=f(1-x)知y=f(x)的图象关于x=1对称,所以b=2.又f(0)=3,得c=3.则f(b x)=f(2x),f(c x)=f(3x).当x≥0时,3x≥2x≥1,且f(x)在[1,+∞)上是增函数,所以f(3x)≥f(2x).当x<0时,0<3x<2x<1,且f(x)在(-∞,1]上是减函数,所以f(3x)>f(2x),从而有f(c x)≥f(b x).答案:f(c x)≥f(b x)。
指数与指数函数练习题
指数与指数函数练习题一、选择题1. 指数函数\( y = a^x \)中,当\( a > 1 \)时,函数的图像是:A. 在第一象限单调递增B. 在第二象限单调递增C. 在第三象限单调递增D. 在第四象限单调递增2. 已知\( 2^x = 4 \),则\( x \)的值为:A. 1B. 2C. 3D. 43. 对于\( y = 3^x \),当\( x \)增加1时,\( y \)增加的倍数是:A. 1B. 2C. 3D. 44. 函数\( y = a^x \)的图像关于y轴对称的条件是:A. \( a > 1 \)B. \( a < 1 \)C. \( a = 1 \)D. \( a = -1 \)5. 如果\( a \)是正数,\( b \)是负数,那么\( a^b \)的值是:A. 正数B. 负数C. 零D. 无法确定二、填空题6. 根据指数函数的性质,\( 2^3 \)等于______。
7. 如果\( 5^x = 125 \),那么\( x \)等于______。
8. 函数\( y = 2^{-x} \)的图像在第一象限的斜率是______。
9. 指数函数\( y = a^x \)的图像在\( x = 0 \)处的值为______。
10. 函数\( y = (1/2)^x \)的图像在\( y = 1 \)时,\( x \)的值为______。
三、简答题11. 解释指数函数\( y = a^x \)在\( x \)轴上的截距是什么,并说明为什么。
12. 描述指数函数\( y = a^x \)在\( a \)的值大于1时的增长速度。
13. 说明为什么指数函数\( y = a^x \)的图像在\( a \)小于1但大于0时,随着\( x \)的增加而递减。
14. 给定一个指数函数\( y = 2^x \),如果\( x \)增加1,\( y \)的值会如何变化?15. 讨论指数函数在\( a \)的值小于0时的性质,并给出一个具体的例子。
高一数学指数与指数函数试题
高一数学指数与指数函数试题1.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的,若洗n次后,存在的污垢在1%以下,则n的最小值为_______.【答案】4【解析】因为每次洗去后存在的污垢为原来的所以洗n次后,存在的污垢为原来的,由解得,因此n的最小值为【考点】指数函数实际应用2..【答案】【解析】原式=【考点】指数与对数3.若,则的取值范围为________________.【答案】【解析】当即时,,当即时,,所以的取值范围是.【考点】1.指数与对数的运算;2.分类讨论的思想.4.计算(1);(2).【答案】(1);(2).【解析】(1)由对数的运算法则,利用,将其化简有;(2)由指数的运算法则,利用,,将其化简有.试题解析:(1)原式6分(2)原式12分考点:1、有理数指数幂的运算性质;2、对数的运算性质.5.设,,,则的大小顺序为()A.B.C.D.【答案】B【解析】因为,,,所以,故选B.【考点】1.指数函数的单调性;2.对数函数的单调性.6.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.7.幂函数的图象经过点),则其解析式是.【答案】【解析】设幂函数为,因为其图像过点,,即,x=2,函数解析式为【考点】幂函数的概念以及指数的运算8.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值9.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算10.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算11.(1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.12.已知,那么用表示是()A.B.C.D.【答案】B【解析】,所以答案选.【考点】指数对数的计算13.方程的解是.【答案】【解析】方程化为【考点】指数式的运算点评:本题极简单,对于基本指数运算的考查14.计算等于()A.B.C.D.1【答案】D【解析】根据题意,由于化简变形为,故可知答案为D.【考点】对数式的运算点评:解决的关键是利用对数的运算性质来化简求解,属于基础题。
幂函数、指数函数、对数函数专练习题(含答案)
幂函数、指数函数、对数函数专练习题一选择题1. 函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2. 函数x y 2log =的定义域是A.(0,1]B. (0,+∞)C. (1,+∞)D.[1,+∞) 3. 函数2log 2y x =-的定义域是A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4. 若集合{|2},{|1}xM y y N y y x ====-,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5. 函数y = -11-x 的图象是6. 函数y =1-11-x , 则下列说法正确的是 A.y 在(-1,+∞)内单调递增 B.y 在(-1,+∞)内单调递减 C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7. 函数0.5log (3)y x =-的定义域是A. (2,3)B. [2,3)C.[2,)+∞D. (,3)-∞ 8. 函数xx x f 1)(+=在]3,0(上是 A.增函数 B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9. 的定义域是函数 )2(x lg y -=A.(-∞,+∞)B.(-∞,2)C.(-∞,0] D(-∞,1]10. 的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=- )(1,,-1)D.(- )(0,,-2)C.(- )B.(-1, )1,1.(A +∞∞+∞∞+∞-11. 21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减12. 的定义域是函数xx x y -+=||)1(00}|D.{ -1}0|C.{ 0}|B.{ }0|.{≠≠<<>x x x x x x x x x A 且13. 函数12log (32)y x =-的定义域是A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14. 下列四个图象中,函数xx x f 1)(-=的图象是15. 设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x ≥0},则A ×B 等于 A.[0,1)∪(2,+∞) B.[0,1]∪[2,+∞) C.[0,1] D.[0,2]16. 设a =20.3,b =0.32,c =log3.02,则A a >c >b B.a >b >c C. b >c >a D. c >b >a 17. 已知点33,39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x -= D.1()()2x f x =18. 已知幂函数αf 的部分对应值如下表:x 121 )(x f122则不等式2x f ≤)(的解集是 A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19. 已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同2.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)3.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 54.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题5.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.6.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.7.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________. 三、解答题8.求函数y =2的定义域、值域和单调区间.9.若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.10.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= ) A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m na a m n a+=== 。
(完整版)指数和指数函数练习题及答案(可编辑修改word版)
2 62 指数和指数函数一、选择题 1.(3 6 a 9)4( 6 3 a 9)4 等于( )(A )a 16(B )a 8(C )a 4(D )a 22. 若 a>1,b<0,且 a b+a -b=2,则 a b -a -b 的值等于( )(A ) (B ) ± 2(C )-2(D )23. 函数 f (x )=(a 2-1)x在 R 上是减函数,则 a 的取值范围是()(A ) a > 1 (B ) a < 2 (C )a< (D )1< a < 14. 下列函数式中,满足 f(x+1)= f(x)的是() 21 1 (A)(x+1)(B)x+(C)2x(D)2-x245.下列 f(x)=(1+a x )2⋅ a-x 是( )(A )奇函数 (B )偶函数(C )非奇非偶函数(D )既奇且偶函数1 1 11 1 16.已知 a>b,ab ≠ 0 下列不等式(1)a 2>b 2,(2)2a>2b,(3) < ,(4)a 3 >b 3 ,(5)( )a <( )ba b 3 3中恒成立的有( ) (A )1 个(B )2 个 (C )3 个 (D )4 个2 x - 17. 函数 y=是( )2 x+ 1 (A )奇函数(B )偶函数(C )既奇又偶函数(D )非奇非偶函数18. 函数 y=的值域是( )2 x- 1(A )(- ∞,1)(B )(- ∞, 0) ⋃ (0,+ ∞ )(C )(-1,+ ∞ ) (D )(- ∞ ,-1) ⋃ (0,+ ∞ )9. 下列函数中,值域为 R +的是( )1(A )y=5 2-xe x - e - x1(B )y=( )1-x(C )y= 3(D )y= 10. 函数 y= 的反函数是()2(A )奇函数且在 R +上是减函数(B )偶函数且在 R +上是减函数(C )奇函数且在 R +上是增函数 (D )偶函数且在 R +上是增函数11.下列关系中正确的是( )1 2 1 2 1 11 1 12 1 2(A )( ) 3 <( ) 3 <( ) 3(B )( ) 3 <( ) 3 <( ) 32 5 21 2 1 1 1 22 2 51 2 1 2 1 1(C )( ) 3 <( ) 3 <( )3 (D )( ) 3 <( ) 3 <( ) 3 5 2 25 2 22 ( 1 ) x - 1 21 -2 xx 12. 若函数 y=3+2x-1的反函数的图像经过 P 点,则 P 点坐标是()(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13. 函数 f(x)=3x +5,则 f -1(x)的定义域是( ) (A )(0,+ ∞ ) (B )(5,+ ∞ ) (C )(6,+ ∞ ) (D )(- ∞ ,+ ∞ )14. 若方程 a x-x-a=0 有两个根,则 a 的取值范围是( ) (A )(1,+ ∞ ) (B )(0,1) (C )(0,+ ∞ ) (D )15. 已知函数 f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数 f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x+4(D)f(x)=4x+316. 已知三个实数 a,b=a a,c=a aa,其中 0.9<a<1,则这三个数之间的大小关系是()(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知 0<a<1,b<-1,则函数 y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题31.若 a2 <a 2 ,则 a 的取值范围是 。
指数与指数函数练习试题精选
1、将322-化为分数指数幂的形式为( )A .212-B .312-C .212-- D .652- 2、13256)71(027.0143231+-+-----=__________. 3、若32121=+-x x ,求23222323-+-+--x x x x 的值。
4、若21(5)2x f x -=-,则(125)f = 。
5、已知指数函数图像经过点)3,1(-p ,则=)3(f6、若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( )A .01>>b a 且B .010<<<b a 且C .010><<b a 且D .11>>b a 且7、方程2|x|+x=2的实根的个数为_______________ 8、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <、1a <<9、当0>x 时,函数()2()1xf x a =-的值总是大于1,则a 的取值范围是_____________。
10、若01<<-x ,则下列不等式中成立的是( )x xx A ⎪⎭⎫ ⎝⎛<<-2155.x x x B -<⎪⎭⎫ ⎝⎛<5215.x x x C ⎪⎭⎫ ⎝⎛<<-2155.x x x D 5521.<<⎪⎭⎫ ⎝⎛- 11、求下列函数的定义域和值域 2221++-⎪⎭⎫ ⎝⎛=x x y12、(2007重庆)若函数()1222-=--a ax x x f 的定义域为R ,则实数a 的取值范围 。
13、若函数0322≤--x x ,求函数x x y 4222⋅-=+的最大值和最小值。
14、已知[]3,2x ∈-,求11()142x x f x =-+的最小值与最大值。
指数函数基础练习题
指数函数基础练习题一、选择题1. 若 f(x) = 2^x,则 f(3) 的值为:A. 2B. 4C. 8D. 162. 若 g(x) = 5^x,则 g(0) 的值为:A. 0B. 1C. 5D. 103. 若 h(x) = (1/3)^x,则 h(2) 的值为:A. 1/9B. 1/6C. 1/3D. 9/14. 若 k(x) = 10^x,则 k(-1) 的值为:A. 0.1B. 1C. 10D. 1005. 若 p(x) = e^x,则 p(1) 的值为:A. 1B. eC. e^2D. e^-1二、填空题1. 若 f(x) = 2^x,解方程 f(x) = 64,x 的值为 _______。
2. 若 g(x) = 5^x,解不等式 g(x) < 1,x 的取值范围为 _______。
3. 若 h(x) = (1/4)^x,解不等式 h(x) > 16,x 的取值范围为 _______。
4. 若 k(x) = 10^x,解方程 k(x) = 1000,x 的值为 _______。
5. 若 p(x) = e^x,解方程 p(x) = 5,x 的值约为 _______(保留两位小数)。
三、计算题1. 计算 f(2) + f(0) + f(-1) 的值。
2. 计算 g(3) - g(2) 的值。
3. 计算 h(1/2) + h(1/3) 的值。
4. 计算 k(-2) - k(0) 的值。
5. 若指数函数 f(x) = a * b^x,已知 f(0) = 3,f(2) = 27,求 a 和 b 的值。
四、解答题1. 将函数 f(x) = 4 * 2^x 的图像完整地画在坐标系中,并标出至少三个点的坐标。
2. 设函数 f(x) = 3 * 5^x,求函数 f(x) 的反函数,并说明反函数的定义域和值域。
3. 证明:指数函数 f(x) = b^x (其中 b > 0 且b ≠ 1)的图像经过点(0, 1)。
每日一练3-指数函数,对数函数,三角函数
每日一练11——指数与指数函数1.若集合{|2}x A x y ==,集合{|B x y ==,则A B = ( )A.()0,+∞B.()1,+∞C.[)0,+∞D.(),-∞+∞2.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则,,a b c 的大小关系是____________3.已知y x ,为正实数,则 ( )A .y x y x lg lg lg lg 222+=+B .y x y x lg lg )lg(222∙=+C .y x y x lg lg lg lg 222+=∙D .y x xy lg lg )lg(222∙=4____________________5.函数()33x x f x -=-是( )A .奇函数,且是增函数B .奇函数,且上是减函数C .偶函数,且是增函数D .偶函数,且是减函数6,则,,a b c 的大小关系是____________7.若函数()(0,1)x f x a a a =>≠在[]2,1-上的最大值为4,最小值为m ,则m 的值是_. 8.已知f(x)=11+-x a ,(a>0且a ≠1)则函数的图像经过定点________.9.方程9x -6·3x -7=0的解是 .10。
每日一练12——对数与对数函数11.已知b a b a +==3,53,43则的值为 。
12.函数)13lg(+=x y 的定义域是 ___________ ;13.(5分)的值是 .14 15.=+5lg 38lg .16.函数2)1(log +-=x y a )1,0(≠>a a 的图像恒过一定点是_________.17________________。
18.函数)3(lg lg )(++=x x x f 的定义域为 .19. 已知函数log (3)5a y x =+-(0,1a a >≠)的图象过定点A ,则点A 的坐标为 .20.已知log 2,log 3a a x y ==,则2x y a += 。
指数与指数函数-试卷(含解析)
指数与指数函数一、选择题1.函数y =a |x |(a >1)的图像是( )解析 y =a |x |=⎩⎨⎧a x x ≥0,a -xx <0.当x ≥0时,与指数函数y =a x (a >1)的图像相同;当x <0时,y =a -x 与y =a x 的图像关于y 轴对称,由此判断B 正确. 答案 B2.已知函数f (x )=⎩⎨⎧log 3x ,x >02xx ≤0,则f (9)+f (0)=( )A .0B .1C .2D .3 解析 f (9)=log 39=2,f (0)=20=1, ∴f (9)+f (0)=3. 答案 D3.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是( ).A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝ ⎛⎭⎪⎫-1,12 解析 y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a-1)2x-a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C4.定义运算:a *b =⎩⎨⎧a ,a ≤b ,b ,a >b ,如1*2=1,则函数f (x )=2x *2-x 的值域为 ( ).A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f (x )=2x *2-x =⎩⎪⎨⎪⎧2x ,x ≤0,2-x ,x >0,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1. 答案 C5.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值为( ) A. 6 B .2或-2 C .-2D .2解析 (a b +a -b )2=8⇒a 2b +a -2b =6, ∴(a b -a -b )2=a 2b +a -2b -2=4. 又a b >a -b (a >1,b >0),∴a b -a -b =2. 答案 D6.若函数f (x )=(k -1)a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是下图中的( ).解析 函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A 二、填空题7.已知函数f (x )=⎩⎨⎧a x,x <0,(a -3)x +4a ,x ≥0,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,148.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________. 解析 函数y =2-x +1+m =(12)x -1+m ,∵函数的图象不经过第一象限, ∴(12)0-1+m ≤0,即m ≤-2. 答案 (-∞,-2]9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点; 若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞)10.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞三、解答题11.已知函数f (x )=2x -12x +1.(1)判断函数f (x )的奇偶性; (2)求证f (x )在R 上为增函数.(1)解 因为函数f (x )的定义域为R ,且f (x )=2x -12x +1=1-22x +1,所以f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1=2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1=2-2(2x +1)2x +1=2-2=0,即f (-x )=-f (x ),所以f (x )是奇函数.(2)证明 设x 1,x 2∈R ,且x 1<x 2,有 f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)<f (x 2),∴函数f (x )在R 上是增函数.12.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)求f (x );(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解析 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得 ⎩⎨⎧6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎨⎧a =2,b =3.∴f (x )=3·2x .(2)要使(12)x +(13)x ≥m 在(-∞,1]上恒成立,只需保证函数y =(12)x +(13)x 在(-∞,1]上的最小值不小于m 即可.∵函数y =(12)x +(13)x在(-∞,1]上为减函数,∴当x =1时,y =(12)x +(13)x 有最小值56.∴只需m ≤56即可.∴m 的取值范围(-∞,56]13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减, 而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2). (2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎨⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.14.已知定义在R 上的函数f (x )=2x -12|x |. (1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1), ∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞).季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
2023届高考数学---指数与指数函数综合练习题(含答案解析)
2023届高考数学---指数与指数函数综合练习题(含答案解析)1、已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <bC [∵当x >0时,1<b x ,∴b >1.∵当x >0时,b x <a x ,∴当x >0时,(ab )x >1. ∴ab >1,∴a >b .∴1<b <a ,故选C.]2、设f (x )=e x ,0<a <b ,若p =f (ab ),q =f (a +b2),r =f (a )f (b ),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >qC [∵0<a <b ,∴a +b 2>ab ,又f (x )=e x 在(0,+∞)上为增函数,∴f (a +b2)>f (ab ),即q >p .又r =f (a )f (b )=e a e b =e a +b2=q ,故q =r >p .故选C.]3、已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值为________.12或32 [当0<a <1时,a -a 2=a 2, ∴a =12或a =0(舍去). 当a >1时,a 2-a =a2, ∴a =32或a =0(舍去). 综上所述,a =12或32.]4、已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解] (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1,所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a, 解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13. 故k 的取值范围为(-∞,-13).5、设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1D [根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.]6、已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2).(1)若λ=32,求函数f (x )的值域;(2)若函数f (x )的最小值是1,求实数λ的值. [解] (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x +3(-1≤x ≤2). 设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2). 当λ=32时,g (t )=t 2-3t +3 =(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34. 所以f (x )max =3716,f (x )min =34, 故函数f (x )的值域为[34,3716]. (2)由(1)得g (t )=t 2-2λt +3 =(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916, 令-λ2+4916=1,得λ=338>14,不符合,舍去; ②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合,舍去);③当λ>2时,g(t)min=g(2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合,舍去.综上所述,实数λ的值为 2.一、选择题1.设a>0,将a2a·3a2表示成分数指数幂的形式,其结果是()A.a 12B.a 5 6C.a 76D.a32C[a2a·3a2=a2a·a23=a2a53=a2a56=a2-56=a76.故选C.]2.已知函数f(x)=4+2a x-1的图像恒过定点P,则点P的坐标是()A.(1,6) B.(1,5)C.(0,5) D.(5,0)A[由于函数y=a x的图像过定点(0,1),当x=1时,f(x)=4+2=6,故函数f(x)=4+2a x-1的图像恒过定点P(1,6).]3.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<aC[y=0.6x在R上是减函数,又0.6<1.5,∴0.60.6>0.61.5.又y=x0.6为R上的增函数,∴1.50.6>0.60.6,∴1.50.6>0.60.6>0.61.5,即c>a>b.]4.函数y =xa x|x |(0<a <1)的图像的大致形状是( )A BC DD [函数的定义域为{x |x ≠0},所以y =xa x |x |=⎩⎨⎧a x,x >0,-a x ,x <0,当x >0时,函数是指数函数y =a x ,其底数0<a <1,所以函数递减;当x <0时,函数y =-a x 的图像与指数函数y =a x (0<a <1)的图像关于x 轴对称,所以函数递增,所以应选D.]5.已知函数f (x )=⎩⎨⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减C [易知f (0)=0,当x >0时,f (x )=1-2-x ,-f (x )=2-x -1,此时-x <0,则f (-x )=2-x -1=-f (x );当x <0时,f (x )=2x -1,-f (x )=1-2x ,此时,-x >0,则f (-x )=1-2-(-x )=1-2x =-f (x ).即函数f (x )是奇函数,且单调递增,故选C.]二、填空题1、若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.[2,+∞) [由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增, 所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减.] 2、不等式2-x 2+2x>(12)x +4的解集为________.(-1,4) [原不等式等价为2-x 2+2x>2-x -4,又函数y =2x 为增函数,∴-x 2+2x >-x -4, 即x 2-3x -4<0,∴-1<x <4.]3、若直线y 1=2a 与函数y 2=|a x -1|(a >0且a ≠1)的图像有两个公共点,则a 的取值范围是________.(0,12) [(数形结合法)当0<a <1时,作出函数y 2=|a x -1|的图像,由图像可知0<2a <1, ∴0<a <12;同理,当a >1时,解得0<a <12,与a >1矛盾. 综上,a 的取值范围是(0,12).] 三、解答题4、已知函数f (x )=(13)ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. [解] (1)当a =-1时,f (x )=(13)-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.则u 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =(13)u 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,则f (x )=(13)h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1.因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.(3)由f (x )的值域是(0,+∞)知,函数y =ax 2-4x +3的值域为R ,则必有a =0. 5、已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式(1a )x +(1b )x -m ≥0在(-∞,1]上恒成立,求实数m 的取值范围. [解] (1)因为f (x )的图像过A (1,6),B (3,24), 所以⎩⎨⎧b ·a =6,b ·a 3=24. 所以a 2=4,又a >0,所以a =2,b =3. 所以f (x )=3·2x .(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,(12)x +(13)x -m ≥0恒成立,即m ≤(12)x +(13)x 在(-∞,1]上恒成立.又因为y =(12)x 与y =(13)x 均为减函数,所以y =(12)x +(13)x也是减函数,所以当x=1时,y=(12)x+(13)x有最小值56.所以m≤56.即m的取值范围是(-∞,56].本课结束。
高中数学必修一-指数与指数函数
指数与指数函数练习一、选择题: 1、若R a ∈,*1N n n ∈>且则下列各式中正确的是( )A 、25a =B 、10=a C 、22a an n= D 、321213)()(a a =2、下列各式中错误的是( )A 、2552222⨯=B 、131()327-= C = D 、2311()84-=3.下列各式中成立的一项( )A .7177)(m n m n = B .31243)3(-=- C .43433)(y x y x +=+ D .3339=4.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a5.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C . )()]([)(Q n x f nx f n∈= D .)()]([·)]([)(+∈=N n y f x f xy f nn n6.函数21)2()5(--+-=x x y 的定义城是( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 7.下列函数中是指数函数的是( )12+=x y A 、 2x y B =、 x y C -=3、 x y D 23⋅=、8.当时,函数和的图象只可能是 ( )9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .251+ B . 251+- C .251± D . 215± 10、已知1()3x f x a+=-的图象恒过定点P ,则点P 的坐标为( )A 、(0,3)B 、(-1,2)C 、(-1,3)D 、(3,-1)11、如果指数函数xa x f )1()(2-=在R x ∈上是减函数,则a 的取值范围是( )A. |a|>1B. |a|<2C. |a|>2D. 1<|a|<212、已知函数11()2xy =,22xy =,31()10xy =,410x y =则下列函数图象正确的是(13、下列关系式中正确的是 ( )3231312121.21232.5.1⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<<-B AC .3231313221212.212125.15.1⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<--D 14、已知1)21()21(21<<<a b ,则( )A 、1>>b aB 、10<<<a bC 、1>>a bD 、10<<<b a 15.当[]1,1-∈x 时函数23)(-=xx f 的值域是( )[][]1,0.35,1.1,1.1,35.D C B A ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-16.函数xa y =在[]1,0上的最大值与最小值的和为3,则a =( ) A.21 B.2 C.4 D.41 17.已知2)(xx e e x f --=,则下列正确的( )A .奇函数B 非奇非偶函数C 既是奇函数又是偶函数D .偶函数二、解答题:15、求下列函数的定义域①23-=x y ②xy 121⎪⎭⎫ ⎝⎛=③123+=x y ④x y 21-=16、比较下列各题中两个数的大小①35.27.1,7.1②2.01.08.0,8.0--③1.33.09.0,7.1④21323143,2,34⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛17、证明函数110110)(-+=xx x f 在),0(+∞上是减函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修①指数与指数函数试题归纳精编沈阳市同泽高级中学 谷凤军 2007年10月15日 (一)指数1、化简[32)5(-]43的结果为 ( ) A .5B .5C .-5D .-52、将322-化为分数指数幂的形式为( )A .212- B .312- C .212-- D .652-3、化简4216132332)b (a b ba ab⋅⋅(a, b 为正数)的结果是( )A .ab B .ab C .ba D .a 2b4、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭5、13256)71(027.0143231+-+-----=__________.6、321132132)(----÷ab babab a =__________.7、48373)27102(1.0)972(032221+-++--π=__________。
8、)31()3)((656131212132b a b a b a ÷-=__________。
9、4160.25321648200549-+----()() =__________。
10、已知),0(),(21>>+=b a ab ba x 求122--x x ab 的值。
11、若32121=+-x x,求23222323-+-+--xx x x 的值。
(二)指数函数一、指数函数的定义问题1、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 2、若21(5)2x f x -=-,则(125)f = 。
3、若21025x=,则10x-等于 ( )A 、15B 、15- C 、150D 、16254、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减 5、已知指数函数图像经过点)3,1(-p ,则=)3(f二、指数函数的图像问题1、若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( )A .01>>b a 且B .010<<<b a 且C .010><<b a 且D .11>>b a 且2、方程2|x |+x=2的实根的个数为_______________3、直线a y 3=与函数)10(1≠>-=a a a y x 且的图像有两个公共点,则a 的取值范围是________。
4、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <D 、1a <<5、当0>x 时,函数()2()1xf x a =-的值总是大于1,则a 的取值范围是_____________。
6、若01<<-x ,则下列不等式中成立的是( )x xxA ⎪⎭⎫ ⎝⎛<<-2155.x x x B -<⎪⎭⎫ ⎝⎛<5215.x x x C ⎪⎭⎫ ⎝⎛<<-2155.xx xD 5521.<<⎪⎭⎫ ⎝⎛-7、当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( )8、(2005福建理5)函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b aC .0,10><<b aD .0,10<<<b a三、定义域与值域问题1、求下列函数的定义域和值域 (1)121xy =- (2)222)31(-=xy(3)xy 121⎪⎭⎫ ⎝⎛= (4)2221++-⎪⎭⎫⎝⎛=x x y(5)1121+-⎪⎭⎫⎝⎛=x x y (6)xx y 212+=2、下列函数中,值域为()+∞,0的函数是( )x y A 23.= 12.-=xy B 12.+=xy C xy D -⎪⎭⎫⎝⎛=221.3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )A 、∅B 、TC 、SD 、有限集4、(2005湖南理2)函数f(x)=x 21-的定义域是 ( )A 、(]0,∞-B 、[0,+∞)C 、(-∞,0)D 、(-∞,+∞)5、(2007重庆)若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范围 。
6、若函数0322≤--x x ,求函数x x y 4222⋅-=+的最大值和最小值。
7、已知[]3,2x ∈-,求11()142xxf x =-+的最小值与最大值。
8、如果函数)10(122≠>-+=a a a a y x x 且在[]1,1-上的最大值为14,求实数a 的值。
9、若函数3234+⋅-=x x y 的值域为[]1,7,试确定x 的取值范围。
四、比较大小问题1、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 2、设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<13、311213,32,2-⎪⎭⎫⎝⎛的大小顺序有小到大依次为_____________。
4、设,10<<<b a 则下列不等式正确的是( )babaA <. b a b bB <. a a b aC <. a b a bD <.五、定点问题函数)10(33≠>+=-a a a y x 且的图象恒过定点____________。
六、单调性问题。
1、函数xx y 2221-⎪⎭⎫⎝⎛=的单调增区间为_____________2、函数)10()(≠>=a a a x f x且在区间]2,1[上的最大值比最小值大2a ,则a =__________3、函数1)1(222)(+--=x a x x f 在区间),5[+∞上是增函数,则实数a 的取值范围是 ( )A. [6,+)∞B. ),6(+∞C. ]6,(-∞D. )6,(-∞4、函数),0,0()(11b a b a ba bax f xxx x ≠>>++=++的单调性为( )A .增函数B .减函数C .常数函数D .与a, b 取值有关5、设01a <<,解关于x 的不等式22232223x x x x a a-++->。
6、 已知函数()f x x x -+=22.(Ⅰ) 用函数单调性定义及指数函数性质证明: ()f x 是区间 ),0(+∞上的增函数; (Ⅱ) 若325)(+⋅=-x x f ,求x 的值.7、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
七、函数的奇偶性问题1、如果函数)(x f 在区间[]a a 24,2--上是偶函数,则a =_________2、函数2121xxy -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 3、若函数141)(++=xa x f 是奇函数,则a =_________ 4、若函数141)(-+=x a x f 是奇函数,则a =_________5、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数6、设函数2()21xf x a =-+,(1) 求证:不论a 为何实数()f x 总为增函数;(2) 确定a 的值,使()f x 为奇函数及此时()f x 的值域.7、已知函数1()(1)1xx a f x a a -=>+,(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数。