最新广东省历年中考数学压轴题

合集下载

2022中考数学压轴题-广东卷

2022中考数学压轴题-广东卷

2022中考数学压轴题-广东卷第22题12分,是道送分的几何题,这最后一道压轴题看着也没有太大的难度,12分,压轴题比较难的地区的同学们,扎心了。

(1)常规求解析式的问题,简单计算一下,就不多解释了;根据A坐标(1,0),以及AB=4可知B(-3,0)由两根之和可知b=2,两根之积可知c=-3则解析式y=x²+2x-3(2)△PCQ中没有一条边是横平竖直的,所以我们要找准三角形的底和高;毕竟有个PQ//BC,那么这个PQ可以当做底,当然如果用AQ当做底其实也行,我们这里选择PQ吧;既然有平行,就有线段比例,所以PQ还是可以用式子来表示的;若PQ为底,则高其实就是BC和PQ之间的距离,计算距离,这里平行线间的距离也就是垂线段,在垂直关系当中,可以想到的方法有勾股定理和三角函数,而这里BC是固定的,那么∠ABC也是固定的,所以借助三角函数还是比较容易想到的。

顶点C(-1,-4)我们假设AP长度为m,则BP=4-m由B和C坐标可知BC=2√5∴PQ/BC=AP/AB=m/4则PQ=√5/2·m而PQ和BC的距离可由BP长度以及∠ABC的三角函数来搞定不难知道tan∠ABC=2则sin∠ABC=2√5/5∴PQ和BC之间的距离h=BP·sin∠ABC=2√5/5·(4-m)则△PCQ的面积=PQ·h/2=√5/2·m·2√5/5·(4-m)·1/2=m(4-m)/2=-0.5(m²-4m)=-0.5(m-2)²+2∴当m=2时,△PCQ面积最大为2此时AP=2,P在AB之间,符合∴P坐标(-1,0),对应△PCQ面积最大值2;。

2024广东中考数学压轴题

2024广东中考数学压轴题

2024广东中考数学压轴题一、在直角坐标系中,抛物线y = ax2 + bx + c与x轴交于点A(-3,0)和B(1,0),且与y 轴交于点C(0,3)。

下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 抛物线的对称轴是直线x = -1(答案:D)二、已知三角形ABC的三边长为a,b,c,且满足a2 + b2 + c2 = 10a + 6b + 8c - 50。

则下列判断三角形ABC的形状中,正确的是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案:D)三、函数y = (x - 1)/(x + 2)中,当x的值增大时,y的值会:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 保持不变(答案:C)四、已知四边形ABCD是平行四边形,且AB = 6,BC = 8,对角线AC与BD相交于点O,则下列关于O点到AB和BC的距离d1和d2的说法正确的是:A. d1 + d2 = 14B. d1 × d2 = 24C. d1/d2 = AB/BCD. d12 + d22 = AB2 + BC2(答案:B)五、圆O的半径为5,点P在圆O外,且OP = 8。

过点P作圆O的两条切线,分别与圆O 相切于点A和B。

则弦AB的长度为:A. 6B. 4√3C. 5√2D. 2√15(答案:A)六、在数轴上,点A表示的数为-2,点B表示的数为3。

若点C表示的数为x,且满足AC + BC = 8,则x的值为:A. -3或4B. -4或3C. -3或-1D. 2或-5(答案:B)七、已知二次函数y = ax2 + bx + c的图像经过点(1,0),(2,0)和(3,4)。

下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 函数的顶点在x轴上(答案:A)八、正方形ABCD的边长为4,点E在边AB上,且AE = 1。

广州中考数学压轴题(学生版)

广州中考数学压轴题(学生版)

1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。

P 为线段上一动点,作直线⊥,交直线1于点C 。

过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。

(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。

说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。

中考数学综合压轴题100题(附答案)

中考数学综合压轴题100题(附答案)

中考数学综合压轴题100题(附答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.3.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.4.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.5.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.6.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.7.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.8.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.9.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.10.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.11.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.14.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.15.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.16.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.17.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.18.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.19.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.20.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.22.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.23.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.。

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

03挑战压轴题(解答题一)(1)尺规作图:将法);(2)在(1)所作的图中,连接V①求证:ABD②若tan BAC∠2.(2022·广东广州·统考中考真题)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆的AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD = 1.6m,BC =5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE = 1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.(1)求A 、B 两点的坐标;(2)设PAO V 的面积为S ,求S 关于x 的函数解析式:并写出x 的取值范围;(3)作PAO V 的外接圆C e ,延长PC 交C e 于点Q ,当POQ △的面积最小时,求C e 的半径.(1)沿AC BC 、剪下ABC V ,则ABC V 是_______三角形(填“锐角______.(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H .已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);2.(2022上·陕西西安·九年级校考期中)如图,在等边ABC V 中,点D 是AB 边上的一个动点(不与点A ,B 重合),以CD 为边作等边EDC △,AC 与DE 交于点F ,连接AE .(1)求证:ADF BCD △∽△;(2)若:5:2AB BD =,且20AB =,求ADF △的面积.3.(2022·安徽合肥·统考一模)如图,在正方形ABCD 中,9AB =,E 为AC 上一点,以AE 为直角边构造等腰直角AEF △(点F 在AB 左侧),分别延长FB ,DE 交于点H ,DH 交线段BC 于点M ,AB 与EF 交于点G ,连结BE .(1)求证:AFB AED≅V V (2)当62AE =时,求sin MBH ∠的值.(3)若BEH △与DEC V 的面积相等,记△(1)当点D 与圆心O 重合时,如图2所示,求DE 的长.(2)当CEF △与ABC V 相似时,求cos BDE ∠的值.6.(2023下·安徽蚌埠·九年级校考开学考试)如图,矩形ABCD 中,8AB =厘米,12BC =厘米,P 、Q 分别是AB 、BC 上运动的两点,若点P 从点A 出发,以1厘米/秒的速度沿AB 方向运动,同时,点Q 从点B 出发以2厘米/秒的速度沿BC 方向运动,设点P ,Q 运动的时间为x 秒.(1)设PBQ V 的面积为y ,求y 与x 之间的函数关系式及自变量x 的取值范围;(2)当x 为何值时,以P ,B ,Q 为顶点的三角形与BDC V 相似?7.(2021下·湖北随州·七年级统考期末)阅读材料:在平面直角坐标系中,二元一次方程0x y -=的一个解11x y =⎧⎨=⎩可以用一个点(1,1)表示,二元一次方程有无数个解,以方程0x y -=的解为坐标的点的全体叫作方程0x y -=的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程0x y -=的图象称为直线0x y -=.直线x -y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x -y ≤0,那么点M (x 0,y 0)就在直线x -y =0的上方区域内。

广东中考数学压轴题

广东中考数学压轴题

广东09压轴题127.(广东省)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时,Rt △ABM ∽Rt △AMN ,并求此时x 的值.128.(广东省广州市)如图,二次函数y =x2+px +q (p <0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.M B CND A129.(广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.130.(广东省深圳市)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?备用图131.(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式. (2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标. ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.132.(广东省珠海市)已知抛物线y =x2-32mx 与x 轴相交于点A 、B ,抛物线的顶点为C .(1)试用含m 的代数式表示AB 的长度; (2)当△ABC 为等边三角形时,求点C 的坐标; (3)在(2)的条件下,如何平移抛物线,使AC =213AB ?133.(广东省佛山市)如图1,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB =4,BC =4,CC 1=5时,求蚂蚁爬过的最短路径的长; (3)求点B 1到最短路径的距离. A Bxy O 图1C A B x y O PD E图2 C A BPxy O D E 图3 C 备用图 图1134.(广东省茂名市)已知:如图,直线l :y =31x +b ,经过点M (0,41),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0)(n 为正整数),设x 1=d (0<d <1). (1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.135.(广东省湛江市)已知矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系;点P 是OA 边上的动点(与点OA 不重合),现将△POC 沿PC 翻折得到△PEC ,再在AB 边上选取适当的点D ,将△P AD 沿PD 翻折,得到△PFD ,使得直线PE 、PF 重合.(1)若点E 落在BC 边上,如图①,求点P 、C 、D 的坐标,并求过此三点的抛物线的函数关系式;(2)若点E 落在矩形纸片OABC 的内部,如图②,设OP =x ,AD =y ,当x 为何值时,y 取得最大值?(3)在(1)的情况下,过点P 、C 、D 三点的抛物线上是否存在点Q ,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.136.(广东省肇庆市)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求证:AM ∥BN ;(2)求y 关于x 的关系式;(3)求四边形ABCD 的面积S ,并证明:S≥2.137.(广东省清远市)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,∠B 和∠C 都为锐角,M 为AB 上一动点(点M 与点A 、B 不重合),过点M 作MN ∥BC ,交AC 于点N ,在△AMN 中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将△AMN 沿MN 折叠,使△AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为A 1,△A 1MN 与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?138.(广东省梅州市)如图,矩形ABCD 中,AB =5,AD =3.点E 是CD 上的动点,以AE 为直径的⊙O 与AB 交于点F ,过点F 作FG ⊥BE 于点G . (1)当E 是CD 的中点时:①tan ∠EAB 的值为______________; ②证明:FG 是⊙O 的切线;(2)试探究:BE 能否与⊙O 相切?若能,求出此时DE 的长; 若不能,请说明理由.NB C N M A139.(广东省梅州市)如图,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.1。

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)

专题04 几何压轴题1.(2021•广州)如图,在菱形ABCD 中,60DAB ∠=︒,2AB =,点E 为边AB 上一个动点,延长BA 到点F ,使AF AE =,且CF 、DE 相交于点G .(1)当点E 运动到AB 中点时,证明:四边形DFEC 是平行四边形;(2)当2CG =时,求AE 的长;(3)当点E 从点A 开始向右运动到点B 时,求点G 运动路径的长度.【答案】(1)见解析;(2)34;(3)273【详解】(1)连接DF ,CE ,如图所示:,E 为AB 中点,12AE AF AB ∴==, EF AB ∴=,四边形ABCD 是菱形,//EF CD ∴,EF AB CD ==,∴四边形DFEC 是平行四边形.(2)作CH BH ⊥,设AE FA m ==,如图所示,,四边形ABCD 是菱形,//CD EF ∴,CDG FEG ∴∆∆∽, ∴CD EF CG FG =, 2FG m ∴=, 在Rt CBH ∆中,60CBH ∠=︒,2BC =, sin 60CH BC ︒=,3CH =, cos60BH BC︒=,1BH =, 在Rt CFH ∆中,22CF m =+,3CH =,3FH m =+,222CF CH FH =+,即(22)2(3)2(3)2m m +=++,整理得:32280m m +-=,解得:143m =,22m =-(舍去), ∴43AE =. (3)G 点轨迹为线段AG ,证明:如图,(此图仅作为证明AG 轨迹用),延长线段AG 交CD 于H ,作HM AB ⊥于M ,作DN AB ⊥于N ,四边形ABCD 是菱形,//BF CD ∴,DHG EGA ∴∆∆∽,HGC AGF ∆∆∽,∴AE AG DH HG =,AF AG HC HG =, ∴AE AF DH CH=, AE AF =,1DH CH ∴==,在Rt ADN ∆中,2AD =,60DAB ∠=︒.sin 60DN AD ∴︒=,3DN =.cos60AN AD ︒=,1AN =, 在Rt AHM ∆中,3HM DN ==,2AM AN NM AN DH =+=+=,3tan 2HAM ∠=, G 点轨迹为线段AG .G ∴点轨迹是线段AG .如图所示,作GH AB ⊥,四边形ABCD 为菱形,60DAB ∠=︒,2AB =,//CD BF ∴,2BD =,CDG FBG ∴∆∆∽,∴CD DG BF BG=,即2BG DG =, 2BG DG BD +==,43BG ∴=, 在Rt GHB ∆中,43BG =,60DBA ∠=︒, sin 60GH BG ︒=,233GH =, cos60BH BG ︒=,23BH =, 在Rt AHG ∆中,24233AH =-=,233GH =, 423282()2()2339AG =+=, 273AG ∴=. G ∴点路径长度为273. 2.(2019•广州)如图,等边ABC ∆中,6AB =,点D 在BC 上,4BD =,点E 为边AC 上一动点(不与点C 重合),CDE ∆关于DE 的轴对称图形为FDE ∆.(1)当点F 在AC 上时,求证://DF AB ;(2)设ACD ∆的面积为1S ,ABF ∆的面积为2S ,记12S S S =-,S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;(3)当B ,F ,E 三点共线时.求AE 的长.【答案】(1)见解析;(2)见解析;(3)713- 【详解】(1)ABC ∆是等边三角形 60A B C ∴∠=∠=∠=︒ 由折叠可知:DF DC =,且点F 在AC 上60DFC C ∴∠=∠=︒DFC A ∴∠=∠//DF AB ∴;(2)存在,过点D 作DM AB ⊥交AB 于点M ,6AB BC ==,4BD =,2CD ∴=2DF ∴=,∴点F 在以D 为圆心,DF 为半径的圆上,且在ABC ∆内部,∴当点F 在DM 上时,ABF S ∆最小,4BD =,DM AB ⊥,60ABC ∠=︒23MD ∴=ABF S ∆∴的最小值16(232)6362=⨯⨯-=- ()12336363362S ∴=⨯⨯--=-+最大值 (3)如图,过点D 作DG EF ⊥于点G ,过点E 作EH CD ⊥于点H ,CDE ∆关于DE 的轴对称图形为FDE ∆2DF DC ∴==,60EFD C ∠=∠=︒GD EF ⊥,60EFD ∠=︒1FG ∴=,33DG FG == 222BD BG DG =+, 2163(1)BF ∴=++,131BF ∴=-13BG ∴=EH BC ⊥,60C ∠=︒2EC CH ∴=,332EH HC EC == GBD EBH ∠=∠,90BGD BHE ∠=∠=︒BGD BHE ∴∆∆∽∴DG EH BG BH= ∴3321362EC EC =- 131EC ∴=-713AE AC EC ∴=-=-3.(2021•广州模拟)如图,在四边形ABCD 中,60B ∠=︒,30D ∠=︒,AB BC =.(1)求A C ∠+∠的度数;(2)连接BD ,探究AD ,BD ,CD 三者之间的数量关系,并说明理由;(3)若1AB =,点E 在四边形ABCD 内部运动,且满足222AE BE CE =+,求点E 运动路径的长度.π【答案】(1)︒270;(2)见解析;(3)3【详解】(1)如图1中,在四边形ABCD中,360D∠=︒,30∠=︒,BA B C D∠+∠+∠+∠=︒,60∴∠+∠=︒-︒-︒=︒.3606030270A C(2)如图2中,结论:222=+.DB DA DC理由:连接BD.以BD为边向下作等边三角形BDQ∆.∠=∠=︒,60ABC DBQ∴∠=∠,ABD CBQ=,=,DB BQAB BCABD CBQ SAS∴∆≅∆,()∴=,A BCQ∠=∠,AD CQ∠+∠=∠+∠=︒,A BCD BCQ BCD270∴∠=︒,DCQ90222∴=+,DQ DC CQ=,DQ DB=,CQ DA222∴=+.DB DA DC(3)如图3中,连接AC,将ACE∆,连接RE.∆绕点A顺时针旋转60︒得到ABR则AER ∆是等边三角形,222EA EB EC =+,EA RE =,EC RB =,222RE RB EB ∴=+,90EBR ∴∠=︒,150RAE RBE ∴∠+∠=︒,210ARB AEB AEC AEB ∴∠+∠=∠+∠=︒,150BEC ∴∠=︒,∴点E 的运动轨迹在O 为圆心的圆上,在O 上取一点K ,连接KB ,KC ,OB ,OC , 180K BEC ∠+∠=︒,30K ∴∠=︒,60BOC ∠=︒,OB OC =,OBC ∴∆是等边三角形,1OB OC BC ∴===,∴点E 的运动路径6011803ππ==. 4.(2021•天河区一模)如图,ABC ∆中,120BAC ∠︒,AB AC =,点A 关于直线BC 的对称点为点D ,连接BD ,CD .(1)求证:四边形ABDC 是菱形;(2)延长CA 到E ,使得AB BE =.求证:22BC AC CE AC -⋅=;(3)在(2)小题条件下,可知E ,B ,D ,C 四点在同一个圆上,设其半径为a (定值),若BC kAB =,问k 取何值时,BE CE ⋅的值最大?【答案】见解析;【详解】(1)证明:如图1,连接AD ,交BC 于O ,A ,D 关于直线BC 对称,AD BC ∴⊥,OA OD =,AB AC =,OB OC ∴=,∴四边形ABDC 是菱形;(2)证明:解法一:如图2,延长AE 到F ,使EF BE =,连接BF ,AB BE =,AB BD CD AC BE EF ∴=====,BE CE EF CE CF ∴+=+=,AB AC =,ABC ACB ∴∠=∠,同理得EBF F ∠=∠,BAE BEA ∠=∠,BAE ABC ACB ∠=∠+∠,BEA EBF F ∠=∠+∠,ABC ACB EBF F ∴∠=∠=∠=∠,ABC BFC ∴∆∆∽, ∴BC AC CF BC =, 2()()BC AC CF AC CE EF AC CE AC ∴=⋅=⋅+=⋅+,即22BC AC CE AC -⋅=;解法二:如图3,过点B 作BP CE ⊥于P ,AB BE =,AP EP ∴=,且AB AC BE ==,Rt BPC ∆中,222BC BP CP =+,在Rt BPA ∆中,222BA BP AP =+,2222222222()()BC AC BC AB BP CP BP AP CP AP ∴-=-=+-+=-,22()()()CP AP CP AP CP AP CP EP AC CE AC -=+-=+⋅=⋅,22BC AC CE AC ∴-=⋅,即22BC AC CE AC -⋅=;(3)解:如图4,连接AD 交BC 于M ,作CD 的垂直平分线交DA 的延长线于G ,连接CG ,由题意得:CG DG a ==,设DM x =,则GM a x =-,120BAC ∠︒,∴当120BAC ∠=︒时,如图5,ABD ∆和ADC ∆是等边三角形,AB AD AC ∴==,∴当点A 为圆心,即点A 与G 重合,此时1cos602x CD a =⋅︒=, 02a x ∴<, 四边形ABCD 是菱形,BC AD ∴⊥,2BC CM =,由勾股定理得:2222()2CM a a x x ax =--=-+,22222CD x x ax ax =-+=,222448BC CM x ax ∴==-+,222BE CD ax ==,由22BC AC CE AC -⋅=,得2222222239482464()44BE CE BC AC BC BE x ax ax x ax x a a ⋅=-=-=-+-=-+=--+, 02a x<, ∴当12x a =时,BE CE ⋅有最大值,此时223BC a =,222AB BE a ==, 故223BC AB =,所以3BC AB =,故3k =时,BE CE ⋅的值最大.5.(2021•越秀区一模)如图,在四边形ABCD 中,90A ADC ∠=∠=︒,10AB AD ==,15CD =,点E ,F 分别为线段AB ,CD 上的动点,连接EF ,过点D 作DG ⊥直线EF ,垂足为G .点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,当点E 运动到点A 时,E ,F 同时停止运动,设点E 的运动时间为t 秒.(1)求BC 的长;(2)当GE GD =时,求AE 的长;(3)当t 为何值时,CG 取最小值?请说明理由.【答案】(1)55;(2)52;(3)见解析【详解】(1)如图1,过点B 作BH CD ⊥于点H ,则四边形ADHB 是矩形,10AB =,15CD =,5CH ∴=,又10BH AD ==, 222210555BC BH CH ∴=+=+=; (2)过点G 作MN AB ⊥,如图2,//AB CD ,MN CD ∴⊥,DG EF ⊥,EG DG =,()EMG GND AAS ∴∆≅∆,MG DN ∴=,设DN a =,GN b =,则MG a =,ME b =,点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,2BE t ∴=,102AE t =-,3DF t =,153CF t =-,AM DN =,AD MN =,10a b ∴+=,102a b t -=-,解得10a t =-,b t =,DG EF ⊥,GN DF ⊥,DGN GFN ∴∆∆∽,∴GN NF DN GN=, 2GN DN NF ∴=⋅,2210GN t NF DN t ∴==-, 又DF DN NF =+, 231010t t t t ∴=-+-, 解得55t =±,又03t ,55t ∴=-,10225AE t ∴=-=.(3)如图3,连接BD ,交EF 于点K ,//BE DF ,BEK DFK ∴∆∆∽,∴2233BK BE t DK DF t ===, 又10AB AD ==, 2102BD AB ∴==,3625DK BD ∴==, 取DK 的中点,连接OG ,DG EF ⊥,DGK ∴∆为直角三角形,1322OG DK ∴==, ∴点G 在以O 为圆心,32r =的圆弧上运动,连接OC ,OG ,由图可知CG OC OG -,当点G 在线段OC 上时取等号,AD AB =,90A ∠=︒,45ADB ∴∠=︒,45ODC ∴∠=︒,过点O 作OH DC ⊥于点H , 又32OD =,15CD =, 3OH DH ∴==, 12CH ∴=, 22317OC OH CH ∴=+=,则CG 的最小值为3(172)-,当O ,G ,C 三点共线时,过点O 作直线OR DG ⊥交CD 于点S , OD OG =,R ∴为DG 的中点,又DG GF ⊥,//OS GF ∴,∴点S 是DF 的中点,OC SC OG SF=, 32DS SF t ∴==,3152SC t =-, ∴31531723322t t -=, 23443t -∴=, 即当23443t -=时,CG 取得最小值为31732-. 6.(2021•天河区二模)如图,矩形ABCD 中,4AB =,8AD =,点E 是边AB 上的一点,点F 是边BC 延长线上的一点,且2AE CF =.连接AC ,交EF 于点O ,过E 作EP AC ⊥,垂足为P .(1)求证:DAE DCF ∆∆∽;(2)求证:OP 长为定值;(3)记AC 与DE 的交点为Q ,当14PQ OP =时,直接写出此时AP 的长.【答案】(1)见解析;(2)见解析;(3)6525- 【详解】(1)证明:在矩形ABCD 中,4AB CD ==,90DAE DCB ∠=∠=︒, 90DCF ∴∠=︒, DAE DCF ∴∠=∠,2AE CF =,8AD BC ==,∴2AE AD CF CD==, DAE DCF ∴∆∆∽;(2)证明:如图1,过点E 作//EG BC ,交AC 于点G ,90AEG B ∴∠=∠=︒,AGE ACB ∠=∠,EOG FOC ∆∆∽,在Rt ABC ∆中,4AB =,8BC =,224845AC ∴=+=,EP AC ⊥,90AEP BAC ∴∠+∠=︒,90CAD BAC ∠+∠=︒,AEP CAD ∴∠=∠,1tan tan tan tan 2CAD ACB AGE AEP ∴∠=∠=∠=∠=,即12CD AE AP PE AD EG EP PG ====, 2EG AE ∴=,2AE CF =,4EG CF ∴=,设(0)AP m m =>,(0)OC n n =>,则2PE m =,4PG m =,EOG FOC ∆∆∽,∴4EG OG CF OC==, 44OG OC n ∴==,4445AC AP PG OG OC m m n n ∴=+++=+++=,455m n ∴+=,165445OP PG OG m n ∴=+=+=, 所以OP 是一个定值;(3)如图2,11165454455PQ OP ==⨯=,由(2)知:(0)AP m m =>,5AE m =,//AE CD ,AEQ CDQ ∴∆∆∽,∴AE AQ CD CQ=, ∴4555445455m m m +=--,解得:6525m =±, 054m <<,4505m ∴<<, 6525AP ∴=-. 7.(2021•白云区一模)不在射线DA 上的点P 是边长为2的正方形ABCD 外一点(P 在AB 左侧),且满足45APB ∠=︒,以AP ,AD 为邻边作APQD .(1)如图,若点P 在射线CB 上,请用尺规补全图形;(2)若点P 不在射线CB 上,求PAQ ∠的度数;(3)设AQ 与PD 交点为O ,当APO ∆的面积最大时,求tan ADO ∠的值.【答案】(1)见解析;(2)︒45;(3)123+ 【详解】(1)如图1,以B 为圆心,AB 长为半径作弧,交射线CB 于点P ,连接BD ,//AD PB ,AD AB PB ==,∴四边形ADBP 是平行四边形,∴点Q 与点B 重合.(2)如图2,连接QA ,QC ,QB ,BD ,四边形APQD 是平行四边形,AP DQ ∴=,//PQ AD ,//AP QD ,180PAD ADQ ∴∠+∠=︒,90PAB ADQ ∴∠=︒-∠,90PAB ADQ QDC ∴∠=︒-∠=∠,又AP QD =,AB CD =,()PAB QDC SAS ∴∆≅∆,45APB DQC ∴∠=∠=︒,四边形ABCD 是正方形,45ABD DBC ∴∠=∠=︒,45CQD CBD ∴∠=∠=︒,∴点B ,点C ,点D ,点Q 四点共圆,90BCD BQD ∴∠=∠=︒,90BQD BAD ∴∠=∠=︒,∴点B ,点D ,点A ,点Q 四点共圆,45AQD ABD ∴∠=∠=︒,//AP QD ,45PAQ AQD ∴∠=∠=︒;(3)四边形APQD 是平行四边形, 14APO APQD S S ∆∴=, ∴当APQD 的面积最大时,APO ∆的面积取最大值,APQD S AD =⨯点P 到AD 的距离,∴当点P 到AD 的距离最大时,APQD 的面积最大,如图3,以AB 为斜边作等腰直角三角形ABE ,以E 为圆心,AE 为半径作ABP ∆的外接圆,延长CB 交E 于H ,过点E 作FE BH ⊥,交E 于P ,交DA 的延长线于F ,此时点P 到AD 的距离最大,EA EB =,90AEB ∠=︒,2AB =,45EAB ∴∠=︒,2AE =,45EAF ∴∠=︒,EF AF ⊥,45EAF FEA ∴∠=∠=︒,1AF EF ∴==,12PF ∴=+,()212APQD S AD PF ∴=⋅=⨯+最大,12142APQD APO S S ∆+∴==最大, 12tan 3FP ADO DF +∴∠==. 8.(2021•番禺区一模)如图,ABC ∆中,120A ∠=︒,AB AC =,过点A 作AO AC ⊥交BC 于点O .(1)求证:13BO BC =; (2)设AB k =.①以OB 为半径的O 交BC 边于另一点P ,点D 为CA 边上一点,且2CD DA =.连接DP ,求CPD S ∆.②点Q 是线段AB 上一动点(不与A 、B 合),连接OQ 在点Q 运动过程中,求2AQ OQ +的最小值.【答案】(1)见解析;(2)①2318CPD S k ∆=,②k 【详解】(1)证明:120A ∠=︒,AB AC =,30B C ∴∠=∠=︒,AO AC ⊥,90OAC ∴∠=︒,30BAO ∠=︒,BO AO ∴=,12AO CO =, 12BO CO ∴=, 13BO BC ∴=; (2)①如图:AB k =,AC k ∴=,Rt AOC ∆中,tanOA C AC =, 33OA k OB ∴==, 30C ∠=︒,2323OC OA k ∴==, 33CP OC OP OC OA k ∴=-=-=, 2CD DA =,3k DA ∴=,23DC k =, Rt AOD ∆中,33tan 333kAD AOD OA k ∠===, 30AOD ∴∠=︒,18060AOC OAC C ∠=︒-∠-∠=︒,30AOD DOP ∴∠=∠=︒,又OA OP =,OD OD =,()AOD POD SAS ∴∆≅∆,90DPO OAD ∴∠=∠=︒,DA DP =,3k DP ∴=, 213218CPD S CP DP k ∆∴=⋅=; ②以A 为顶点,AB 为一边,在ABC ∆外部作30BAN ∠=︒,过Q 作QN AN ⊥于N ,过O 作OM AN ⊥于M ,连接OQ ,如图:在Rt AQN ∆中,30BAN ∠=︒,12NQ AQ ∴=, 122()2AQ OQ AQ OQ +=+, 2AQ OQ ∴+最小,即是12AQ OQ +最小,故NQ OQ +最小,此时ON AN ⊥,Q 与Q '重合,N 与M 重合,OM 长度即是12AQ OQ +的最小值, 而由①知:33OA k =,60OAM OAB BAM ∠=∠+∠=︒, Rt AOM ∆中,sin OM OAM OA ∠=, sin 6033OMk ∴︒=,2k OM ∴=, ∴12AQ OQ +的最小值为2k , 2AQ OQ ∴+的最小值是k .9.(2021•花都区一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,16BC cm =.(1)尺规作图:作AB 的垂直平分线DE 交AB 于点D ,交BC 于点E (保留作图痕迹,不要求写作法);(2)连接AE ,动点M ,N 分别从点A ,C 同时出发,均以每秒1cm 的速度分别沿AE 、CB 向终点E ,B 运动,是否存在某一时刻t 秒(010)t <<,使MNC ∆的面积S 有最大值?若存在,求S 的最大值;若不存在,请说明理由.【答案】见解析【详解】(1)如图,直线DE 即为所求作.(2)过点M 作MH EC ⊥于H . DE 垂直平分线段AB ,EA EB ∴=,设EA EB x ==cm ,则(16)EC x cm =-,在Rt ACE ∆中,222AE AC EC =+,2228(16)x x ∴=+-,解得10x =,//MH AC , ∴EM MH EA AC =, ∴10108t MH -=, 4(10)5MH t ∴=-, 2214225(10)2()1025552MNC S t t t t t ∆∴=⨯⨯-=-+=--+, 502-<, 52t ∴=时,MNC ∆的面积最大,最大值为10. 10.(2021•越秀区校级二模)已知ABC ∆,90ACB ∠=︒,4AC BC ==,D 是AB 的中点,P 是平面上的一点,且1DP =,连接CP(1)如图,当点P 在线段BD 上时,求CP 的长;(2)当BPC ∆是等腰三角形时,求CP 的长;(3)将点B 绕点P 顺时针旋转90︒得到点B ',连接AB ',求AB '的最大值.【答案】(1)3;(2)①13,②42+ 【详解】(1)如图1中,连接CD .在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,2242AB AC BC ∴=+=,AD DB =,1222CD AB ∴==,CD AB ⊥, 在Rt CDP ∆中,223PC PD CD =+=.(2)如图2中,1DP =,∴点P 在以点D 为圆心的D 上.①当PB PC =时,CD DB =,P ∴、D 都在线段BC 的垂直平分线上,设直线DP 交BC 于E .90PEC ∴∠=︒,2BE CE ==,90CDB ∠=︒, 122DE BC CE ∴===, 在Rt PCE ∆中,22PC EC PE =+,当P 在线段PD 上时,1PE DE DP =-=,22125PC =+=,当P 在线段ED 的延长线上时,3PE ED DP =+=,223213PC =+=.②当PC BC =时,221PC CD PD BC +=+<,PC BC ∴≠,此种情形不存在;③当PB BC =时,同理这种情形不存在;如图3中(3)如图4中,连接BB '.由旋转可知:PB PB =',90BPB ∠'=︒,45PBB ∴∠'=︒,2BB PB ∴'=,∴2BB PB'=, AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,ABC PBB ∴∠=∠',ABB CBP ∴∠'=∠, 4224BA BC ==, ∴BA BB BC PB '=, ∴BA BC BB PB =', ABB CBP ∴∆'∆∽,∴2AB BA CP BC'==, 221PC CD DP +=+,∴点P 落在CD 的延长线与D 的交点处,PC 的值最大,2(221)42AB ∴'+=+.AB ∴'的最大值为42+.11.(2021•黄埔区二模)如图1,正方形ABCD 的对角线相交于点O ,延长OD 到点G ,延长OC 到点E ,使2OG OD =,2OE OC =,以OG ,OE 为邻边作正方形OEFG ,连接AG ,DE .(1)探究AG 与DE 的位置关系与数量关系,并证明;(2)固定正方形ABCD ,以点O 为旋转中心,将图1中的方形OEFG 逆时针转(0180)n n ︒<<得到正方形111OE F G ,如图2.①在旋转过程中,当190OAG ∠=︒时,求n 的值;②在旋转过程中,设点1E 到直线1AG 的距离为d ,着正方形ABCD 的边长为1,请直接写出d 的最大值与最小值,不必说明理由.【答案】(1)见解析;(2)①30n =;②见解析【详解】(1)AG DE ⊥,.AG DE =证明:如图1,延长ED 交AG 于点H ,点O 是正方形ABCD 两对角线的交点,OA OC OD ∴==,OA OD ⊥,90AOG DOE ∴∠=∠=︒,2OG OD =,2OE OC =,OG OE ∴=,在AOG ∆和DOE ∆中,OA OD AOG DOE OG OE =⎧⎪∠=∠⎨⎪=⎩,()AOG DOE SAS ∴∆≅∆,AG DE ∴=,AGO DEO ∠=∠,90AGO GAO ∠+∠=︒,90GAO DEO ∴∠+∠=︒,90AHE ∴∠=︒,AG DE ∴⊥,故AG DE ⊥,AG DE =;(2)①在旋转过程中,190OAG ∠=︒有两种情况:(Ⅰ)n 由0增大到90过程中,当190OAG ∠=︒时,11122OA OD OG OG ===, ∴在1Rt OAG ∆中,11sin 2OA AG O OG ∠==', 130AG O ∴∠=︒,OA OD ⊥,1OA AG ⊥,1//OD AG ∴,1130DOG AG O ∴∠=∠=︒,即30n =;(Ⅱ)n 由90增大到180过程中,当190OAG ∠=︒时,同理可求130BOG ∠=︒,118030150DOG ∴∠=︒-︒=︒,150n ∴=;综上所述,当190OAG ∠=︒时,30n =或150.②如图3,d 的最大值为116262222E H DE DH +=+=+=,如图4,d 的最小值为116262222E H DE DH -=-=-=. 理由如下:如图3、图4所示,连接11E G ,设直线1E D 交直线1AG 于H ,作正方形ABCD 的外接圆O ,仿照(1)的证明,可证得DE AG ⊥,即在旋转过程中,1190E HG ∠=︒保持不变,所以1d E H =. 在旋转过程中,1E H 的位置有以下两种情况:第一种情况,当1E H 在1OE G ∠内时,11145E G H OG A ∠=︒+∠,如图3所示,第二种情况:当1E H 在11OE G ∠外时,11145E G H OG A ∠=︒-∠,如图3所示, 1222OG OD BD AB ====,112E G ∴=.在Rt △11E HG 中,11111sin 2E H d E G H E G ∠==, 112sin d E G H ∴=∠, 所以,当11E G H ∠最大时,最大;当最小时,最小; 设点到的距离为,则, 由上式可知,当取最大值时,取最大值.在旋转过程中,当与相切,即时,取最大值.此时,取最大值,从而取最大值或最小值.由①可知,当时,,在(1)中,已证得,且,四边形为正方形,, , 的最大值为, 的最小值为 d 11E G H ∠d O 1AG m 1sin 2m OG A OG ∠=m 1OG A ∠1E D O 190OAG ∠=︒m 1OG A ∠11E G H ∠190OAG ∠=︒130OG A ∠=︒11AOG DOE ∆≅∆90AHD ∠=︒∴AODH 22DH AO ∴==221126(2)()22DE AG ∴==-=d ∴116262E H DE DH +=+=d 116262E H DE DH -=-=12.(2021•从化区一模)如图,四边形是矩形,点是对角线上一动点(不与点和点重合),连接,过点作交射线于点,连接,已知,,设的长为.(1)线段的最小值为 . (2)如图,当动点运动到的中点时,与的交点为,的中点为,求线段的长度;(3)当点在运动的过程中:①试探究是否会发生变化?若不改变,请求出大小;若改变,请说明理由;②当为何值时,是等腰三角形?ABCD P AC C A PB P PF PB ⊥DA F BF 33AD =3CD =CP x PB P AC AP BF G FP H GH P FBP ∠FBP ∠x AFP ∆【答案】(1);(2(3)见解析 【详解】(1)四边形是矩形,,,,,,,当时,最小,此时为斜边上的高,,即, ,; (2)如图:运动到的中点,,,中,, , 是等边三角形,,又,,,,是的垂直平分线,3323GH ∴=ABCD 33AD =3CD =3AB CD ∴==33BC AD ==90ABC D ∠=∠=︒226AC AB BC ∴=+=BP AC ⊥BP BP Rt ABC ∆AC 1122ABC S AB BC AC BP ∆∴=⋅=⋅3336BP ⨯=⨯332BP ∴=P AC 6AC =3AP AB ∴==Rt ABC ∆tan 3BC BAC AB∠==60BAC ∴∠=︒ABP ∴∆3AB BP ∴==90BAF BPF ∠=∠=︒BF BF =()BAF BPF HL ∴∆≅∆AF PF ∴=BF ∴AP是中点,是中点,, 是等边三角形,是中点,, 在中,, 得, , ; (3)①不会发生变化,,理由如下:过作于,交于,如图:,四边形是矩形,,,中,, ,中,, ,, ,, ,, 而,,G ∴AP H PF 12GH AF ∴=ABP ∆G AP 1302PBF PBA ∴∠=∠=︒Rt PBF ∆tan PF PBF BP ∠=tan303PF ∴︒=3PF 3AF ∴=32GH ∴=FBP ∠30FBP ∠=︒P MN AD ⊥M BC N MN AD ⊥ABCD MN BC ∴⊥3MN AB ==Rt ABC ∆3tan AB ACB BC ∠==30ACB ∴∠=︒Rt CPN ∆CP x =1sin302PN CP x ∴=⋅︒=3cos30CN CP x =⋅︒3332BN BC CN x ∴=-=-132PM MN PN x =-=-90BPF ∠=︒90FPM BPN PBN ∴∠=︒-∠=∠90PMF BNP ∠=∠=︒PMF BNP ∴∆∆∽, 在中,, , ;②当在右侧时,过作于,交于,如图:由①知:,,,,, , , , 中, 而,是等腰三角形,分三种情况:(一,则,解得(舍去), (二,则,解得(大于6,舍去)或(此时,舍去),(三,则,解得或与重合,舍去), 当在左侧时,如图: ∴13323332x PF PM BP BN x -===-Rt BPF ∆tan PF FBP BP∠=3tan 3FBP ∴∠=30FBP ∴∠=︒F A P MN AD ⊥M BC N PMF BNP ∆∆∽33PF BP =12PN x =333BN =132PM x =-∴3FM PN =36FM x ∴=23333AF AM FM BN FM x ∴=-=-=-Rt PFM ∆22222311()(3)39623PF FM PM x x x x =+=+-=-+6AP AC CP x =-=-AFP ∆)AP AF =263333x x -==33x =-)AP PF =216393x x x -=-+9x =92x =0AF =)AF PF =2213333933x x x -=-+3x =6(x P =A F A此时, 同理可得,综上所述,是等腰三角形,或.13.(2020•武汉模拟)在中,,线段绕点顺时针旋转得到线段,连接.(1)如图1,若,求证:平分;(2)如图2,若,①求的值; ②连接,当的面积为.【答案】(1)见解析;(2)①773,② 【详解】(1)证明:连接, 由题意知,,,是等边三角形,,又,,,,平分;(2)解:①连接,作等边三角形的外接圆,23333AF FM AM x =-=-33x =AFP ∆3x =33x =ABC ∆120ABC ∠=︒AC C 60︒CD BD AB BC =BD ABC ∠2AB BC =BD AC AD 3ABC S ∆=ABCD 93AD 60ACD ∠=︒CA CD =ACD ∴∆CD AD ∴=AB CB =BD BD =()ABD CBD SSS ∴∆≅∆CBD ABD ∴∠=∠BD ∴ABC ∠AD ACD O,,,点在上,,,,在上截取,使,则为等边三角形,,,又,,,,设,则,,过点作于,在中,,, , , 在中, , ,;②如图3,分别过点,作的垂线,垂足分别为,, 设,,,则由①知,,,在与中,,60ADC ∠=︒120ABC ∠=︒180ADC ABC ∴∠+∠=︒∴B O AD CD =∴AD CD =60CBD CAD ∴∠=∠=︒BD BM BM BC =BCM ∆60CMB ∴∠=︒120CMD CBA ∴∠=︒=∠CB CM =BAC BDC ∠=∠()CBA CMD AAS ∴∆≅∆MD AB ∴=1BC BM ==2AB MD ==3BD ∴=C CN BD ⊥N Rt BCN ∆60CBN ∠=︒30BCN ∴∠=︒1122BN BC ∴==33CN =52ND BD BN ∴=-=Rt CND ∆222235()()722CD CN DN =+=+=7AC ∴=∴377BD AC ==B D AC H Q 1CB =2AB =CH x =7AC =7AH x =-Rt BCH ∆Rt BAH ∆2222BC CH AB AH -=-即,解得,,,在中,,,为与的公共底,,,,,故答案为:.22212(7)x x-=--277x=2227211()77BH∴=-=Rt ADQ∆33217DQ AD==∴2127721BHDQ==AC ABC∆ACD∆∴27ABCACDS BHS DQ∆∆==32ABCS∆=734ACDS∆∴=37393244ABCDS∴=+=四边形93414.(2021•越秀区校级二模)如图1,已知正方形的边长为,点在边上,,连接,点、分别为、边上的点,且.(1)求点到的距离;(2)如图2,连接,当、、三点共线时,求的面积;(3)如图3,过点作于点,过点作于点,求的最小值.【答案】(1)1;(2)518;(3)见解析 【详解】(1)如图1中,过点作于.ABCD 42E BC 2BE =BD F G BD CD FG EF ⊥E BD AF A F G FDG ∆E EM BD ⊥M G GN BD ⊥N MN E EH BF ⊥H四边形是正方形,,,. 点到的距离为1.(2)如图2中,过点作的垂线分别交,于点,.,,共线,,,.设,且,,,, ,,即,ABCD 45DBC ∴∠=︒EH BD ⊥2sin 45212EHBE ∴=⋅︒=⨯=∴E BD F AD AD BC M N A F G 90EFG ∠=︒90AFE ∴∠=︒45ADF ∠=︒∴MF MD a ==AD MN =AM FN ∴=NFE AFM AFM MAF ∠+∠=∠+∠NFE MAF ∴∠=∠()AMF FNE AAS ∴∆≅∆MF EN ∴=32a a =-, ,, , .(3)如图3中,设,. 四边形是正方形,,,,,,,,, ,,,, ,,, 322a ∴=//FM DG ∴FM AM DG AD =∴32522242DG =1225DG ∴=112232182525DFG S ∆∴=⨯⨯=2CG y =MF x =ABCD 45CBD CDB ∴∠=∠=︒42CB CD ==28BD BC ∴==22DG y =EM BD ⊥GN BD ⊥90EMF EFG GNF ∴∠=∠=∠=︒4DN NG y ∴==-2BE =1BM EM ∴==7(4)3FN x y x y ∴=---=-+9090MFE GFN GFN FGN ∠+∠=︒∠+∠=︒MFE FGN ∴∠=∠EMF FNG ∴∆∆∽∴EM MF FN GN=, 整理得,△,,解得或,的最小值为,的最小值,观察图象可知,当的值最小时,的值最小,的最小值. 15.(2021•越秀区模拟)如图,四边形为矩形,,,点为边上一动点,过点作交直线于点,连接,.(1)若四边形为菱形,求的长;(2)若的面积为,求的面积; (3)当长为多少时,四边形周长有最小值?并求该最小值.【答案】(1)23;(2)42;(3)见解析 【详解】(1)四边形为菱形,,设, 四边形是矩形,, ,, , ; (2)四边形为矩形,∴134x x y y=-+-2(3)40x y x y -++-=02(3)4(4)0y y ∴+--425y -542y --y ∴25CG ∴852=-CG MN MN 81(942)422=---=ABCD 2AD =2CD =E AD E EF AC ⊥BC F CE AF AECF AE ABF ∆24CDE ∆AE AECF AECF AE EC ∴=AE EC x ==ABCD 90D ∴∠=︒222EC DE CD ∴=+222(2)(2)x x ∴=-+32x ∴=32AE ∴=ABCD,,, , ,即:, , , 在中,, ,, 是的垂直平分线,,由(1)可知:, , , ; (3)如图,过点作交的延长线于点,四边形为矩形,,,四边形是平行四边形,,,,,,在中,, , ,2AB CD ∴==2BC AD ==90B D ∠=∠=︒ABF ∆2∴122AB BF ⨯⨯1222BF =12BF ∴=13222CF BC BF ∴=-=-=Rt ABF ∆222213(2)()22AF AB BF =++AF CF ∴=EF AC ⊥EF ∴AC AE CE ∴=32AE CE ==AF CE ∴=Rt CDE Rt ABF(HL)∴∆≅∆24CDE ABF S S ∆∆∴==C //CM EF AD M ABCD //AD BC ∴90ADC ABC BAC ∠=∠=∠=︒∴CFEM EM CF ∴=CM EF =EF AC ⊥CM AC ∴⊥90ACM ∴∠=︒Rt ACD ∆22222(2)6AC AD CD ++tan CD CM CAD AD AC ∠==∴263CM ∴=, , ,即,,延长至,使,过点作于点,连接,过点作交于点, 在中,,四边形是矩形,,,,,四边形是平行四边形,,, 四边形周长,当、、三点共线时,最小,即四边形周长最小, 此时,,,△,, ,此时,,四边形周长最小值为,故当时,四边形周长最小值为6. 3EF CM ∴==cos ADACCAD AC AM ∠==22(6)32AC AM AD ∴===3AE EM +=3AE CF ∴+=CD C '2DC CD '==C E 'F FG AD ⊥G BG E //EH BG BC H Rt EFG ∆2222(3)(2)1EG EF FG =-=-=ABFG AF BG ∴=FBG FAG ∠=∠//BG EH //EG BH ∴BGEH EH BG AF ∴==CHE FBG ∠=∠AECF 3AE AF CF CE AE EM BG CE AM EH C E C E EH =+++=+++=++'=+'+∴C 'E H C E EH '+AECF C ED CHE FBG FAG ∠'=∠=∠=∠90C DE FGA ∠'=∠=︒C D FG '=∴()C DE FGA AAS '≅∆111()(21)222DE AG AD EG ∴==-=-=13222AE AD DE ∴=-=-=222213()(2)22CE DE CD =+=+=∴AECF 33262+⨯=32AE =AECF16.(2021•花都区三模)为等腰三角形,,点为所在平面内一点.(1)若,①如图1,当点在边上,,求证:; ②如图2,当点在外,,,,连接,求的长;(2)如图3,当点在外,且,以为腰作等腰三角形,,,直线交于点,求证:点是中点.【答案】(1)①见解析;②132;(2)见解析 【详解】证明:(1)①,, ,,, ,, ;②如图2,以,为边作等边,等边,以,为边作等边,等边,连接,过点作,交的延长线于, ABC ∆AB AC =D ABC ∆120BAC ∠=︒D BC BD AD =2DC BD =DABC ∆120ADB ∠=︒2AD =4BD =CD CD D ABC ∆90ADB ∠=︒AD ADE ∆DAE BAC ∠=∠AD AE =DE BC F F BC 120BAC ∠=︒AB AC =30ABC ACB ∴∠=∠=︒BD AD =30ABD BAD ∴∠=∠=︒90DAC ∴∠=︒2CD AD ∴=2CD BD ∴=AB AC ABH ∆ACH ∆AD BD ADE ∆BDG ∆GH E EN DG ⊥GD N和都是等边三角形,,,,,,,,,点,点,点三点共线,,和都是等边三角形,,,,,,,,,,,, , , .(2)连接,如图3所示:,,,, ,, 、、、四点共圆,,,BDG ∆ABH ∆4BD BG DG ∴===AB BH =60DBG ABH BGD ∠=∠=︒=∠ABD GBH ∴∠=∠()ADB HGB SAS ∴∆≅∆2AD GH ∴==120ADB BGH ∠=∠=︒180DGB BGH ∴∠+∠=︒∴G H D 426DH ∴=+=ADE ∆ACH ∆AC AH ∴=2AE AD DE ∠===60DAE CAH EDA ∠=∠=∠=︒DAC EAH ∴∠=∠()DAC EAH SAS ∴∆≅∆DC EH ∴=60BDG EDN ∠=∠=︒EN DG ⊥30DEN ∴∠=︒112ND DE ∴==33NE DN =7HN DH DN ∴=+=22349213EH EN NH ∴=+=+=213CD EH ∴==AF DAE BAC ∠=∠AD AE =AB AC =∴AD AE AB AC=ADE ABC ∴∆∆∽ADE ABC ∴∠=∠A ∴D B F 1801809090BFA ADB ∴∠=︒-∠=︒-︒=︒AF BC ∴⊥,,点是中点.17.(2021•越秀区校级四模)在一次数学探究活动中,李老师设计了一份活动单:已知线段,使用作图工具作,尝试操作后思考:(Ⅰ)这样的点唯一吗?(Ⅱ)点的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点的位置不唯一,它在以为弦的圆弧上(点、除外),,小华同学画出了符合要求的一条圆弧(如图.(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为,请你利用图1证明.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形的边长,,点在直线的左侧,且.①求线段长的最小值;②若,求线段的长.【答案】(1)①2,②;(2)见解析;(3;②【详解】(1)解:①设为圆心,连接,,,,又,是等边三角形,,即半径为2,故答案为:2;AB AC=BF CF∴=∴F BC2BC=30BAC∠=︒AAA BCB C⋯1)ABC∆A'30BAC∠'>︒ABCD 2AB=3BC=P CD4tan3DPC∠=PB23PCD PADS S∆∆=PD32+975-3272244PD DF PF∴=+=+=O BO CO30BCA∠=︒60BOC∴∠=︒OB OC=OBC∴∆2OB OC BC∴===②以为底边,,当点到的距离最大时,的面积最大,如图,过点作的垂线,垂足为,延长,交圆于,以为底,则当与重合时,的面积最大,,,,,的最大面积为, 故答案为:;(2)证明:如图,延长,交圆于点,连接,点在圆上,,,,,即;(3)解:①如图,当点在上,且时, ,,, ,为定值, 连接,设点为中点,以点为圆心,为半径画圆, ABC ∆BC 2BC =∴A BC ABC ∆O BC E EO D BC A D ABC ∆1BE CE ∴==2DO BO ==223OE BO BE ∴=-=32DE ∴=+ABC ∴∆12(32)322⨯⨯+32+BA 'D CD D BDC BAC ∴∠=∠BAC BDC ACD ∠'=∠+∠'BAC BDC ∴∠'>∠BAC BAC ∴∠'>∠30BAC ∠'>︒P BC 32PC =90PCD ∠=︒2AB CD ==3AD BC ==4tan 3CD DPC PC ∴∠==PD Q PD Q 12PD当点在优弧上时,,连接,与圆交于, 此时即为的最小值,过点作,垂足为,点是中点,点为中点,即,,, , , 圆的半径为, ,即;②,,, , 中边上的高中边上的高,即点到的距离和点到的距离相等,点在的平分线上, 如图,过点作,垂足为,平分,, 为等腰直角三角形,又,,∴P CPD 4tan 3DPC ∠=BQ Q P 'BP 'BP Q QE BE ⊥E Q PD ∴E PC 112QE CD ==1324PE CE PC ===39344BE BC CE ∴=-=-=22974BQ BE QE ∴=+=2252PD CD PC =+=∴Q 155224⨯=975975444BP BQ P Q -∴'=-'=-=BP 975-3AD =2CD =23PCD PAD S S ∆∆=∴23CD AD =PAD ∴∆AD PCD =∆CD P AD P CD ∴P ADC ∠C CF PD ⊥F PD ADC ∠45ADP CDP ∴∠=∠=︒CDF ∴∆2CD =2CF DF ∴==, , . 18.(2020•广州一模)如图①,在四边形中,于点,,点为中点,为线段上的点,且(1)求证:平分;(2)若,连接,当四边形为平行四边形时,求线段的长;(3)若点为的中点,连接、(如图②,求证:.【答案】(1)见解析;(2)510;(3)见解析 【详解】(1)证明:如图①,,, 是的中点,,在中,,在中,, ,,是等腰直角三角形,,,,即平分; (2)解:设, 四边形是平行四边形, ,4tan 3CF DPC PF ∠==324PF ∴=3272244PD DF PF ∴=+=+=ABCD AC BD ⊥E AB AC BD ==M BC N AM MB MN =BN ABE ∠1BD =DN DNBC BC F AB FN FM )MFN BDC ∠=∠AB AC =ABC ACB ∴∠=∠M BC AM BC ∴⊥Rt ABM ∆90MAB ABC ∠+∠=︒Rt CBE ∆90EBC ACB ∠+∠=︒MAB EBC ∴∠=∠MB MN =MBN ∴∆45MNB MBN ∴∠=∠=︒45EBC NBE MAB ABN MNB ∠+∠=∠+∠=∠=︒NBE ABN ∴∠=∠BN ABE ∠BM CM MN a ===DNBC 2DN BC a ∴==在和中,,,,在中,由,可得:,解得:(负值舍去), ; (3)解:是的中点,在中,,,,,,即, ,.19.(2020•荔湾区一模)如图,在矩形中,,,点是边上的一动点,连接. (1)若将沿折叠,点落在矩形的对角线上点处,试求的长;(2)点运动到某一时刻,过点作直线交于点,将与分别沿与折叠,点与点分别落在点,处,若,,三点恰好在同一直线上,且,试求此时的长;(3)当点运动到边的中点处时,过点作直线交于点,将与分别沿与折叠,点与点重合于点处,请直接写出到的距离.ABN ∆DBN ∆AB DB NBE ABN BN BN =⎧⎪∠=∠⎨⎪=⎩()ABN DBN SAS ∴∆≅∆2AN DN a ∴==Rt ABM ∆222AM MB AB +=22(2)1a a a ++=1010a =±1025BC a ∴==F AB ∴Rt MAB ∆MF AF BF ==MAB FMN ∴∠=∠MAB CBD ∠=∠FMN CBD ∴∠=∠12MF MN AB BC ==MF MN BD BC=MFN BDC ∴∆∆∽MFN BDC ∴∠=∠ABCD 4AB =3BC =P AB DP DAP ∆DP A A 'AP P P PE BC E DAP ∆PBE ∆DP PE A B A 'B 'P A 'B '2A B ''=AP P AB P PG BC G DAP ∆PBG ∆DP PG A B F F BC【答案】(1)或;;(2)1或3;;(3)【详解】(1)四边形是矩形,,,,分两种情况:①当点落在对角线上时,如图1所示:设,在中,,,由折叠的性质得:,,,,,,在中,,即:,解得:, ; ②当点落在对角线上时,如图2所示: 由翻折性质可知:,,,, ,,, , 综上所述:的长为或; (2)①如图3所示:设,则,由折叠的性质得:,,,,解得:,;32941613ABCD 4AB CD ∴==3AD BC ==90ABC BCD CDA BAD ∠=∠=∠=∠=︒A BD AP x =Rt ADB ∆90BAD ∠=︒2222435BD AB AD ∴=+=+=AP PA x ='=3AD DA ='=90DA P BAD ∠'=∠=︒532BA BD DA ∴'=-'=-=90BA P ∠'=︒4BP AB AP x =-=-Rt BPA ∆'222BP PA BA ='+'222(4)2x x -=+32x =32AP ∴=A AC PD AC ⊥90PAC APD ∴∠+∠=︒90BAC BCA ∠+∠=︒APD BCA ∴∠=∠90DAP ABC ∠=∠=︒DAP ABC ∴∆∆∽∴AD AB AP BC=33944AD BC AP AB ⋅⨯∴===AP 3294AP x =4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=42x x ∴--=1x =1PA ∴=②如图4所示:设,则,由折叠的性质得:,,,,,;综上所述,的长为1或3;(3)作于,如图5所示:则的长就是到的距离,由翻折的性质得:,,、、共线,设,则,,在中,,即:,解得, , ,, , , , 到的距离为.APx=4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=(4)2x x ∴--=3x ∴=3PA ∴=PA FH CD ⊥H CH F BC 3AD DF ==BG FG =G F D BG FG x ==3DG DF FG x =+=+3CG BC BG x =-=-Rt GCD ∆222DG CD CG =+222(3)4(3)x x +=+-43x =413333DG ∴=+=//FH CG ∴DH DF CD DG=∴31343DH =3613DH ∴=361641313CH ∴=-=F ∴BC 161320.(2020•越秀区一模)如图所示,四边形为平行四边形,,,,且,点为直线上一动点,将线段绕点逆时针旋转得到线段,连接.(1)求平行四边形的面积;(2)当点、、三点共线时,设与相交于点,求线段的长;(3)求线段的长度的最小值.ABCD 13AD =25AB =DAB α∠=5cos 13α=E CD EA E αEF CF ABCD C B F EF AB G BG CF【答案】(1)300;(2);(3 【详解】解(1)如图1,作于点,将线段绕点逆时针旋转得到线段, ,,在中, ,且, ,, ; (2)如图2,延长至,作,,,过点作于点,由(1)知,,, 11722BG ∴=6613DK AB ⊥K EA E αEF AEF α∴∠=AE EF =Rt DAK ∆5cos cos 13AK DAK AD α∠===13AD =5AK ∴=222213512DK AD AK ∴=-=-=2512300ABCD S AB DK ∴=⨯=⨯=平行四边形CD H AHD α∠=AHD ADH α∠=∠=13AH AD ∴==A AM DH ⊥M 12AM =225DM AD AM ∴=-=10DH ∴=。

2023年广州中考数学压轴题回忆版

2023年广州中考数学压轴题回忆版

2023年广州中考数学压轴题回忆版一、题目回忆1. 下列各组数据中,哪一组数据的方差最大?A. 1,2,3,4,5B. 6,7,9,10,11C. 21,23,25,27,29D. 33,35,37,39,412. 已知直角三角形ABC中,∠B=90°,AB=3,BC=4,则AC=?A. 5B. 6C. 7D. 83. 一张半径为5cm的圆被一块长为12cm、宽为16cm的矩形纸片的一个长边所切割,则切割后圆的面积为多少?A. 10πB. 12πC. 15πD. 16π4. 已知集合A={3,4,5,6},集合B={4,5,6,7},则A∩B=?A. {4,5,6}B. {4,5,6,7}C. {3,4,5,6,7}D. 空集5. 下列函数中,哪一个是奇函数?A. y=x^3+2x^2B. y=3x^2+4xC. y=x^4+x^2D. y=3x^3+5x二、解题思路1. 题目一是考察对方差计算的理解和运用。

方差是指一组数据与其平均数之差的平方和的平均数,用于衡量数据的分散程度。

在选择答案时,需要计算每组数据的方差并做对比,选择分散程度最大的一组。

2. 题目二是利用勾股定理求解直角三角形的边长。

根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

结合AB和BC的已知条件,可以求得AC的长度。

3. 题目三是利用几何图形的面积计算。

首先确定圆的面积,然后根据题目所给的矩形纸片的长度和宽度,计算出被矩形纸片遮盖的圆形面积,最后利用减法得出切割后的圆的面积。

4. 题目四是利用集合的交集概念进行计算。

需要将两个集合进行交集运算,得到同时属于A和B的元素的集合。

5. 题目五是判断函数的奇偶性。

奇函数是指当自变量x变为-x时,函数值与原来的函数值互为相反数的函数。

需要对每个函数进行奇函数的特性判断,得出最终答案。

三、解题方法1. 方差的计算方法是先求出一组数据的平均数,然后将每个数据与平均数的差的平方相加,再求平均数,即可得到方差。

近年中考数学压轴题大集合(一)

近年中考数学压轴题大集合(一)

中考数学压轴题大集合(一)一、函数与几何综合的压轴题1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.[解] (1)(本小题介绍二种方法,供参考)方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ''''==又∵DO ′+BO ′=DB ∴1EO EO AB DC''+= ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2316EO DO DB AB ''=⨯=⨯=∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =⎧⎨=-⎩∴E 点坐标(0,-2),即E 点在y 轴上(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)图①图②E (0,-2)三点,得方程组42632a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考)由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

中考数学临考题号押广东卷24题(几何综合)(解析版)

中考数学临考题号押广东卷24题(几何综合)(解析版)
∴DF=FB= ,
∴∠FDB=∠FBD,
∴tan∠FDB=tan∠FBD,
∴ ,
∵∠A=45°,
∴ 是等腰直角三角形,
∴GH=AH,
∴ ,此时,H、D重合,
∴设AD=3x,BD=2x,则AB=5x,AC=BC=5x÷ = ,
∴GH=AH=3x,AG=3 x
∴CG=3 x- = ,
【小问1详解】
∵BC是直径,
∴∠BAC=∠BDC=90°,
∵AD平方∠BAC,
∴∠BAD=∠DAC=45°,
∴BD=DC,且∠DBC=∠DAC=∠DAB=∠DCB=45°
∵BD= ,
∴在等腰Rt△BDC中,BC= BD=4,DC=BD= ,
∵在Rt△BAC中,AB=2,BC=4,
∴利用勾股定理可得AC= ,
(3)连接OD,根据(1)和(2)中的结论可得出∠FBD=75°=∠DEC,再利用 和BD=CD,可得 ,即有∠BDF=∠ECD=45°,则可得∠ODF=90°,即OD⊥DF,可证得DF是⊙O的切线;根据∠BAD=∠BDF=45°,∠F=∠F,证得 ,则有 ,即可找到BF、FD、FA之间的关系,根据 ,即可求出DF.
【分析】(1)把C(1,4)代入y= 求出k=4,把(4,m)代入y= 求出m即可,将A、C两点坐标代入 ,获得直线解析式,然后利用 ,代入即可求解;
(2)设平移后的解析式为 ,而当直线与反比例函数只有一个交点时,两者相切,联立平移后的直线和反比例函数解析式,形成的新的方程的判别式为0,代入数值即可求解;
∴在Rt△AHD中,∠HAD=∠ADH=45°,即HA=HD,
设HD=a,则HA=a,HB=HA-AB=a-2,
在Rt△HBD中,利用勾股定理,

广东数学中考压轴题汇编

广东数学中考压轴题汇编

16. 如图,Rt △ABC 的直角边BC 在x 轴上,直线3232-=x y 经 过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例 函数xky =图像上,则k = . 23.如图,在平面直角坐标系中,直线2+=x y 与坐标轴交于A 、B 两点,点A 在x 轴上, 点B 在y 轴上,C 点的坐标为(1,0),抛物线c bx ax y ++=2经过点A 、B 、C . (1)求该抛物线的解析式;(2)根据图像直接写出不等式2)1(2>+-+c x b ax 的解集;(3)点P 是抛物线上一动点,且在直线AB 上方,过点P 作AB 的 垂线段,垂足为Q 点.当PQ=22时,求P 点坐标.24.如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE=∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB=4,AC=6,求sin ∠ACB 的值; (3)若32=FO DF ,求证:CD=DH .25. 如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE=PC ,过点P 作 PF ⊥OP 且PF=PO (点F 在第一象限),连结FD 、BE 、BF ,设OP=t . (1)直接写出点E 的坐标(用含t 的代数式表示): ; (2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.10.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )23. 如图所示,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2)求证:EG 2=GF×AF;,则矩形ABCD 的 (第23题图)24. 如图所示,△OAB 中,OA=OB=10,∠AOB=80°,以点O 为圆心,6为半径的优弧MN ⌒分别交OA 、OB 于点M 、N. (1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′. 求证:AP = BP ′; (2)点T 在左半弧上,若AT 与弧MN ⌒相切于点T ,求点T 到OA 的距离; (3)设点Q 在优弧MN ⌒上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.25. 如图所示,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点 (点A 在点B 左侧),与y 轴交于点C(0,-3),对称轴是直线x =1, 直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式;(2)求直线BC 的函数表达式; (3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P在第三象限.①当线段PQ 34AB =时,求tan∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.24.如图,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)延长DC ,FP 交于点G ,连接OE 并延长交直线DC 于H ,问是否存在点P ,使△EFO ∽△EHG (E ,F ,O 分别与E ,H ,G 为对应点),如果存在,试求(2)中x 和y 的值,如果不存在,请说明理由.25.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y=x ﹣2交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求证:△ABC 是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作MN⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.23.如图,已知一次函数y=23x ﹣3与反比例函数xky =的图象相交于点A (4,n ),与x 轴相交于点B .(1) 填空:n 的值为 ,k 的值为 ; (2) 以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3) 考察反比函数xky =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.24.如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作DE⊥AC 于E . (1)求证:AB=AC ;(2)求证:DE 为⊙O 的切线; (3)若AB=13,sinB=,求CE 的长.25.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA⊥NA,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.24. 如图,⊙O 是四边形ABCD 的外接圆,AC 是直径,分别延长AB 、CD 相交于点E ,AC=AE ,过点D 作DF∥BC 于点F. (1)求证:DF 是⊙O 的切线; (2)求证:AC·DF = AD·DE;(3)若M 是弧AB 的中点,连接MD 交弦AB 于点H , 若AB :AF=3:5,证明:AH = AF.25. 已知,把Rt △ABC 和Rt △DEF 按图1摆放(点C 与E 重合),点B ,C ,E ,F 始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10.如图2,△DEF 从图1位置出发,以每秒1个单位的速度沿CB 向△ABC 匀速运动,同时,点P 从点A 出发,沿AB 以每秒1个单位的速度向点B 匀速运动,AC 与△DEF 的直角边相交于点Q ,当E 到达终点B 时,△DEF 与点P 同时停止运动,连接PQ ,设移动的时间为t (s ).解答下列问题: (1)当D 在AC 上时,求t 的值;(2)连接PE ,设四边形APEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在P 点运动过程中,是否存在点P ,使△APQ 为等腰三角形?若存在,求出t 的值;若不存在,说明理由.22、正方形ABCD 边长为4,M,N 分别是BC ,CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直。

中考数学压轴题100题精选(附答案解析)

中考数学压轴题100题精选(附答案解析)

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学压轴题100题精选含答案【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图16【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D(8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

中考数学压轴题100题(附答案)

中考数学压轴题100题(附答案)

中考数学压轴题100题(附答案)一、中考压轴题1.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.2.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.3.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.4.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.7.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.9.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.10.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.11.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.12.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.13.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.14.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.17.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.18.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.20.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.23.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.(2)因为Q=﹣10=30万平方米,P=25x=75万平方米,所以市场新房均价上涨1千元则该市年新房销售总额减少了100000﹣30×(2000+1000)=10000万元,年新房积压面积增加了45万平方米.建议:对于新房的销售应订一个合理的价格,不能过高,只有考虑成本与人们的购买力才能使利润最大.【点评】主要考查了函数在实际问题中的应用.解题的关键是理解题意能准确的找到函数中对应的变量的值,根据题意求解.24.已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB 与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.。

广东省佛山市,2020~2021年中考数学压轴题精选解析

广东省佛山市,2020~2021年中考数学压轴题精选解析

广东省佛山市,2020~2021年中考数学压轴题精选解析广东省佛山市中考数学压轴题精选~~第1题~~(2020台州.中考模拟) 如图,在矩形ABCD 中,CD =3cm ,BC =4cm ,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,直线l 垂直BC ,分别交BD 、BC 于点P 、Q .直线l 从AB 出发,以每秒1cm 的速度沿BC 方向匀速运动到CD 为止;点M 沿线段D A 以每秒1cm 的速度由点D 向点A 匀速运动,到点A 为止,直线1与点M 同时出发,设运动时间为t 秒(t >0).(1) 线段CN =;(2) 连接PM 和QN ,当四边形MPQN 为平行四边形时,求t 的值;(3) 在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?~~第2题~~(2020顺德.中考模拟) 如图,直线l :y =﹣m 与y 轴交于点A ,直线a :y =x+m 与y 轴交于点B ,抛物线y =x +mx 的顶点为C ,且与x 轴左交点为D (其中m >0).(1) 当AB =12时,在抛物线的对称轴上求一点P 使得△BOP 的周长最小;(2) 当点C 在直线l 上方时,求点C 到直线l 距离的最大值;(3) 若把横坐标、纵坐标都是整数的点称为“整点”.当m =2020时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.~~第3题~~(2019顺德.中考模拟) 如图,点O 是平面直角坐标系的原点,点A (,3),AC ⊥OA 与x 轴的交点为C .动点M 以每秒个单位长度由点A 向点O 运动.同时,动点N 以每秒3个单位长度由点O 向点C 运动,当一动点先到终点时,另一动点立即停止运动.(1) 写出∠AOC 的值;(2) 用t 表示出四边形AMNC 的面积;(3) 求点P 的坐标,使得以O 、N 、M 、P 为顶点的四边形是特殊的平行四边形?~~第4题~~2(2019禅城.中考模拟) 如图,等腰直角△OAB的斜边OA在坐标轴上,顶点B的坐标为(﹣2,2).点P从点A出发,以每秒1个单位的速度沿x轴向点O运动,点Q从点O同时出发,以相同的速度沿x轴的正方向运动,当点P到达点O时,点P、点Q同时停止运动.连接BP,过P点作∠BPC=45°,射线PC与y轴相交于点C,过点Q作平行于y轴的直线l,连接BC 并延长与直线l相交于点D,设点P运动的时间为t(s).(1)点P的坐标为(用t表示);(2)当t为何值,△PBE为等腰三角形?(3)在点P运动过程中,判断的值是否发生变化?请说明理由.~~第5题~~(2019南海.中考模拟) 如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3 )、B (9,5 ),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.~~第6题~~(2019禅城.中考模拟) 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?~~第7题~~(2019佛山.中考模拟) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形 .是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.~~第8题~~(2018南海.中考模拟) 如图,抛物线与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C ,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.~~第9题~~(2017顺德.中考模拟) 如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.~~第10题~~(2015佛山.中考真卷) 如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接B E、BF,使它们分别与AO相交于点G、H.(1)(1)求EG:BG的值;(2)(2)求证:AG=OG;(3)(3)设AG=a,GH=b,HO=c,求a:b:c的值.广东省佛山市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:答案:解析:答案:解析:答案:解析:~~第9题~~答案:解析:答案:解析:。

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。

8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。

是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。

的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。

中考数学压轴题含答案

中考数学压轴题含答案

中考数学压轴题含答案一、选择题1、下列图形中,既是轴对称图形,又是中心对称图形的是()A.菱形B.平行四边形C.矩形(答案:C)2、如果一个三角形的三条边的平方相等,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形(答案:A)3、下列说法正确的是()A.所有的质数都是奇数B.所有的偶数都是合数C.一个数的因数一定比它的倍数小D.自然数一定是正数(答案:A)二、填空题1、若a-b=2,a+b=7,则a²-b²=(答案:14)2、我们学过的数有整数和分数,整数的运算律在分数运算中(答案:同样适用)。

3、一个长方形的周长是20cm,长和宽的比是3:2,则长方形的面积是(答案:60平方厘米)。

三、解答题1、一个圆柱体底面半径为r,高为h,它的体积是多少?(答案:πr²h)2、有一块三角形的土地,底边长为120米,高为90米,这块土地的面积是多少?(答案:5400平方米)3、对于一个给定的整数n,如果它是3的倍数,那么我们就称它为“三的倍数”,否则我们就称它为“非三的倍数”。

现在有一个整数n,它是“三的倍数”,我们可以得出哪些结论?(答案:n+1、n+2、n+3、...、2n都是“三的倍数”,因为它们都可以被3整除。

)中考数学压轴题100题及答案在中考数学考试中,压轴题往往是最具挑战性和最能检验考生数学能力的题目。

为了帮助同学们更好地理解和掌握中考数学的压轴题,本文将分享100道经典的中考数学压轴题及其答案。

一、选择题1、在一个等边三角形中,边长为6,下列哪个选项的面积最接近这个等边三角形的面积?A. 20B. 25C. 30D. 35答案:B解析:等边三角形的面积可以通过计算得出,边长为6的等边三角形的面积为:436293约为28.2,因此选项B最接近。

2、如果一个多边形的内角和是外角和的2倍,那么这个多边形的边数是多少?A. 4B. 6C. 8D. 10答案:C解析:根据多边形的内角和公式和外角和为360度,可列出方程求解。

2024年中考数学终极押题密卷(广东卷)数学试题及答案

2024年中考数学终极押题密卷(广东卷)数学试题及答案

广东省(统考新题型)2024年中考(新题型)猜题卷02数 学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的考生信息. 3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔描黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4−B .2−C .2D .42.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨B .101.0210×吨C .1010210×吨D .70.10210×吨3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .325a a a +=B .325a a a ⋅=C .()22242a a a +=++ D .()235a a −=6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .347.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×−C .300003000045003x x =×− D .300003000050034x x =− 10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm +第二部分(非选择题 共75分)二、填空题(共15分) 11.因式分解:2a 2﹣8= .12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 . 13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .15.如图,在正方形ABCD中,4AB=,点E是CD边的中点,ABE∠的平分线交AD于点F,连接EF,则tan DEF∠的值为.三、解答题(共75分)16.(511)2sin605π−−−°+.17.(5分)解方程组:7 22 x yx y−=+=①②18.(5分)如图,已知B C∠=∠,AD平分BAC∠,求证:ABD ACD△≌△.19.(5分)如图,点A是∠MON边OM上一点,AE//ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE的大小为________.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形ABCD ∽菱形AEFG ,如图3,5AD =,6AC =,AG 平分DAC ∠,点P 在射线AG 上,在射线AF 上截取AQ ,使得35AQ AP =,连接PQ ,QC ,当4tan 3PQC ∠=时,直接写出AP 的长.广东省(统考新题型)2024年中考(新题型)猜题卷02数 学全解全析一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4− B .2− C .2 D .4【答案】B【分析】本题考查了有理数的加法运算,理解有理数加法运算法则,根据题意列出算式计算即可.【详解】解:比3−大1的数为:312−+=−, 故选:B .2.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨 B .101.0210×吨 C .1010210×吨 D .70.10210×吨【答案】A【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:81.021.0210=×亿, 故选:A .3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形及中心对称图形,轴对称图形是沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形是绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意,B.是中心对称图形,不是轴对称图形,故该选项不符合题意,C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意,D.既是轴对称图形又是中心对称图形,故该选项符合题意,故选:D.4.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的方向:从正面看所得到的图形.根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选B.5.下列计算正确的是()A.325+=B.325a a a⋅=a a aC.()22+=++D.()235242a a a−=a a【答案】B【分析】本题考查了整式的混合运算,掌握整式的运算法则是解决本题的关键.利用整式的运算法则计算每一个,根据计算结果得结论.【详解】解:32a a不能合并,故选项A计算错误;,325⋅=,故选项B计算正确;a a a()22+=++,故选项C计算错误;244a a a()236a a −=,故选项D 计算错误;故选:B .6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .34【答案】A【分析】本题主要考查了树状图法或列表法求解概率.先列表得到所有等可能性的结果数,再找到他们选择的诗人相同的结果数,最后依据概率计算公式求解即可.【详解】解:王维、柳宗元、白居易、王勃四位唐代山西诗人分别用A 、B 、C 、D 表示,列表如下: 小明小颖A B C DA(),A A (),B A (),C A (),D AB(),A B (),B B (),C B (),D BC(),A C (),B C (),C C (),D CD(),A D (),B D (),B D (),D D由表格可知,一共有16种等可能性的结果数,其中他们选择的诗人相同的结果数有4种, ∴他们选择的诗人相同的概率为41164=, 故选:A .7.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−【答案】C 【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:426231x x −< +≥①② 解不等式①得:2x <,解不等式②得:1x ≥−,∴不等式组的解集为12x −≤<,故选:C .8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想【答案】D 【分析】本题考查了平面直角坐标系,根据平面直角坐标系使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题,即可确定答案.【详解】解:用代数的方法研究几何问题,可知这种研究方法体现了数形结合思想, 故选:D .9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×− C .300003000045003x x =×− D .300003000050034x x =− 【答案】D【分析】本题考查了列分式方程;设购进甲种品牌的自行车x 辆,则购进乙种品牌的自行车34x 辆,用总价除以单价表示出购进自行车的数量,根据两种自行车的数量相等列出方程求解即可.【详解】设购进甲种品牌的自行车x 辆,依题意得300003000050034x x =− 故选:D .10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm + 【答案】C 【分析】此题考查了矩形的性质,三角形内角和定理,过中间三角形的三个顶点分别向绿化带作垂线,首先根据题意得到1m AD BC MC GH GF DE ======,求出扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,然后利用绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形求解即可.【详解】如图所示,过中间三角形的三个顶点分别向绿化带作垂线,根据题意得,1m ADBC MC GH GF DE ======,四边形ADCB ,DEFG ,GHMC 是矩形 ∴90ADC BCD MCG CGH DGF GDE ∠=∠=∠=∠=∠=∠=° ∴180AEDCDG ∠=°−∠,180BCM DCG ∠=°−∠,180FGH DGC ∠=°−∠ ∵180∠+∠+∠=°CDG DCG DGC∴360BCM ADE HGF∠+∠+∠=° ∴扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,∴绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形2π1AD DC MC DC DE DC =⋅+⋅+⋅+×()2215π15πm =×+×=+. 故选:C .二、填空题(共15分)11.因式分解:2a 2﹣8= .【答案】2(a +2)(a -2).【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 .【答案】3−【分析】此题主要考查了解一元二次方程,以及根的定义.先把2x =代入原方程,求出k 的值,进而再将k 的值代入原方程,然后解方程即可求出方程的另一个根.【详解】解:∵2x =是方程260x kx +−=的一个根, ∴22260k +−=, 解得:1k =,将1k =代入原方程得:260x x +−=, 解得:122,3x x ==−,∴方程的另一个根为3−.故答案为:3−.13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .【答案】()4,3−−【分析】本题考查了作图—位似变换,对应顶点所在直线相交于一点即为位似中心,确定位似中心是解题的关键.连接'A A ,'B B 并延长交于一点,交点即为所求.【详解】解:如图,连接'A A ,'B B 并延长交于一点P ,点P 即为所求.由网格图形可知,点P 的坐标为()4,3−−. 故答案为:()4,3−−.14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .【答案】73/123【分析】本题主要考查了切线的性质,勾股定理,如图所示,连接OC ,设O 的半径为r ,则OC OB r ==,3OD r =+,由切线的性质可得90OCD ∠=°,则由勾股定理可得()22234r r +=+,解方程即可得到答案.【详解】解:如图所示,连接OC ,设O 的半径为r ,则OCOB r ==, ∴3OD r =+,∵CD 是O 的切线,∴90OCD ∠=°, 在Rt COD 中,由勾股定理得222OD OC CD =+,∴()22234r r +=+, 解得76r =, ∴O 的直径为723r =, 故答案为:73.15.如图,在正方形ABCD 中,4AB =,点E 是CD 边的中点,ABE ∠的平分线交AD 于点F ,连接EF ,则tan DEF ∠的值为 .【答案】33+【分析】本题考查正方形的性质,角平分线的性质定理,勾股定理,全等三角形的判定与性质,求角的正切值等,作FG BE ⊥于点G ,由角平分线的性质可得AF FG =,再证Rt BGF ≌()Rt HL BAF ,推出4BG AB ==,AF GF =,设AF GF x ==,用勾股定理解Rt EDF 和Rt EGF ,求出x 的值,再根据tan DF DEF DE∠=即可求解.【详解】解:如图,作FG BE ⊥于点G , 正方形ABCD 中,4AB =,点E 是CD 边的中点,∴90A C D ∠=∠=∠=°,4CD BC AD AB ====, 122CE DE CD ===, ∴BEBF 平分ABE ∠,FG BE ⊥,FA AB ⊥,∴AF FG =,在Rt BAF △和Rt BGF 中,AF FG BF BF = =, ∴Rt BGF ≌()Rt HL BAF ,∴4BG AB ==,AF GF =,∴4GE BE BG =−=,设AFGF x ==,则4FD AD AF x =−=−, 在Rt EDF 中,222DE DF EF +=,在Rt EGF 中,222EG FG EF +=, ∴2222EG FG DE DF +=+,即()()2222424x x +=+−, 解得2x =,∴()426FD =−=−∴tan 3DF DEF DE ∠=故答案为:3三、解答题(共75分)16.(5101)2sin 605π− −−°+ . 【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式125=−− 4=. 【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.(5分)解方程组:722x y x y −=+=①② 【答案】34x y = =− 【分析】本题考查的是二元一次方程组的解法,掌握解法步骤是解本题的关键,直接利用加减消元法解方程组即可.【详解】解:722x y x y −= +=①②, ①+②得39x =,解得3x =.将3x =代入②,得4y =−.所以 34x y = =− ,. 18.(5分)如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案. 【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠ ∠=∠ =, ()AAS ABD ACD ∴ ≌.19.(5分)如图,点A 是∠MON 边OM 上一点,AE//ON .(1)尺规作图:作∠MON 的角平分线OB ,交AE 于点B (保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE 的大小为________.【答案】(1)见解析;(2)156°【分析】(1)利用基本作图作OB 平分∠MON ;(2)先利用平行线的性质得到∠MON =∠MAE =48°,再根据角平分线的定义得到∠NOB =24°,接着根据平行线的性质得到∠OBA 的度数,然后利用邻补角的定义计算∠OBE 的度数.【详解】解:(1)如图,OB 为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=12∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°-∠OBA=180°-24°=156°.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.【答案】第一家网店每支签字笔的价格是10元【分析】本题主要考查了分式方程的应用等知识点,首先设第一家网店每支签字笔的单价是x 元,现在每支签字笔的价格是1.5x元,即可根据题意列出方程,解此分式方程即可求得答案,注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【详解】解:设第一家网店每支签字笔的单价是x元,现在每支签字笔的价格是1.5x元,依题意得:606021.5x x=+,解得:10x=,经检验:10x=是原方程的解,答:第一家网店每支签字笔的价格是10元.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.【答案】(1)40,54°(2)画图见解析(3)不少于1.5小时的学生有330人【分析】(1)根据统计图中的数据可以求得本次调查的学生数;根据A组的学生人数以及总人数即可求得A组对应的圆心角的度数;(2)求出C组的学生人数,补全条形统计图即可;(3)利用用样本估计总体的计算方法列式计算即可求得.【详解】(1)解:本次调查的学生人数为:1230%=40÷(人);A组(0.5小时)在扇形统计图中的圆心角α的大小为:6360=54°×°,40故答案为:40,54°;(2)解:C 组的人数为:40-6-12-8=14(人), 补全条形统计图如下:(3)解:14860033040+×=(人) 答:估计该校九年级每天自主学习时间不少于1.5小时的学生人数有330人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)【答案】653m【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,可得BF DE DF BE ==,,设m AE x =,则()320m BF DE x ==−,解Rt ABE △得到 2.7m AB x ≈,解Rt BCF 得到()6402m BC x =−,进而得到2.76402x x =−,解方程得到136m 184m AE BF ==,,再解直角三角形求出BE CF ,的长即可得到答案.【详解】解:如图所示,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,∴BF DEDF BE ==,, 设m AE x =,则()320m BF DE AD AE x ==−=−, 在Rt ABE △中, 2.7m sin AEABx ABE =≈∠,在Rt BCF 中,()6402m sin BF BC x C==−,∵AB BC =,∴2.76402x x =−, 解得136x ≈,∴136m184m AE BF ==,, 在Rt ABE △中,136340m tan 0.4AE BE ABE =≈=∠,在Rt BCF 中,313m tan BFCF C=≈, ∴653m CD DF CF =+=, ∴CD 的长约为653m .23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.【答案】(1)216k = (2)2x >【分析】本题考查反比例函数的图象与性质,全等三角形的判定与性质,解题的关键是灵活运用所学知识解决问题,(1)过点A 作y 轴的垂线,垂足为D ,证明ADC BOC ≌进而求出结论; (2)先求出()2,8A ,根据图象写出结论即可. 【详解】(1)解:过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC AC ∴=,又90BOC ADC ∠=∠=°;BCO ACD ∠=∠, ∴ADC BOC ≌, ∴DC OC =,设(),A x y ,点A 在第一象限, 则111142222x y x y ⋅=⋅=,即16xy =, ∴216k =.(2)因为2OB =, 所以()2,0B −,由ADC BOC ≌,得2ADOB ==, 所以,()2,8A .当120y y >>时,x 的取值范围是:2x >. 24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C 两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.【答案】(1)()212531616y x =−−+ (2)小华此次击球不能飞过球网 (3)小华击球高度取值范围大于1916m 小于12731024m【分析】本题考查了二次函数的实际应用,待定系数法求解析式,相似三角形的判定与应用,熟练掌握知识点是解题的关键. (1)待定系数法求解析式即可;(2)连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,由ANM BPM △△∽求得M 的坐标为()5,0,再代入函数解析式即可;(3)设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q ,可求67,08Q,将()5,1.5,67,08分别代入,得到174k =,218491024k =,再将将0x =分别代入即可.【详解】(1)解:根据题意,得()0,1D ,()3,C b ,()8,0B , 设此抛物线的解析式为()23y a x b =−+, 将点()0,1D ,()8,0B 代入,得19,025,a b a b =+=+解得1,1625.16a b=−=所以此抛物线的解析式为()212531616y x =−−+. (2)解:连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,如图所示.根据题意,得8AB =,4AN =, 2.4BP . ∵,BP l AN l ⊥⊥, ∴BP AN , ∴ANM BPM △△∽,452.43AM AN BM BP ∴===, 558AM AB ∴, 即点M 的坐标为()5,0.将点()5,0M 代入()212531616y x =−−+,得2116y =.2124 1.51616<=, ∴小华此次击球不能飞过球网.(3)解:∵小华仍从点A 处发球,且击球时的用力方向和大小不变,∴设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q .场地内边线距离场地中线的距离为6.7m,∴由(2)同理可得67,08Q.要求球越过球网且落在球场内边线内,∴将()5,1.5,67,08分别代入()21316y x k =−−+,得174k =,218491024k =.将0x =分别代入()211316y x k =−−+,()221316y x k =−−+, 得11916y =,212731024y =. ∴小华击球高度取值范围大于19m 16小于1273m 1024. 25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形。

广州、广东中考数学压轴题集锦

广州、广东中考数学压轴题集锦

广州市历年中考压轴题2018年24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣mm2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求ll rr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2017年24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD 的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=√5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA 匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,AAAA�=BBAA�,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD 所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②EEEE CCCC是否为定值?若是,请求出这个定值;若不是,请说明理由.2016年24.(14分)(2016•广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.25.(14分)(2016•广州)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.24.(14分)(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.(14分)(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(),求当x≥1时y1的取值范围.24.(14分)(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.25.(14分)(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.24.(14分)(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.25.(14分)(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.24.(14分)(2010•广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE 长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.25.(14分)(2010•广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.(14分)(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH 分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.25.(14分)(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.24.(14分)(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B 点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.25.(12分)(2007•广州)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.广东省历年中考压轴题2018年24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9.00分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B 路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2017年24.(9分)如图,AB是⊙O的直径,AB=4√3,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CCCC CCCC=34时,求劣弧BBAA�的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:CCEE CCEE=√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A 作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.24.(9分)(2015•广东)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.25.(9分)(2015•广东)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt △ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省历年中考数学压轴题(1) 姓名:1.(2010年)阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯,)432543(3143⨯⨯-⨯⨯=⨯,由以上三个等式相加,可得2054331433221=⨯⨯=⨯+⨯+⨯.读完以上材料,请你计算下各题:(1)1110433221⨯++⨯+⨯+⨯Λ(写出过程); (2)=+⨯++⨯+⨯+⨯)1(433221n n Λ ; (3)=⨯⨯++⨯⨯+⨯⨯+⨯⨯987543432321Λ .2.(2009年9分)小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面两个方程的解,并把你的解答过程填写在下面的表格,3.(2010年9分)某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?A 2A A 1 BB 1B 2 B 3 B 4 B 5 B 6 B 7A 3A 4A 5 A 6A 7 O广东省历年中考数学压轴题(2) 姓名:4.(2007年9分)已知等边OAB ∆的边长为a ,以AB 边上的高1OA 为边,按逆时针方向作等边11B OA ∆,11B A 与OB 相交于点2A . (1)求线段2OA 的长;(2)若再以2OA 为边按逆时针方向作等边22B OA ∆,22B A 与1OB 相交于点3A ,按此作法进行下去,得到33B OA ∆,44B OA ∆,…,n n B OA ∆ (如图)。

求66B OA ∆的周长.5.(2005年9分)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.(1)求证:ACE∆∽BDE∆;(2)求证:BD=DE恒成立;(3)设x∆的面积y与x的函数关系式,并写出自变量x的取值范BD=,求AEC围.广东省历年中考数学压轴题(3) 姓名:6.(2006年9分)ABCD 中,060=∠DAB ,点E ,F 分别在CD ,AB 的延长线上,且AE=AD ,CF=CB . (1)求证:四边形AFCE 是平行四边形;(2)若去掉巳知条件的“060=∠DAB ”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.7.(2007年9分)如图,正方形ABCD的边长为a3,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与BCF∆在运动过∆相对应的EGH程中始終保持EGH∆,对应边EG=BC,B、E、C、G在一直线上.∆≌BCF(1)若BE=a,求DH的长;(2)当E点在BC边上的什么位置时,DHE∆的面积取得最小值?并求该三角形广东省历年中考数学压轴题(4)姓名:8.(2009年9分)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.9.(2010年)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA 向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A 时,M、N两点同时停止运动.连结FM、MN、FN,当F、N、M不在同一条直线时,可得FMN∆三边的中点作∆PQW.设动点M、N的速∆,过FMN度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明FMN∆∽∆QWP;(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,∆PQW为直角三角形?当x在何范围时,∆PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.广东省历年中考数学压轴题(5)姓名:10.(2008年9分)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC,求∠AEB的大小;(2)如图2,OAB∆固定不动,保持OCD∆的形状和大小不变,将OCD∆绕着点O旋转(OAB∆和OCD∆不能重叠),求∠AEB的大小.BAODCE11.(2006年9分)如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,BC ∥OA ,7=OA ,4=AB ,060=∠COA ,点P 为x 轴上的一个动点,点P 不与点O 、点A 重合。

连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,OCP ∆为等腰三角形,求这时点P 的坐标;(3)当点P 85=AB BD ,求这时点P 的坐标.广东省历年中考数学压轴题(6)姓名:12.(2005年9分)如图,等腰梯形ABCD中,AD//BC,M、N分别是AD、BC 的中点,E,F分别是BM、CM的中点,(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量13.(2007年9分)如图①、②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切。

将这个游戏抽象为数学问题,如图②。

已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA =α,且sinα=53。

(1)求点M 离地面AC 的高度BM(单位:厘米);(2)设人站立点C 与点A 的水平距离AC 等于11个单位,求铁环钩MF 的长度(单位:厘米).AMFOα 图②图①广东省历年中考数学压轴题(7) 姓名:14.(2009年9分)(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC面积的31;(2)如图2,若∠DOE 保持0120角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 面积的31.15、(2011•广东)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n 行共有个数;(3)求第n行各数之和.广东省历年中考数学压轴题(8)姓名:16、(2011•广东)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.17、(2011•广东)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P 作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.1.(1)解:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯, )432543(3143⨯⨯-⨯⨯=⨯,……,)11109121110(311110⨯⨯-⨯⨯=⨯,以上各式相加,可得440121110311110433221=⨯⨯⨯=⨯++⨯+⨯+⨯Λ;(2))2)(1(31++n n n ;(3) 12601098741=⨯⨯⨯⨯2.3.⑴设租甲型车x 辆,则租乙型车(10-x )辆,依题意,得⎩⎨⎧≥-+≥-+170)10(2016340)10(3040x x x x ,解得5.74≤≤x ,因车辆数为正整数,故x =4,5,6,7.租车方案为:甲型车4辆,乙型车6辆;甲型车5辆,乙型车5辆;甲型车6辆,乙型车4辆;甲型车7辆,乙型车3辆;⑵设租车费用y ,则18000200)10(18002000+=-+=x x x y ,∵200>0,∴y 随x 的增大而增大,∴当x =4时,y 的值最小,∴租甲型车4辆,乙型车6辆使租车费用最省.4.(1)a OA OA OA 43)23(232312===; (2) OA OA 231=,OA OA OA 212)23(23==,OA OA OA 323)23(23==,以此类推,a OA OA OA 64276427)23(66===,所以66B OA ∆的周长为:a OA 648136=.5.(1)证明:依题意,可得CBD CAD ∠=∠,即DBE CAE ∠=∠,又∵BED AEC ∠=∠,∴ACE ∆∽BDE ∆;(2)∵AB 为直径,∴090=∠ADB ,又∵04521=∠=∠COD CBD ,∴在BDE Rt ∆中,有045=∠=∠CBD BED ,∴DE BD =;(3)在ABD Rt ∆中,∵x BD =,∴x BD DE ==,∴22216x BD AB AD -=-=,∴x x x AD AE --=-=216,又∵090=∠ACB ,045=∠CAB ,∴在ACE Rt ∆中,有AE AC 22=,∴AEC ∆的面积为:4162162122x x AC y --== )40(<<x .6.(1)证明略;(2)成立.因为CBF ADE ∆≅∆7.解:(1)连接FH ,∵EGH ∆≌BCF ∆,∴BF =EH ,HEG FBC ∠=∠,∴BF ∥EH ,∴四边形BEHF 是平行四边形,∴FH= BE=a ,又∵E 、F 分别从顶点B 、C 同时开始以相同速度沿BC 、CD 运动,∴CF= BE=a ,∴DF=3a ,∴在DFH Rt ∆中,a FH DF DH 522=+=;(2)设x BE =,则有22827)23(21321)3(213)3(21a a x x a x a x a x a S S S S HEG DCGH DEC DHE +-=⋅⋅-⋅+⋅+⋅-⋅=-+=∆∆∆梯形,所以当a BE 23=时,DHE ∆的面积取得最小值,最小值为2827a .8.(1)在正方形ABCD 中,AB =BC =CD =4,∠B =∠C =090,由AM ⊥MN ,得∠AMN =090,∴∠CMN +∠AMB =090,而在Rt △ABM 中,∠MAB +∠AMB =090,∴∠CMN =∠MAB ,∴Rt △ABM ∽Rt △MCN . .(2)∵Rt △ABM ∽Rt △MCN ,∴CN BM MC AB =,即CNxx =-44,得442x x CN +-=,∴10)2(2182214)44421222+--=++-=⋅++-==x x x x x S y ABCN(梯形,∴当2=x 时,y 有最大值,最大值是10.(3)∵∠B =∠AMN =090,∴要使Rt △ABM ∽Rt △AMN ,必须有BMABMN AM =,由(1)知MCABMN AM =, ∴MC BM =, ∴当M 点运动到BC 的中点时Rt △ABM ∽Rt △AMN ,求此时x =2.9.解:(1)如图(1),∵P 、Q 、W 分别是FMN ∆三边的中点,∴21===FM WQ NF PQ MN PW ,∴FMN ∆∽∆QWP ;(2)由(1)知FMN ∆∽∆QWP ,故只讨论FMN ∆的情况,过点N 作NE ⊥CD 交CD 于E ,由图(1)知,x DM =,DF =2,x AM -=4,x AN -=6,x FE -=4,EN =4.情况①:当22MN FN MF =+时,有222)6()4(4)4(2x x x x -+-=+-++,解得34=x ; ②情况:当222FN MN MF =+时,有2222224)4()6()4(2+-=-+-++x X x x ,化简得:01062=+-x x ,∵0440)6(2<-=--=∆∴方程无解;③情况:当222MF MN FN =+时,有22222224)4()6()4(x x x x +=+-+-+-,解得4=x ;综上所述,当4=x ,34=x 时,FMN ∆为直角三角形,即∆PQW 为直角三角形;当x ≠4、34时,FMN ∆不为直角三角形,即∆PQW 不为直角三角形. (3)当0≤x ≤4时,显然M N 逐渐缩短,故只考虑4≤x ≤6,即图(2)的情形,∵x MA -=4,x AN -=6,∴52202)6()4(2222+-=-+-=x x x x MN ,∴当52220=⨯=x 时,2MN 最小,即最小MN ,∴2525205222=+⨯-⨯=MN ,2=MN .10.(1) (略解)如图1,由060321=∠=∠=∠,可得030654=∠=∠=∠,所以06064=∠+∠=∠AEB .(2) 如图2,∵06021=∠=∠,∴AOC DOB ∠=∠,又∵54∠=∠,76∠=∠,01807654=∠+∠+∠=∠+∠+∠AOC DOB ,∴65∠=∠,∵6258∠+∠=∠+∠=∠AEB ,∴0602=∠=∠AEB11. (1)证明略;(2)BC MN 21=. 12. (1))32,5(B ;(2))0,4(±P ;(3)设x OP =,可证COP ∆∽PAD ∆,得PACOAD OP =,即x x -=7423,解得1=x 或6=x ,所以)0,1(P 或)0,6(P 13.(1)(略解)过M 作AC 的平行线,分别与OA 、FC 交于点H 、N ,则BM=OA-OH=1个单位=5cm;(2)由90=∠+∠=∠+∠FMN OMH OMH MOH 可证α=∠=∠MOH FMN ,10=FM 个单位,即cm FM 50=。

相关文档
最新文档