算法的时间复杂度和空间复杂度-总结

合集下载

算法的时间复杂度和空间复杂度-总结分析

算法的时间复杂度和空间复杂度-总结分析

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。

第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。

而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。

算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。

算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。

而度量一个程序的执行时间通常有两种方法。

一、事后统计的方法这种方法可行,但不是一个好的方法。

该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。

二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。

因此人们常常采用事前分析估算的方法。

在编写程序前,依据统计方法对算法进行估算。

一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。

一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。

为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。

1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。

但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法算法 今天给⼤家带来⼀篇关于算法排序的分类,算法的时间复杂度,空间复杂度,还有怎么去优化算法的⽂章,喜欢的话,可以关注,有什么问题,可以评论区提问,可以与我私信,有什么好的意见,欢迎提出.前⾔: 算法的复杂度分为时间复杂度与空间复杂度,时间复杂度指执⾏算法需要需要的计算⼯作量,空间复杂度值执⾏算法需要的内存量,可能在运⾏⼀些⼩数据的时候,⼤家体会不到算法的时间与空间带来的体验. 优化算法就是将算法的时间优化到最快,将空间优化到最⼩,假如你写的mod能够将百度游览器的搜索时间提升0.5秒,那都是特别厉害的成绩.本章内容: 1,算法有哪些 2,时间复杂度,空间复杂度 3,优化算法 4,算法实例⼀,算法有哪些 常见的算法有冒泡排序,快排,归并,希尔,插⼊,⼆分法,选择排序,⼴度优先搜索,贪婪算法,这些都是新⼿⼊门必须要了解的,你可以不会,但是你必须要知道他是怎么做到的,原理是什么,今天就给⼤家讲⼀讲我们常⽤的冒泡排序,选择排序,这两个排序算法,1,冒泡排序(Bubble Sort), 为什么叫他冒泡排序呢? 因为他就像是从海底往海⾯升起的⽓泡⼀样,从⼩到⼤,将要排序的数从⼩到⼤排序,冒泡的原理: 他会⼀次⽐较两个数字,如果他们的顺序错误,就将其调换位置,如果排序正确的话,就⽐较下⼀个,然后重复的进⾏,直到⽐较完毕,这个算法的名字也是这样由来的,越⼤的数字,就会慢慢的'浮'到最顶端. 好了该上代码了,下⾯就是冒泡排序的代码,冒泡相对于其他的排序算法来说,⽐较的简单,⽐较好理解,运算起来也是⽐较迅速的,⽐较稳定,在⼯作中也会经常⽤到,推荐使⽤# 冒泡排序def bubble_sort(alist):n = len(alist)# 循环遍历,找到当前列表中最⼤的数值for i in range(n-1):# 遍历⽆序序列for j in range(n-1-i):# 判断当前节点是否⼤于后续节点,如果⼤于后续节点则对调if alist[j] > alist[j+1]:alist[j], alist[j+1] = alist[j+1], alist[j]if__name__ == '__main__':alist = [12,34,21,56,78,90,87,65,43,21]bubble_sort(alist)print(alist)# 最坏时间复杂度: O(n^2)# 最优时间复杂度: O(n)# # 算法稳定性:稳定2,选择排序(selection sort) 选择排序(selection sort)是⼀种简单直观的排序⽅法, 他的原理是在要排序的数列中找到最⼤或者最⼩的元素,放在列表的起始位置,然后从其他⾥找到第⼆⼤,然后第三⼤,依次排序,依次类,直到排完, 选择排序的优点是数据移动, 在排序中,每个元素交换时,⾄少有⼀个元素移动,因此N个元素进⾏排序,就会移动 1--N 次,在所有依靠移动元素来排序的算法中,选择排序是⽐较优秀的⼀种选择排序时间复杂度与稳定性:最优时间复杂度: O(n2)最坏时间复杂度:O(n2)算法稳定性 :不稳定(考虑每次升序选择最⼤的时候)# if alist[j] < alist[min_index]:# min_index = j## # 判断min_index索引是否相同,不相同,做数值交换# if i != min_index:# alist[i],alist[min_index] = alist[min_index],alist[i]### if __name__ == '__main__':# alist = [12,34,56,78,90,87,65,43,21]# # alist = [1,2,3,4,5,6,7,8,9]# select_sort(alist)# print(alist)# O(n^2)# 不稳定def select_sort(alist):"""选择排序"""n = len(alist)for i in range(n - 1):min_index = i # 最⼩值位置索引、下标for j in range(i+1, n):if alist[j] < alist[min_index]:min_index = j# 判断min_index ,如果和初始值不相同,作数值交换if min_index != i:alist[i], alist[min_index] = alist[min_index],alist[i]if__name__ == '__main__':alist = [8,10,15,30,25,90,66,2,999]select_sort(alist)print(alist)这是⼀些算法的时间复杂度与稳定性时间复杂度,空间复杂度 接下来就要来说说时间复杂度与空间复杂度: 时间复杂度就是假如你泡茶,从开始泡,到你喝完茶,⼀共⽤了多长时间,你中间要执⾏很多步骤,取茶叶,烧⽔,上厕所,接电话,这些都是要花时间的,在算法中,时间复杂度分为 O(1)最快 , O(nn)最慢,O(1) < O(logn) <O(n)<O(n2)<O(n3)<O(2n) <O(nn) ⼀般游览器的速度都在O(n),做我们这⼀⾏,要注意客户体验,如果你程序的运⾏特别慢,估计别⼈来⼀次,以后再也不会来了下⾯给⼤家找了张如何计算时间复杂度的图⽚: 空间复杂度(space complexity) ,执⾏时所需要占的储存空间,记做 s(n)=O(f(n)),其中n是为算法的⼤⼩, 空间复杂度绝对是效率的杀⼿,曾经看过⼀遍⽤插⼊算法的代码,来解释空间复杂度的,觉得特别厉害,我就⽐较low了,只能给⼤家简单的总结⼀下我遇到的空间复杂度了, ⼀般来说,算法的空间复杂度值得是辅助空间,⽐如:⼀组数字,时间复杂度O(n),⼆维数组a[n][m] :那么他的空间复杂度就是O(n*m) ,因为变量的内存是⾃动分配的,第⼀个的定义是循环⾥⾯的,所以是n*O(1) ,如果第⼆个循环在外边,那么就是1*O(1) ,这⾥也只是⼀个了解性的东西,如果你的⼯作中很少⽤到,那么没有必要深究,因为⽤的真的很少优化算法这边带来了代码,你们在复制下来了python上运⾏⼀下,看⼀下⽤的时间与不同, ⾃然就懂了,这是未优化的算法''已知有a,b,c三个数,都是0-1000之内的数,且: a+b+c=1000 ⽽且 a**2+b**2=c**2 ,求a,b,c⼀共有多少种组合'''# 在这⾥加⼀个时间模块,待会好计算出结果import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001):for c in range(100):# 判断他主公式第⼀次,并未优化if a+b+c==1000 and a**2 + b**2 == c**2 :# 打印print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 156.875001秒这是第⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):# 这⾥改成1001-a之后,他就不⽤再循环b了for b in range(1001-a):for c in range(100):# 判断他主公式第⼆次,优化了b,if a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 50.557070秒最后⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001-a):c=1000 - a - b# 判断他主公式第三次,优化了b和cif a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 2.551449秒从156秒优化到l2秒, 基本运算总数 * 基本运算耗时 = 运算时间这之间的耗时和你的机器有着很⼤的关系今天是12⽉30⽇,明天就要跨年了,祝⼤家2019年事业有成,⼯资直线上升,早⽇脱单,。

计算机软件技术基础知识点总结

计算机软件技术基础知识点总结

《计算机软件技术基础》第一章算法1.1算法的基本概念算法:指解题方案的准确而完整的描述算法的基本特征:能行性(算法中的每一个步骤必须能够实现;算法执行的结果要能够达到预期的目的)确定性(算法中的每一个步骤都必须是有明确定义的,不能摸棱两可,也不能有多义性)有穷性(算法必须能在执行有限个步骤之后终止)拥有足够的情报(算法执行的结果总是与输入的初始数据有关。

不同输入对应不同输出)算法:是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的、明确的,此顺序将在有限的次数下终止。

算法的基本要素:1.算法中对数据的运算和操作(算术运算、逻辑运算、关系运算、数据传输【赋值、输入、输出】)2.算法的控制结构(算法中各操作之间的执行顺序)1.2算法描述语言C语言描述和简单的算法描述语言(1)符号与表达式:符号主要用以表述变量名、数组名等(2)赋值语句(3)控制转移语句:无条件转移语句形式:GOTO 标号条件转移语句形式IF C THEN SIF C THEN S1ELSE S2(4)循环语句WHILE语句:WHILE C DO SFOR语句:FOR i=init TO limit BY step DO S(5)其他语句EXIT语句:退出某个循环,使控制转到包含EXIT语句的最内层的WHILE或FOR循环后面的一个语句去执行RETURN语句:结束算法的执行(允许使用用引号括起来的注释信息)READ(INPUT)和WRITE(PRINT/OUTPUT)语句:用于输入输出(6)算法中的注释总是用一对方括号【】括起来;复合语句用一对花括号{}括起来1.3算法设计基本方法1.列举法【例1.1】基本思想:根据提出的问题,列举所有可能的情况,并用问题中给定的条件检验哪些是需要的,哪些是不需要的(通常解决“是否存在”“有多少种可能”类型问题)特点:算法比较简单,但列举情况较多时,工作量将很大寻找路径、查找、搜索等问题采用列举法有效2.归纳法基本思想:通过列举少量的特殊情况,经过分析,最后找出一般的关系3.递推法(数学例题)指从已知的初始条件出发,逐次推出所要求的各中间结果和最后结果(本质属于归纳法)4.递归基本思想:将问题逐层分解的过程,实际上并没有对问题进行求解,而只是当解决了最后那些简单的问题后,再沿着原来分解的逆过程逐步进行综合【例1.3】自己调用自己的过程称为递归调用过程递归分为直接递归:一个算法P显式地调用自己间接递归:算法P调用另一个算法Q,而算法Q又调用算法P5.减半递推技术(分治法)减半:将问题的规模减半,而问题的性质不变递推:重复“减半”的过程【例1.4】6.回溯法通过对问题的分析,找出一个解决问题的线索;然后沿着这个线索逐步试探。

算法的时间复杂度和空间复杂度

算法的时间复杂度和空间复杂度

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。

反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。

假如变成a1,a4, a2,a3,a5就不是稳定的了。

2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。

算法复杂度O(n2)--[n的平方void select_sort(int *x, int n){int i, j, min, t;for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/{min = i; /*假设当前下标为i的数最小,比较后再调整*/for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/{if (*(x+j) < *(x+min)){min = j; /*如果后面的数比前面的小,则记下它的下标*/}}if (min != i) /*如果min在循环中改变了,就需要交换数据*/{t = *(x+i);*(x+i) = *(x+min);*(x+min) = t;}}/*功能:直接插入排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。

全国计算机二级c语言_公共基础_知识点总结

全国计算机二级c语言_公共基础_知识点总结

第1章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。

详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5.二分查找法6.冒泡排序法1.1算法考点1 算法的基本概念考试链接:考点1在笔试考试中考核的几率为30%,主要是以填空题的形式出现,分值为2分,此考点为识记内容,读者还应该了解算法中对数据的基本运算。

计算机解题的过程实际上是在实施某种算法,这种算法称为计算机算法。

1.算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。

2.算法的基本要素:(1)算法中对数据的运算和操作一个算法由两种基本要素组成:一是对数据对象的运算和操作;二是算法的控制结构。

在一般的计算机系统中,基本的运算和操作有以下4类:算术运算、逻辑运算、关系运算和数据传输。

(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。

描述算法的工具通常有传统流程图、N-S结构化流程图、算法描述语言等。

一个算法一般都可以用顺序、选择、循环3种基本控制结构组合而成。

3.算法:解题方案准确而完整的描述。

考点2 算法复杂度考试链接:考点2在笔试考试中,是一个经常考查的内容,在笔试考试中出现的几率为70%,主要是以选择的形式出现,分值为2分,此考点为重点识记内容,读者还应该识记算法时间复杂度及空间复杂度的概念。

1.算法的时间复杂度算法的时间复杂度是指执行算法所需要的计算工作量。

同一个算法用不同的语言实现,或者用不同的编译程序进行编译,或者在不同的计算机上运行,效率均不同。

这表明使用绝对的时间单位衡量算法的效率是不合适的。

撇开这些与计算机硬件、软件有关的因素,可以认为一个特定算法"运行工作量"的大小,只依赖于问题的规模(通常用整数n表示),它是问题规模的函数。

计算机科学中的算法

计算机科学中的算法

计算机科学中的算法在计算机科学中,算法是一种解决问题的步骤和规程,用于解决各种计算和操作问题。

算法作为计算机科学的基础概念,是计算机程序设计的核心和基础,也是计算机系统和应用程序开发的重要基础。

在现代社会中,计算机系统已经广泛应用于各种行业和领域,而算法的发展和优化则是保证计算机系统与应用程序性能和效率的重要保证。

算法是计算机程序设计的基础和精髓。

在计算机科学中,算法是指解决一定问题的一系列有限的计算步骤。

计算机算法的归纳和总结是计算机科学的重要组成部分。

因此,研究和发展计算机算法对于提高计算机系统和应用程序的性能和效率具有重要的意义。

一、算法的类型算法是一种具有不同类型的计算步骤和规程,常见的算法类型包括以下几种:1.排序算法:将一组数据按照一定规则进行排序的算法。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

2.查找算法:在一个数据集合中查找某一个元素的算法。

常见的查找算法有顺序查找、二分查找、哈希查找等。

3.图形算法:在图论中,解决图的构成、图的遍历、最短路径、最小生成树、网络流等问题的算法。

常见的图形算法有Dijkstra算法、Bellman-Ford算法、Prim算法等。

4.字符串算法:解决字符串处理问题的一类算法。

常见的字符串算法有KMP算法、BM算法、正则表达式等。

5.贪心算法:一种利用局部最优解来获得全局最优解的算法。

贪心算法常用于优化问题中,如NP完全问题、最优化问题等。

常见的贪心算法有贪心选择法、贪心递归法等。

6.动态规划算法:一种以直接使用计算机来研究多阶段决策过程最优化的算法。

常见的动态规划算法有背包问题、找零问题、最长公共子序列问题等。

7.递归算法:通过函数自身的调用来完成计算过程。

递归算法常用于树形结构、图形结构及数据结构等问题中。

二、算法的优化算法的优化是指对算法进行改进和修改,以获得更好的性能和效率。

算法的优化可以分为以下几类:1.时间复杂度的优化:通过改变算法的各个部分来改进算法的时间复杂度,以更快地完成任务。

常用排序算法的时间复杂度和空间复杂度

常用排序算法的时间复杂度和空间复杂度

常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。

时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。

在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。

时间复杂度:O(N^(1+a)),其中0<a<1。

//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。

有关冒泡排序的总结

有关冒泡排序的总结

有关冒泡排序的总结
冒泡排序是一种简单但效率较低的排序算法,它重复地比较相邻的元素,并按照升序或降序交换位置,直到整个数组排序完成。

以下是对冒泡排序的总结:
1. 基本原理:冒泡排序的基本思想是通过相邻元素的比较和交换来实现排序。

每一轮排序会将未排序部分中的最大(或最小)元素冒泡到最后的位置。

2. 算法步骤:
- 从数组的第一个元素开始,比较相邻的两个元素。

- 如果顺序不正确,交换这两个元素的位置。

- 继续向后遍历,重复上述比较和交换的过程,直到最后一个元素。

- 重复以上步骤,直到所有元素都排好序。

3. 时间复杂度:冒泡排序的时间复杂度为O(n^2),其中n 是待排序数组的元素个数。

最好情况下,如果待排序数组已经有序,冒泡排序可以通过设置一个标志位来提前结束,此时时间复杂度为O(n)。

4. 空间复杂度:冒泡排序的空间复杂度为O(1),它只需要一个临时变量用于交换元素的位置。

5. 稳定性:冒泡排序是稳定的,即相等元素的相对位置在排序前后保持不变。

6. 优缺点:
- 优点:冒泡排序的实现简单,易于理解和实现。

- 缺点:冒泡排序的效率较低,尤其在处理大规模数据时。

它需要多次比较和交换操作,即使数组已经有序,也需要进行完整的遍历。

总而言之,冒泡排序是一种简单但效率较低的排序算法,适用于小规模的数据排序。

但在实际应用中,通常会选择更高效的排序算法,如快速排序、归并排序等。

全国计算机等级考试二级Access知识总结

全国计算机等级考试二级Access知识总结

【ACCESS】全国计算机等级考试二级Access知识总结1. 算法的复杂度主要包括时间复杂度和空间复杂度。

2. 算法的时间复杂度是指执行算法所需要的计算工作量。

3. 算法的空间复杂度是指执行这个算法所需要的内存空间。

4. 一种数据的逻辑结构根据需要可以表示成多种存储结构。

而采用不同的存储结构,其数据处理的效率是不同。

5. 线性结构又称线性表,线性结构与非线性结构都可以是空的数据结构。

6. 线性表的顺序存储结构具有以下两个基本特点:①线性表中所有元素所占的存储空间是连续的;②线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。

7. 栈是一种特殊的线性表,在这种线性表的结构中,一端是封闭的,不允许进行插入与删除元素;另一端是开口的,允许插入与删除元素。

先进后出或后进先出。

8. 队列(queue)是指允许在一端进行插入、而在另一端进行删除的线性表。

后进后出或先进先出。

9. 队列的顺序存储结构一般采用循环队列的形式。

10. 元素变动频繁的大线性表不宜采用顺序存储结构,而是采用链式存储结构。

11. 在链式存储方式中,要求每个结点由两部分组成:一部分用于存放数据元素值,称为数据域;另一部分用于存放指针,称为指针域。

12. 树(tree)是一种简单的非线性结构。

属于层次模型。

13. 二叉树通常采用链式存储结构14. 二叉树的基本性质性质1在二叉树的第k层上,最多有2k-1(k≥1)个结点。

性质2深度为m的二叉树最多有2m-1个结点。

性质3在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。

15. 二叉树的遍历可以分为三种:前序遍历(中前后)、中序遍历(前中后)、后序遍历(前后中)。

16. 对于长度为n的有序线性表,在最坏情况下,二分查找只需要比较log2n次,而顺序查找需要比较n次。

17. 在最坏情况下,冒泡排序需要比较次数为n(n-1)/2。

18. 在最坏情况下,简单插入排序需要n(n-1)/2次比较。

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。

⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。

这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。

基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。

以此类推,直到找到⽬标为⽌。

假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。

⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。

⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。

简述衡量算法优劣的2个主要指标

简述衡量算法优劣的2个主要指标

衡量算法优劣的两个主要指标在计算机科学和数据分析领域,衡量算法优劣的指标是非常重要的。

选择正确的算法可以显著提高计算效率和准确性。

本文将介绍两个主要的衡量算法优劣的指标:时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长而增长的速率。

它用大O符号来表示,表示最坏情况下执行时间的上界。

常见的时间复杂度有:•常数时间复杂度 O(1):无论输入规模如何变化,执行时间都保持不变。

•对数时间复杂度 O(log n):随着输入规模呈指数级增长,执行时间以对数方式增加。

•线性时间复杂度 O(n):随着输入规模线性增长,执行时间也线性增加。

•线性对数时间复杂度 O(n log n):随着输入规模线性增长,但是增速比线性更快。

•平方级时间复杂度 O(n^2):随着输入规模平方级增长,执行时间也平方级增加。

•指数级时间复杂度 O(2^n):随着输入规模指数级增长,执行时间以指数方式增加。

衡量算法优劣时,我们通常关注最坏情况下的时间复杂度。

较低的时间复杂度意味着算法在处理大规模数据时更高效。

2. 空间复杂度空间复杂度是衡量算法所需内存随输入规模增长而增长的速率。

它也用大O符号来表示,表示最坏情况下所需内存的上界。

常见的空间复杂度有:•常数空间复杂度 O(1):无论输入规模如何变化,所需内存保持不变。

•线性空间复杂度 O(n):随着输入规模线性增长,所需内存也线性增加。

•平方级空间复杂度 O(n^2):随着输入规模平方级增长,所需内存也平方级增加。

与时间复杂度类似,较低的空间复杂度意味着算法在处理大规模数据时更节省内存。

3. 时间复杂度和空间复杂度之间的平衡在选择算法时,我们需要根据具体问题和应用场景综合考虑时间复杂度和空间复杂度之间的平衡。

有些情况下,我们可能更关注执行时间,而有些情况下,我们可能更关注内存消耗。

•当处理大规模数据时,通常更关注时间复杂度。

选择具有较低时间复杂度的算法可以显著提高计算效率。

算法与设计的知识点

算法与设计的知识点

算法与设计的知识点在计算机科学的领域中,算法和设计是两个核心的知识点。

算法是解决问题的步骤和指令的集合,而设计则是将这些算法应用于实际的软件开发中。

本文将介绍一些与算法和设计相关的知识点。

一、算法分析与评估1. 时间复杂度:衡量算法执行时间的度量,用大O符号表示。

2. 空间复杂度:衡量算法所需内存空间的度量,也用大O符号表示。

3. 最优算法:指在特定问题下执行时间或空间复杂度最低的算法。

4. 近似算法:指在可接受范围内近似解决问题的算法。

二、常见算法1. 排序算法:- 冒泡排序:重复比较相邻的两个元素,较大的元素向后移动。

- 快速排序:选择一个中心点元素,将小于它的元素放在左边,大于它的元素放在右边,递归执行。

- 归并排序:将数组分成两个子数组,分别排序后再合并。

2. 查找算法:- 顺序查找:逐个比较元素,直到找到目标元素。

- 二分查找:对有序数组进行折半查找,提高查找效率。

3. 图算法:- 广度优先搜索:从起始顶点开始,逐层遍历邻接顶点。

- 深度优先搜索:从起始顶点开始,沿着一条路径遍历直到无法继续为止,在回溯到上一个顶点。

三、常见数据结构1. 数组:一组连续的内存空间存储相同类型的数据。

2. 链表:由一系列节点组成,每个节点包含元素和指向下一节点的指针。

3. 栈:后进先出的数据结构,只能在栈顶进行插入和删除操作。

4. 队列:先进先出的数据结构,头部进行删除操作,尾部进行插入操作。

5. 树:由节点和边组成的非线性数据结构,每个节点可以有多个子节点。

四、设计原则与模式1. SOLID原则:指设计原则的五个基本原则,包括单一职责原则、开放封闭原则、里式替换原则、接口隔离原则和依赖倒置原则。

2. MVC模式:将应用程序分为模型、视图和控制器,实现解耦和可维护性。

3. 单例模式:确保一个类只有一个实例,并提供全局访问点,常用于创建日志类、线程池等对象。

五、性能优化与调试技巧1. 代码复用:通过函数或类的封装实现代码的复用,减少冗余代码。

常见算法优化与性能分析

常见算法优化与性能分析

常见算法优化与性能分析在计算机科学领域中,算法常常是我们在编写代码时需要处理的重要部分。

好的算法可以有效提高程序的运行效率,而不好的算法则可能会造成程序运行缓慢、消耗大量的资源,甚至会导致程序崩溃。

因此,在编写程序时,我们需要关注优化算法和性能分析。

本篇文章将针对常见算法进行优化和性能分析的问题进行探讨,为读者提供一些有关这方面的基础知识。

一、算法性能分析在编写程序之前,我们需要对程序的算法进行性能分析。

性能分析可以帮助我们确定程序的算法是否适合所面对的问题,并且可以帮助我们找到程序中可能的性能瓶颈。

1. 时间复杂度时间复杂度是衡量程序运行速度的一种度量方式,它表示程序执行所需的时间随输入数据量的增长而增长的速度。

常见的时间复杂度比较如下:- O(1): 常数时间复杂度,表示程序的执行时间与输入规模无关,始终保持相同,如查找散列表中的元素。

- O(log n): 对数时间复杂度,表示程序的执行时间与输入规模呈对数关系。

如在排好序的数组中二分查找元素。

- O(n): 线性时间复杂度,表示程序的执行时间与输入规模成正比,如在数组中查找某个元素。

- O(nlog n): n 对数线性时间复杂度,表示程序的执行时间与输入规模成 log n 倍数增长,如快速排序。

- O(n²): 平方时间复杂度,表示程序的执行时间与输入规模成二次方增长,如选择排序和冒泡排序。

- O(n³): 立方时间复杂度,表示程序的执行时间与输入规模成三次方增长,如矩阵乘法。

- O(2ⁿ)、O(n!)、O(nⁿ)等等: 非常不适合的复杂度,程序的执行时间会随着输入规模的增长而成指数倍数增长,应尽量避免。

2. 空间复杂度空间复杂度衡量程序运行期间所需的内存随输入数据量的增长而增长的速度。

可以根据程序中所需要的存储空间来评估其空间复杂度。

通常情况下,空间复杂度评估要求程序使用的内存空间是所需输入的空间加上一些固定大小的辅助空间。

算法知识点归纳总结

算法知识点归纳总结

算法知识点归纳总结什么是算法?算法是解决问题的一系列步骤或规则。

在计算机科学中,算法是指计算机程序解决问题的方法。

算法可以用来解决各种问题,比如搜索、排序、数据压缩等。

算法的特点算法具有以下几个特点:1. 有穷性:算法必须在有限的步骤内结束。

2. 确定性:对于给定的输入,算法必须在每一步都有确定的行为。

3. 输入:算法必须有零个或多个输入。

4. 输出:算法必须有一个或多个输出。

5. 可行性:算法的每一步都必须是可行的。

常见的算法分类1. 搜索算法搜索算法主要用于在给定的数据集中查找特定的元素。

常见的搜索算法包括线性搜索、二分搜索、深度优先搜索和广度优先搜索。

2. 排序算法排序算法用于将给定的数据集按照特定的顺序排列。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

3. 图算法图算法主要用于解决与图相关的问题,比如最短路径、最小生成树等。

常见的图算法包括Dijkstra算法、Prim算法、Kruskal算法等。

4. 字符串匹配算法字符串匹配算法用于在一个文本中寻找特定的字符串。

常见的字符串匹配算法包括朴素字符串匹配算法、KMP算法、Boyer-Moore算法等。

5. 动态规划算法动态规划算法用于解决具有重叠子问题和最优子结构的问题。

常见的动态规划算法包括背包问题、最长公共子序列问题等。

6. 贪心算法贪心算法是一种使用贪心策略来求解问题的算法。

常见的贪心算法包括最小生成树算法、最短路径算法等。

常见算法的具体内容1. 线性搜索算法线性搜索算法是一种简单的搜索算法,它通过逐个比较给定的元素和目标元素来查找目标元素的位置。

线性搜索算法的时间复杂度为O(n)。

2. 二分搜索算法二分搜索算法是一种高效的搜索算法,它通过逐步缩小搜索范围来查找目标元素的位置。

二分搜索算法的时间复杂度为O(logn)。

3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它通过多次比较和交换来将给定的数据集排序。

排序实验报告实验心得

排序实验报告实验心得

一、实验背景随着计算机科学的发展,排序算法在数据处理、数据库管理、网络通信等领域发挥着重要作用。

为了更好地理解排序算法的原理和实现,我们进行了排序实验,通过实际操作来加深对排序算法的认识。

本次实验主要涉及了冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等常用排序算法。

二、实验目的1. 理解各种排序算法的基本原理;2. 掌握排序算法的代码实现;3. 分析各种排序算法的时间复杂度和空间复杂度;4. 比较各种排序算法的优缺点,为实际应用提供参考。

三、实验过程1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历待排序的数列,比较每对相邻元素的值,如果它们的顺序错误就把它们交换过来。

遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。

2. 选择排序选择排序是一种简单直观的排序算法。

它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法。

它的工作原理是:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序)。

4. 快速排序快速排序是一种效率较高的排序算法。

它采用分而治之的策略,将原始数组分成两个子数组,一个子数组中的所有元素均小于另一个子数组中的所有元素。

然后递归地对这两个子数组进行快速排序。

5. 归并排序归并排序是一种效率较高的排序算法。

它采用分而治之的策略,将原始数组分成两个子数组,分别对这两个子数组进行排序,然后将两个有序子数组合并成一个有序数组。

6. 堆排序堆排序是一种利用堆这种数据结构的排序算法。

它将待排序的序列构造成一个大顶堆,然后将堆顶元素与最后一个元素交换,再将剩余的n-1个元素重新构造成一个大顶堆,重复此过程,直到所有元素均排序完毕。

数据结构与算法(一)时间复杂度、空间复杂度计算

数据结构与算法(一)时间复杂度、空间复杂度计算

数据结构与算法(⼀)时间复杂度、空间复杂度计算⼀、时间复杂度计算1、时间复杂度的意义复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了⼀半1. 测试结果⾮常依赖测试环境2. 测试结果受数据规模的影响很⼤所以,我们需要⼀个不⽤具体的测试数据来测试,就可以粗略地估计算法的执⾏效率的⽅法,即时间、空间复杂度分析⽅法。

2、⼤ O 复杂度表⽰法1)、可以将计算时间复杂度的⽅式和计算代码执⾏次数来进⾏类别int cal(int n) {int sum = 0;int i = 1;for (; i <= n; ++i) {sum = sum + i;}return sum;}第 2、3 ⾏代码分别需要 1 个 unit_time 的执⾏时间,第 4、5 ⾏都运⾏了 n 遍,所以需要 2n * unit_time 的执⾏时间,所以这段代码总的执⾏时间就是(2n+2) * unit_time。

可以看出来,所有代码的执⾏时间 T(n) 与每⾏代码的执⾏次数成正⽐。

2)、复杂⼀点的计算int cal(int n) { ----1int sum = 0; ----2int i = 1; ----3int j = 1; ----4for (; i <= n; ++i) { ----5j = 1; ----6for (; j <= n; ++j) { ----7sum = sum + i * j; ----8} ----9} ----10} ----11T(n) = (2n^2+2n+3)unit_timeT(n)=O(f(n))⼤ O 时间复杂度实际上并不具体表⽰代码真正的执⾏时间,⽽是表⽰代码执⾏时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度2、时间复杂度计算法则1. 只关注循环执⾏次数最多的⼀段代码2. 加法法则:总复杂度等于量级最⼤的那段代码的复杂度如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积T(n) = T1(n) * T2(n) = O(n*n) = O(n2)3、常见的是时间复杂度复杂度量级(递增)排列公式常量阶O(1)对数阶O(logn)线性阶O(n)线性对数阶O(nlogn)平⽅阶、⽴⽅阶...K次⽅阶O(n2),O(n3),O(n^k)指数阶O(2^n)阶乘阶O(n!)①. O(1):代码的执⾏时间和n没有关系,⼀般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万⾏的代码,其时间复杂度也是Ο(1);②. O(logn)、O(nlogn)i=1;while (i <= n) {i = i * 2;}通过 2x=n 求解 x 这个问题我们想⾼中应该就学过了,我就不多说了。

常见排序算法及它们的时间的时间复杂度,空间复杂度

常见排序算法及它们的时间的时间复杂度,空间复杂度

常见排序算法及它们的时间的时间复杂度,空间复杂度⼀、概念扩展------有序度----1、有序元素对:a[i] <= a[j], 如果i < j; 逆序元素对:a[i] > a[j], 如果 i < j。

2、⼀组数据中有/逆序元素对的个数即为有/逆序度3、2,3,1,6这组数据的有序度为4(因为其有有序元素对为4个,分别是(2,3)、(2,6)、(3,6)和(1,6))逆序度为2(因为其有逆序元素对为2个,分别是(2,3)和(2,1))4、1,2,3,6这样完全有序的数组叫作满有序度;满有序度的计算公式为 n*(n-1)/2;5、逆序度 = 满有序度 - 有序度-----原地排序算法---空间复杂度是 O(1) 的排序算法,如:冒泡排序,插⼊排序----稳定排序算法---如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变⼆、冒泡排序1、冒泡排序只会操作相邻的两个数据。

每次冒泡操作都会对相邻的两个元素进⾏⽐较,看是否满⾜⼤⼩关系要求。

如果不满⾜就让它俩互换。

⼀次冒泡会让⾄少⼀个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序⼯作2、冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是⼀个原地排序算法3、当有相邻的两个元素⼤⼩相等的时候,我们不做交换,此时冒泡排序是稳定的排序算法。

4、冒泡排序每交换⼀次,有序度就加 1,直到满有序度;5、冒泡排序最坏情况下,初始状态的有序度是 0,所以要进⾏ n*(n-1)/2 次交换,最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进⾏交换。

我们可以取个中间值 n*(n-1)/4,换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,所以平均时间复杂度就是 O(n^2)三、插⼊排序1、插⼊排序是将数据分为两个区间,已排序区间和未排序区间。

常见排序算法及对应的时间复杂度和空间复杂度

常见排序算法及对应的时间复杂度和空间复杂度

常见排序算法及对应的时间复杂度和空间复杂度转载请注明出处:(浏览效果更好)排序算法经过了很长时间的演变,产⽣了很多种不同的⽅法。

对于初学者来说,对它们进⾏整理便于理解记忆显得很重要。

每种算法都有它特定的使⽤场合,很难通⽤。

因此,我们很有必要对所有常见的排序算法进⾏归纳。

排序⼤的分类可以分为两种:内排序和外排序。

在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使⽤外存,则称为外排序。

下⾯讲的排序都是属于内排序。

内排序有可以分为以下⼏类: (1)、插⼊排序:直接插⼊排序、⼆分法插⼊排序、希尔排序。

(2)、选择排序:直接选择排序、堆排序。

(3)、交换排序:冒泡排序、快速排序。

(4)、归并排序 (5)、基数排序表格版排序⽅法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性复杂性直接插⼊排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单希尔排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(n)O(n)O(1)O(1)不稳定较复杂直接选择排序O(n2)O(n2)O(n2)O(n2)O(n2)O(n2)O(1)O(1)不稳定简单堆排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(1)O(1)不稳定较复杂冒泡排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单快速排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)不稳定较复杂归并排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(n)O(n)稳定较复杂基数排序O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(n+r)O(n+r)稳定较复杂图⽚版①插⼊排序•思想:每步将⼀个待排序的记录,按其顺序码⼤⼩插⼊到前⾯已经排序的字序列的合适位置,直到全部插⼊排序完为⽌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。

第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。

而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。

算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。

算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。

而度量一个程序的执行时间通常有两种方法。

一、事后统计的方法这种方法可行,但不是一个好的方法。

该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。

二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。

因此人们常常采用事前分析估算的方法。

在编写程序前,依据统计方法对算法进行估算。

一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。

一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。

为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。

1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。

但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

一个算法中的语句执行次数称为语句频度或时间频度。

记为T(n)。

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。

但有时我们想知道它变化时呈现什么规律。

为此,我们引入时间复杂度概念。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

另外,上面公式中用到的Landau符号其实是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》首先引入,由另一位德国数论学家艾德蒙·朗道(Edmund Landau)推广。

Landau符号的作用在于用简单的函数来描述复杂函数行为,给出一个上或下(确)界。

在计算算法复杂度时一般只用到大O符号,Landau符号体系中的小o符号、Θ符号等等比较不常用。

这里的O,最初是用大写希腊字母,但现在都用大写英语字母O;小o符号也是用小写英语字母o,Θ符号则维持大写希腊字母Θ。

T (n) = Ο(f (n))表示存在一个常数C,使得在当n趋于正无穷时总有T (n) ≤ C * f(n)。

简单来说,就是T(n)在n趋于正无穷时最大也就跟f(n)差不多大。

也就是说当n趋于正无穷时T (n)的上界是C * f(n)。

其虽然对f(n)没有规定,但是一般都是取尽可能简单的函数。

例如,O(2n2+n +1) = O (3n2+n+3) = O (7n2 + n) = O ( n2 ),一般都只用O(n2)表示就可以了。

注意到大O符号里隐藏着一个常数C,所以f(n)里一般不加系数。

如果把T(n)当做一棵树,那么O(f(n))所表达的就是树干,只关心其中的主干,其他的细枝末节全都抛弃不管。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n),线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),...,k次方阶O(n k),指数阶O(2n)。

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

从图中可见,我们应该尽可能选用多项式阶O(n k)的算法,而不希望用指数阶的算法。

常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)一般情况下,对一个问题(或一类算法)只需选择一种基本操作来讨论算法的时间复杂度即可,有时也需要同时考虑几种基本操作,甚至可以对不同的操作赋予不同的权值,以反映执行不同操作所需的相对时间,这种做法便于综合比较解决同一问题的两种完全不同的算法。

(3)求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

⑵计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。

这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

⑶用大Ο记号表示算法的时间性能。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

例如:[java]view plaincopy1.for (i=1; i<=n; i++)2. x++;3.for (i=1; i<=n; i++)4.for (j=1; j<=n; j++)5. x++;第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。

其中Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。

计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为P(Polynomial,多项式)类问题,而把后者(即指数时间复杂度的算法)称为NP(Non-Deterministic Polynomial, 非确定多项式)问题。

一般来说多项式级的复杂度是可以接受的,很多问题都有多项式级的解——也就是说,这样的问题,对于一个规模是n的输入,在n^k的时间内得到结果,称为P问题。

有些问题要复杂些,没有多项式时间的解,但是可以在多项式时间里验证某个猜测是不是正确。

比如问4294967297是不是质数?如果要直接入手的话,那么要把小于4294967297的平方根的所有素数都拿出来,看看能不能整除。

还好欧拉告诉我们,这个数等于641和6700417的乘积,不是素数,很好验证的,顺便麻烦转告费马他的猜想不成立。

大数分解、Hamilton 回路之类的问题,都是可以多项式时间内验证一个“解”是否正确,这类问题叫做NP问题。

(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"求和法则:是指若算法的2个部分时间复杂度分别为T1(n)=O(f(n))和T2(n)=O(g(n)),则T1(n)+T2(n)=O(max(f(n), g(n)))特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则T1(m)+T2(n)=O(f(m) + g(n))(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"乘法法则: 是指若算法的2个部分时间复杂度分别为T1(n)=O(f(n))和T2(n)=O(g(n)),则T1*T2=O(f(n)*g(n))(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数(5)下面分别对几个常见的时间复杂度进行示例说明:(1)、O(1)Temp=i; i=j; j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。

算法的时间复杂度为常数阶,记作T(n)=O(1)。

注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。

此类算法的时间复杂度是O(1)。

(2)、O(n2)2.1. 交换i和j的内容[java]view plaincopy1.sum=0;(一次)2.for(i=1;i<=n;i++) (n+1次)3.for(j=1;j<=n;j++) (n2次)4. sum++;(n2次)解:因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);2.2.[java]view plaincopy1.for (i=1;i<n;i++)2. {3. y=y+1; ①4.for (j=0;j<=(2*n);j++)5. x++; ②6. }解:语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n2-n-1f(n)=2n2-n-1+(n-1)=2n2-2;又Θ(2n2-2)=n2该程序的时间复杂度T(n)=O(n2).一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

相关文档
最新文档