高考复习 曲线运动计算题
高考物理曲线运动专项训练100(附答案)
高考物理曲线运动专项训练100(附答案)一、高中物理精讲专题测试曲线运动1.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F运动时间为1t,有1F qE=22mvh=由题意得11F qEam m==101x v t=21112y at=解得21mvxEq=2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象限以02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB=由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径R =解得)021B mv qh=(3)0,且抛 射角是045,如下图所示,根据斜抛运动的规律,有20x v =cos45020y v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是,0)带电粒子在1p 点的坐标是(2026,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧.在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,大小相同且质量均为m 的A 、B 两个小球置于光滑的边长为22H 的正方形玻璃板上,B 静止,A 由长为2H 的轻质细绳悬挂于O 3,静止时细绳刚好拉直,悬点距离玻璃板和玻璃板距离水平地面均为H ,玻璃板中心O 2位于悬点O 3正下方,O 3与O 2的延长线和水平地面交于点O 1.已知重力加速度为g .(1)某同学给A 一个水平瞬时冲量I ,A 开始在玻璃板上表面做圆周运动且刚好对玻璃板无压力,求I 满足的表达式;(2)A 运动半周时刚好与静止的B 发生对心弹性正碰,B 从玻璃板表面飞出落地,求小球B 的落点到O 1的距离.【答案】(1)I m gH = (2)3H 【解析】设细绳与竖直方向夹角为θ (1)cos 1Hhθ== 45θ=o ,A 圆周运动轨道半径为H 由A 的受力分析可知:20tan mv mg Hθ= 动量定理:0I mv =I m gH =(2)A 与B 发生弹性正碰11122o m v m v m v =+22211122111222o m v m v m v =+ 解得2v gH =B 球被碰后,在桌面上匀速运动飞出桌面后平抛,设平抛的射程为x212H gt =2x v t =由几何关系得 221(2)o p H H x =++13o p H =【点睛】(1)根据圆周运动向心力表达式即可求得;(2)根据弹性碰撞机械能守恒动量守恒求得B 小球的速度,再结合平抛运动的知识求得距离.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B 运动到C ,根据动能定理有:解得:(3)从C 点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B 点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,四分之一光滑圆弧轨道AO 通过水平轨道OB 与光滑半圆形轨道BC 平滑连接,B 、C 两点在同一竖直线上,整个轨道固定于竖直平面内,以O 点为坐标原点建立直角坐标系xOy 。
高考物理曲线运动真题汇编(含答案)
高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考必备物理曲线运动技巧全解及练习题(含答案)及解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
(物理) 高考物理曲线运动专项训练100(附答案)含解析
(物理)高考物理曲线运动专项训练100(附答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
【详解】(1)此题可以看成是无反弹的完整平抛运动,则水平位移为:x==v0t竖直位移为:H=gt2解得:v0=;(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)同理:x′=2nL=v′0t,H=gt′2解得:(n=1.2.3……)2.如图所示,在水平桌面上离桌面右边缘3.2m处放着一质量为0.1kg的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A点飞出,恰好落到竖直圆弧轨道BCD的B端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D.已知∠BOC=37°,A、B、C、D四点在同一竖直平面内,水平桌面离B端的竖直高度H=0.45m,圆弧轨道半径R=0.5m,C点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P 点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:(1)质量为m2的物块在D点的速度;(2)判断质量为m2=0.2kg的物块能否沿圆轨道到达M点:(3)质量为m2=0.2kg的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s(2)不能沿圆轨道到达M点(3)2.7J【解析】【详解】(1)设物块由D点以初速度v D做平抛运动,落到P点时其竖直方向分速度为:v y22100.45gR=⨯⨯m/s=3m/syDvv=tan53°43=所以:v D=2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m2vR,解得:v322gR==m/s物块到达P的速度:22223 2.25P D yv v v=+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
(物理) 高考物理曲线运动专项训练100(附答案)
所谓程度确实是一个命题中所描述事物的特征(包括属性、
状态或关系等)的强度。程度化方法确实是给相关语言特征值
(简称语言值)附一个称为程度的参数, 以确切刻画对象的特征。
例如, 我们用
(胖, 0.9)
刻画一个人“胖”的程度。
我们把这种附有程度的语言值称为程度语言值。 其一般形式为
(LV, d)
其中, LV为语言值, d为程度,
8.1.5
所谓“单调”,是指一个逻辑系统中的定理随着推理的进行 而总是递增的。那么,非单调确实是逻辑系统中的定理随着推 理的进行而并非总是递增的, 确实是说也可能有时要减少。传 统的逻辑系统基本上单调逻辑。但事实上,现实世界却是非单 调的。例如,人们在对某事物的信息和知识不足的情况下,往往 是先按假设或默认的情况进行处理, 但后来发现得到了错误的 或者矛盾的结果, 那么就又要撤消原来的假设以及由此得到的 一切结论。这种例子不论在日常生活中依然在科学研究中基本 上屡见不鲜的。这就说明,人工智能系统中就必须引入非单调 逻辑。
需要指出的是, 程度语言值中的程度也能够转化为命题的 真度。 例如, 我们能够把命题“小明个子比较高”用程度元组
(小明, 身高, (高, 0.9)) 那个地方的0.9是小明高的程度。
((小明, 身高, 高), 真实性, (真, 0.9)) 那个地方的0.9是命题“小明个子高”的真实程度, 即真度。 如 此, 我们就把小明的个子高的程度, 转化为命题“小明个子高” 的真度, 而且二者在数值上是相等的。
(<语言值>, <程度>) 能够看出, 程度语言值实际是通常语言值的细化, 其中的< 程度>一项为哪一项对对象所具有的属性值的精确刻画。 至于 程度如何取值, 可因具体属性和属性值而定。例如可先确定一 个标准对象, 规定其具有相关属性值的程度为1, 然后再以此标 准来确定其他对象所具有该属性值的程度。如此, 一般来说, 程 度的取值范围确实是实数区间[α,β](α≤0,β≥1)。
物理曲线运动专项习题及答案解析
解得:
mg=m v2p R
vP gR 100.4 2m/s
(2)物块从 D 到 P 的过程,由机械能守恒定律得:
代入数据解得:
Ep=mg(sDC+sCB)sin37°+mgR(1+cos37°)+ 1 mvP2. 2
【答案】(1)滑块 B 与小球第一次碰前的速度为 95 m/s,碰后的速度为 0;(2)滑块 B
与小球第一次碰后瞬间绳子对小球的拉力 48N;(3)小球做完整圆周运动的次数为 10 次。 【解析】 【详解】 (1)滑块将要与小球发生碰撞时速度为 v1,碰撞后速度为 v1′,小球速度为 v2 根据能量守恒定律,得:
Ep=32.8J (3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能
量守恒定律得:
解得:
Ep=mg(sDC+s′CB)sin37°+mgR(1+cos37°)
s′CB=2.0m 点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物
理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.
mvC2 2
1 2
mvB2
代入数据解得:L=10m
2.如图所示,一质量 M=4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉 挡住。小车上表面由光滑圆弧轨道 BC 和水平粗糙轨道 CD 组成,BC 与 CD 相切于 C,圆弧 BC 所对圆心角 θ=37°,圆弧半径 R=2.25m,滑动摩擦因数 μ=0.48。质量 m=1kg 的小物块 从某一高度处的 A 点以 v0=4m/s 的速度水平抛出,恰好沿切线方向自 B 点进入圆弧轨道, 最终与小车保持相对静止。取 g=10m/s2,sin37°=0.6,忽略空气阻力,求:
高考物理曲线运动题20套(带答案)含解析(20211110230344)
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T1 1s 2 mg 04 2( H L )L【点睛】本题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决本题的重点.2. 小孩乐园里的弹珠游戏不单拥有娱乐性还能够锻炼小孩的眼手合一能力。
某弹珠游戏可 简化成如下图的竖直平面内OABCD 透明玻璃管道,管道的半径较小。
为研究方便成立平面直角坐标系, O 点为抛物口,下方接一知足方程y5 x 2 的圆滑抛物线形状管道 OA ;9AB 、BC 是半径同样的圆滑圆弧管道,CD 是动摩擦因数 μ=0.8 的粗拙直管道;各部分管道在连结处均相切。
A 、B 、C 、D 的横坐标分别为x ABCD=1.20m 、 x = 2.00m 、x = 2.65m 、 x =3.40m 。
已知,弹珠质量 m = 100g ,直径略小于管道内径。
高考物理曲线运动题20套(带答案)
高考物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上( 2)E P0.22 J(3) 0. 675m< L<1. 35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,圆弧轨道AB 是在竖直平面内的1圆周,B点离地面的高度h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自 A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从 B 点水平飞出,最后落到水平川面上的D 点.已知小物块落地址 D 到 C点的距离为x=4m,重力加快度为g=10m/ s2.求:(1)圆弧轨道的半径(2)小球滑到 B 点时对轨道的压力.【答案】(1)圆弧轨道的半径是 5m.(2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下.【分析】(1)小球由 B 到 D 做平抛运动,有: h= 1gt22Bx=v t解得:v B xg104210m / s 2h0.8A 到B 过程,由动能定理得:1mgR= mv B2-02解得轨道半径R=5m2(2)在 B 点,由向心力公式得:N mg mv BR 解得: N=6N依据牛顿第三定律,小球对轨道的压力N =N=6N ,方向竖直向下点睛:解决本题的重点要剖析小球的运动过程,掌握每个过程和状态的物理规律,掌握圆周运动靠径向的协力供给向心力,运用运动的分解法进行研究平抛运动.4. 如下图,一半径r = 0.2 m 的 1/4 圆滑圆弧形槽底端 B 与水平传递带相接,传递带的运行速度为 v 0= 4 m/s ,长为 L =1.25 m ,滑块与传递带间的动摩擦因数μ= 0.2, DEF 为固定于竖直平面内的一段内壁圆滑的中空方形细管, EF 段被弯成以 O 为圆心、半径 R = 0.25 m的一小段圆弧,管的D 端弯成与水平传带 C 端光滑相接, O 点位于地面, OF 连线竖直.一质量为 M = 0.2 kg 的物块 a 从圆弧顶端 A 点无初速滑下,滑到传递带上后做匀加快运动,事后滑块被传递带送入管 DEF ,已知 a 物块可视为质点, a 横截面略小于管中空部分的横截面,重力加快度 g 取 10 m/s 2.求:(1)滑块 a 抵达底端 B 时的速度大小 v ;B(2)滑块 a 刚抵达管顶 F 点时对管壁的压力. 【答案】( 1) v B 2m / s (2) F N 1.2N【分析】试题剖析:( 1)设滑块抵达B 点的速度为 v B ,由机械能守恒定律,有 M gr1Mv B 22解得: v B =2m/s(2)滑块在传递带上做匀加快运动,遇到传递带对它的滑动摩擦力,由牛顿第二定律 μMg =Ma滑块对地位移为 L ,末速度为 v C ,设滑块在传递带上向来加快由速度位移关系式 2 22Al=v C -v B得 v C =3m/s<4m/s ,可知滑块与传递带未达共速,滑块从 C 至 F ,由机械能守恒定律,有1Mv C2MgR1Mv F 222得 v F =2m/s在 F 处由牛顿第二定律 M g F Nv F 2MR得 FN =1. 2N 由牛顿第三定律得管上壁受压力为 1. 2N, 压力方向竖直向上考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑机遇械能守恒,物块在传递带上运动时,受摩擦力作用,依据运动学公式剖析滑块经过传递带时的速度,注意物块在传递带上的速度剖析.5.如下图,ABCD是一个地面和轨道均圆滑的过山车轨道模型,现对静止在 A 处的滑块施加一个水平向右的推力F,使它从 A 点开始做匀加快直线运动,当它水光滑行 2.5 m 时抵达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁圆滑的竖直固定圆轨道,并恰好经过最高点C,当滑块滑过水平BD 部分后,又滑上静止在 D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平川面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s 2,求:(1)水平推力 F 的大小;(2)滑块抵达 D 点的速度大小;(3)木板起码为多长时,滑块才能不从木板上掉下来?在该状况下,木板在水平川面上最后滑行的总位移为多少?【答案】( 1) 1N( 2)(3)t= 1 s ;【分析】【剖析】【详解】(1)因为滑块恰巧过 C 点,则有:m1g= m1从 A 到 C 由动能定理得:Fx- m1g·2R= m1 v C2- 0代入数据联立解得:F=1 N(2)从 A 到 D 由动能定理得:2Fx= m1v D代入数据解得:v D= 5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g= 3 m/s 2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2= 2 m/s2滑块恰巧不从木板上滑下,此时滑块滑到木板的右端时恰巧与木板速度同样,有:v 共= v D- a1 tv 共= a2t,代入数据解得:t= 1 s此时滑块的位移为:x1= v D t-a1t2,木板的位移为:x2= a2t2, L=x1- x2,代入数据解得:L= 2.5 mv 共= 2 m/sx2= 1 m达到共同速度后木板又滑行x′,则有:v 共2= 2μ2gx′,代入数据解得:x′= 1.5 m木板在水平川面上最后滑行的总位移为:x 木= x2+ x′=2.5 m点睛:本题考察了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的重点理清滑块和木板在整个过程中的运动规律,选择适合的规律进行求解.6.如下图,轻绳绕过定滑轮,一端连结物块A,另一端连结在滑环 C 上,物块 A 的下端用弹簧与放在地面上的物块 B 连结, A、B 两物块的质量均为m,滑环 C的质量为M,开始时绳连结滑环 C 部分处于水平,绳恰巧拉直且无弹力,滑轮到杆的距离为L,控制滑块4C,使其沿杆迟缓下滑,当 C 下滑L 时,开释滑环C,结果滑环 C 恰巧处于静止,此时B3恰巧要走开地面,不计全部摩擦,重力加快度为g.(1)求弹簧的劲度系数;(2)若由静止开释滑环C,求当物块 B 恰巧要走开地面时,滑环 C 的速度大小.3mg(2)10(2 M m) gL【答案】( 1)48m75ML【分析】【详解】(1)设开始时弹簧的压缩量为x,则 kx=mg设 B 物块恰巧要走开地面,弹簧的伸长量为x′,则 kx′=mg所以 x′= x=mgk由几何关系得 2x=L216 L2 2 L- L=93求得 x=L3得 k=3mgL(2)弹簧的劲度系数为k,开始时弹簧的压缩量为x1=当 B 恰巧要走开地面时,弹簧的伸长量mg L x2=3k所以 A 上涨的距离为h =x1+x2=2L 3C 下滑的距离H(L h)2L2=4L3依据机械能守恒1m(vH)2 1 Mv2MgH - mgh =2H 2L22(2 M m)gL求得v10mg L k37.如下图, P 为弹射器, PA、 BC为圆滑水平面分别与传递带AB 水平相连, CD为圆滑半圆轨道,其半径R=2m,传递带AB 长为 L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg 的物体(可视为质点)由弹射器P 弹出后滑向传递带经BC紧贴圆弧面抵达 D 点,已知弹射器的弹性势能所有转变为物体的动能,物体与传递带的动摩擦因数为=0.2.取g=10m/s2,现要使物体恰巧能经过 D 点,求:(1)物体抵达 D 点速度大小;(2)则弹射器初始时拥有的弹性势能起码为多少.【答案】( 1) 2 5 m/s;(2)62J【分析】【剖析】【详解】(1)由题知,物体恰巧能经过 D 点,则有:mg m v D2 R解得: v D gR 2 5 m/s(2)物体从弹射到 D 点,由动能定理得:W mgL2mgR1m v D202W E p解得: E p62J8.如下图,一质量为 m=1kg 的小球从 A 点沿圆滑斜面轨道由静止滑下,不计经过 B 点时的能量损失,而后挨次滑入两个同样的圆形轨道内侧,其轨道半径 R=10cm,小球恰能通过第二个圆形轨道的最高点,小球走开圆形轨道后可持续向 E 点运动, E 点右边有一壕沟, E、F 两点的竖直高度d=0.8m,水平距离 x=1.2m,水平轨道 CD 长为 L1=1m , DE长为L2=3m.轨道除 CD 和 DE 部分粗拙外,其他均圆滑,小球与 CD 和 DE 间的动摩擦因数2(1)小球经过第二个圆形轨道的最高点时的速度;(2)小球经过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能经过圆形轨道的最高点,又不掉进壕沟,求小球从 A 点开释时的高度的范围是多少?【答案】 (1)1m/s ( 2) 40N (3) 0.45m h0.8m 或 h 1.25m【分析】⑴小球恰能经过第二个圆形轨道最高点,有:2 mgmv 2R求得: υ2=gR =1m/s ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: - μmgL 1mv 2 2 12②1=- 2mv 12求得: υ22 gL 1 = 5 m/s21=2在最高点时,协力供给向心力,即F N +mg= m 1③R2求得: F N = m(1- g)= 40NR依据牛顿第三定律知,小球对轨道的压力为:F NN′ =F=40N ④⑵若小球恰巧经过第二轨道最高点,小球从斜面上开释的高度为 h1,在这一过程中应用动能定理有: mgh 111 22⑤- μ mgL - mg 2R =mv22求得: h 112=0.45m=2R+μL +2g若小球恰巧能运动到 E 点,小球从斜面上开释的高度为h 1,在这一过程中应用动能定理有: mgh - μ mg(L+L )=0- 0 ⑥21 2求得: h 21 2=μ (L+L )=0.8m使小球停在 BC 段,应有 h 12≤ h ≤h,即: 0.45m ≤ h ≤ 0.8m若小球能经过 E 点,并恰巧超出壕沟时,则有12d⑦d = gt 2→ t == 0.4s2gEtEx⑧ x=v →υ= t =3m/s设小球开释高度为h3,从开释到运动E 点过程中应用动能定理有:mgh 3 - μ mg(L 1+L 2)= 1mv E 2- 0⑨22求得: h 3 =μ1 2E=1.25m(L+L)+2g即小球要超出壕沟开释的高度应知足: h ≥1.25m综上可知,开释小球的高度应知足:0.45m ≤h ≤0.8m 或 h ≥1.25m ⑩9. 如下图,倾角 θ=30°的圆滑斜面上,一轻质弹簧一端固定在挡板上,另一端连结质量m B=0.5kg的物块B,B 经过轻质细绳越过圆滑定滑轮与质量m A=4kg的物块 A 连结,细绳平行于斜面, A 在外力作用下静止在圆心角为α=60°、半径R=lm的圆滑圆弧轨道的顶端a 处,此时绳索恰巧拉直且无张力;圆弧轨道最低端b 与粗拙水平轨道bc相切,bc与一个半径r=0.12m的圆滑圆轨道光滑连结,静止开释A,当 A 滑至b 时,弹簧的弹力与物块A 在顶端 d 处时相等,此时绳索断裂,已知bc长度为d=0.8m,求:(g取 l0m/s2)(1)轻质弹簧的劲度系数k;(2)物块 A 滑至 b 处,绳索断后瞬时,圆轨道对物块 A 的支持力大小;(3)为了让物块 A 能进入圆轨道且不脱轨,则物体与水平轨道bc间的动摩擦因数μ 应满足什么条件?【答案】(1)k5N / m()72N() 0.350.5或0.12523【分析】(1) A 位于 a 处时,绳无张力弹簧处于压缩状态,设压缩量为x对 B 由均衡条件能够获取:kx m B g sin当 A 滑至 b 时,弹簧处于拉伸状态,弹力与物块 A 在顶端 a 处时相等,则伸长量也为x,由几何关系可知:R 2x ,代入数据解得: k5N / m ;(2)物块 A 在 a 处和在 b 处时,弹簧的形变量同样,弹性势能同样由机械能守恒有:m A gR 1cos m B gR sin 1m A v A21m B v B2 22将 A 在 b 处,由速度分解关系有:v B v A sin代入数据解得:v A22m / s2在 b 处,对 A 由牛顿定律有:N b m A gm Av AR 代入数据解得支持力:N b72 N .(3)物块 A 不离开圆形轨道有两种状况:①不超出圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要知足:1m A gd01m A v A2 2恰能到圆心等高处时需要知足条件:m A gr2 m A gd01m A v A2 2代入数据解得:10.5,2 0.35②过圆轨道最高点,则恰巧过最高点时:v 2m A g m A r由动能定理有:2m A gr3m A gd1m A v21m A v A 222代入数据解得:3 0.125为使物块 A 能进入圆轨道且不脱轨,有:0.35 0.5 或0.125 .10. 某高中物理课程基地拟采买一种能帮助学生对电偏转和磁偏转理解的实验器械 .该器械的中心构造原理可简化为如下图 .一匀强电场方向竖直向下,以竖直线ab 、 cd 为界限,其宽度为 L ,电场强度的大小为 E3mv 02 . 在 cd 的左边有一与 cd 相切于 N 点的圆形有qL界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为 m ,电荷量为 q 的带正电粒子自 O 点以水平初速度 v 0 正对 M 点进入该电场后,从 N 点飞离 cd 界限,再经磁场偏转后 又从 P 点垂直于 cd 界限回到电场地区,并恰能返回O 点 .粒子重力不计 .试求:1 粒子从 N 点飞离 cd 界限时的速度大小和方向;2 P 、 N 两点间的距离;3 圆形有界匀强磁场的半径以及磁感觉强度大小;4 该粒子从 O 点出发至再次回到O 点的总时间.【答案】1 2v 0 ,方向与界限 cd 成 30o角斜向下; 25 3L , ;( 3) 5L ,8 48 3mv 0 ; 4 3L 5 3 L5qL2v 0 18v 0【分析】【剖析】(1)利用运动的合成和分解,联合牛顿第二定律,联立刻可求出粒子从 N 点飞离 cd 界限时的速度大小,利用速度倾向角公式即可确立其方向;( 2)利用类平抛规律联合几何关系,即可求出P、 N 两点间的距离;(3)利用洛伦兹力供给向心力联合几何关系,联立刻可求出圆形有界匀强磁场的半径以及磁感觉强度大小;( 4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,联合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立刻可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如下图:L粒子从 O 到 N 点时间: t 1=v0粒子在电场中加快度: a= qE=3v 02 m L粒子在 N 点时竖直方向的速度:v y 10=at = 3 v粒子从 N 点飞离 cd 界限时的速度: v=2v0v y=,故=600,即速度与界限cd 成 300角斜向下.速度偏转角的正切: tanθ=3v0θL(2)粒子从 P 到 O 点时间: t2= 2v0粒子从 P 到 O 点过程的竖直方向位移:y2=1at22= 3 L28粒子从 O 到 N 点过程的竖直方向位移:y1=12=3at L 212故 P、 N 两点间的距离为: Y PN=y1+y2= 53 L8(3)设粒子做匀速圆周运动的半径为r,依据几何关系可得:r cos600 +r= 5 3L 8解得粒子做匀速圆周运动的半径:r= 53L 12依据洛伦兹力供给向心力可得:qvB=m v2 r解得圆形有界匀强磁场的磁感觉强度: B=mv8 3mv0=qr5qL依据几何关系能够确立磁场地区的半径:R=2r cos300即圆形有界匀强磁场的半径: R=5L4(4)粒子在磁场中运动的周期:2πr T=v粒子在匀强磁场中运动的时间:2 5 3πL t 3=T=318v0粒子从 O 点出发至再次回到3L 5 3πL O 点的总时间: t=t 1+t2+t 3=+2v 018v 0【点睛】本题考察带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律联合运动学公式求解,粒子在磁场中的运动运用洛伦兹力供给向心力联合几何关系求解,解题重点是要作出临界的轨迹图,正确运用数学几何关系,还要剖析好从电场射入磁场连接点的速度大小和方向;运用粒子在磁场中转过的圆心角,联合周期公式,求解粒子在磁场中运动的时间.。
(物理) 高考物理曲线运动专项训练100(附答案)及解析
(物理) 高考物理曲线运动专项训练100(附答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
高考物理曲线运动专项训练100(附答案)及解析
高考物理曲线运动专项训练100(附答案)及解析一、高中物理精讲专题测试曲线运动1.“抛石机”是古代战争中常用的一种设备,如图所示,为某学习小组设计的抛石机模型,其长臂的长度L = 2 m ,开始时处于静止状态,与水平面间的夹角α=37°;将质量为m =10.0㎏的石块装在长臂末端的口袋中,对短臂施力,当长臂转到竖直位置时立即停止转动,石块被水平抛出,其落地位置与抛出位置间的水平距离x =12 m 。
不计空气阻力, 重力加速度g 取10m/s²,取水平地面为重力势能零参考平面。
sin37°= 0.6,cos37°= 0.8。
求:(1)石块在最高点的重力势能E P (2)石块水平抛出的速度大小v 0; (3)抛石机对石块所做的功W 。
【答案】(1)320J (2)15m/s (3)1445J【解析】(1)石块在最高点离地面的高度:h =L +L sin α=2×(1+0.6)m = 3.2m 由重力势能公式:E P =mgh=320J (2)石块飞出后做平抛运动 水平方向 x = v 0t竖直方向 212h gt =解得:v 0 = 15m/s(3)长臂从初始位置转到竖直位置过程, 由动能定理得: 2012W mgh mv -= 解得: W = 1445J点睛:要把平抛运动分解水平方向上的匀速和竖直方向上的自由落体运动。
2.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+3.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.4.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端分别拴着质量为m、2m的小球A和小物块B,开始时B静止在细管正下方的水平地面上。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
高考物理曲线运动真题汇编(含答案)
高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
2.一宇航员登上某星球表面,在高为2m处,以水平初速度5m/s抛出一物体,物体水平射程为5m,且物体只受该星球引力作用求:(1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s2;(2)1 10;【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
【物理】高考物理曲线运动专项训练100(附答案)含解析
【物理】高考物理曲线运动专项训练100( 附答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为 m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达M 点(3)2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR2 100.45 m/s=3m/svy4tan53 °v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v y232 2.252m/s=3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由 D 到 M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知x= 4t - 2t2,物块在桌面上过 B 点后初速度v B= 4m/s ,加快度为:a 4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数 :0.4质量 m1= 0.4kg 的物块将弹簧迟缓压缩到 C 点,开释后弹簧恢还原长时物块恰停止在B点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC 2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.2.如下图,圆滑的水平川面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
(物理)50套高考物理曲线运动及解析
(物理)50套高考物理曲线运动及解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m5.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v 0水平抛出,小球落在斜面上的某点P ,过P 点放置一垂直于斜面的直杆(P 点和直杆均未画出)。
高中物理曲线运动专项训练100(附答案)含解析
高中物理曲线运动专项训练100(附答案)含解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
高考物理曲线运动题20套(带答案)
高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
高考物理曲线运动题20套(带答案)
高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
【详解】(1)此题可以看成是无反弹的完整平抛运动,则水平位移为:x==v0t竖直位移为:H=gt2解得:v0=;(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)同理:x′=2nL=v′0t,H=gt′2解得:(n=1.2.3……)2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m,平台上静止放置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q点,小车的上表面左端点P与Q点之间是粗糙的,PQ间距离为L滑块B与PQ之间的动摩擦因数为μ=0.2,Q点右侧表面是光滑的.点燃炸药后,A、B分离瞬间A滑块获得向左的速度v A=6m/s,而滑块B则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v m s h ===⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.6.如图所示,轻绳绕过定滑轮,一端连接物块A,另一端连接在滑环C上,物块A的下端用弹簧与放在地面上的物块B连接,A、B两物块的质量均为m,滑环C的质量为M,开始时绳连接滑环C部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L,控制滑块C,使其沿杆缓慢下滑,当C下滑43L时,释放滑环C,结果滑环C刚好处于静止,此时B刚好要离开地面,不计一切摩擦,重力加速度为g.(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.【答案】(1)3mg L (2) 【解析】 【详解】(1)设开始时弹簧的压缩量为x ,则 kx=mg设B 物块刚好要离开地面,弹簧的伸长量为x′,则 kx′=mg 因此x ′=x =mg k由几何关系得 2x L =2 3L求得 x=3L得 k=3mgL(2)弹簧的劲度系数为k ,开始时弹簧的压缩量为x 1=3mg Lk = 当B 刚好要离开地面时,弹簧的伸长量 x 2=3mg Lk = 因此A 上升的距离为 h =x 1+x 2=23LC 下滑的距离 43L H == 根据机械能守恒 MgH −mgh =221122m Mv +求得 v =7.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J8.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】⑴小球恰能通过第二个圆形轨道最高点,有:22v mg m R=求得:υ2 ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=12mv 22−12mv 12 ②求得:υ1在最高点时,合力提供向心力,即F N +mg=21m Rυ ③ 求得:F N = m(21Rυ−g)= 40N根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =12mv 22 ⑤ 求得:h 1=2R+μL 1+222gυ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有d =12gt 2 ⑦ x=v E t →υE =xt=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=212E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22Egυ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩9.如图所示,倾角θ=30°的光滑斜面上,一轻质弹簧一端固定在挡板上,另一端连接质量m B =0.5kg 的物块B ,B 通过轻质细绳跨过光滑定滑轮与质量m A =4kg 的物块A 连接,细绳平行于斜面,A 在外力作用下静止在圆心角为α=60°、半径R=lm 的光滑圆弧轨道的顶端a 处,此时绳子恰好拉直且无张力;圆弧轨道最低端b 与粗糙水平轨道bc 相切,bc 与一个半径r=0.12m 的光滑圆轨道平滑连接,静止释放A ,当A 滑至b 时,弹簧的弹力与物块A 在顶端d 处时相等,此时绳子断裂,已知bc 长度为d=0.8m ,求:(g 取l0m/s 2) (1)轻质弹簧的劲度系数k ;(2)物块A 滑至b 处,绳子断后瞬间,圆轨道对物块A 的支持力大小;(3)为了让物块A 能进入圆轨道且不脱轨,则物体与水平轨道bc 间的动摩擦因数μ应满足什么条件?【答案】(1)5/k N m = (2)72N (3)0.350.5μ≤≤或0.125μ≤ 【解析】(1)A 位于a 处时,绳无张力弹簧处于压缩状态,设压缩量为x 对B 由平衡条件可以得到:sin B kx m g θ=当A 滑至b 时,弹簧处于拉伸状态,弹力与物块A 在顶端a 处时相等,则伸长量也为x ,由几何关系可知:2R x =,代入数据解得:5/k N m =; (2)物块A 在a 处和在b 处时,弹簧的形变量相同,弹性势能相同 由机械能守恒有:()22111sin 22A B A A B B m gR cos m gR m v m v αθ-=++ 将A 在b 处,由速度分解关系有:sin B A v v α= 代入数据解得:22/A v m s =在b 处,对A 由牛顿定律有:2Ab A A v N m g m R-= 代入数据解得支持力:72b N N =. (3)物块A 不脱离圆形轨道有两种情况: ①不超过圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要满足:21102A A A m gd m v μ-=-恰能到圆心等高处时需要满足条件:22102A A A A m gr m gd m v μ--=-代入数据解得:10.5μ=,20.35μ= ②过圆轨道最高点,则恰好过最高点时:2A A v mg m r= 由动能定理有:22311222A A A A A m gr m gd m v m v μ--=- 代入数据解得:30.125μ=为使物块A 能进入圆轨道且不脱轨,有:0.350.5μ≤≤或0.125μ≤.10.某高中物理课程基地拟采购一种能帮助学生对电偏转和磁偏转理解的实验器材.该器材的核心结构原理可简化为如图所示.一匀强电场方向竖直向下,以竖直线ab 、cd 为边界,其宽度为L ,电场强度的大小为203.mv E =在cd 的左侧有一与cd 相切于N 点的圆形有界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为m ,电荷量为q 的带正电粒子自O 点以水平初速度0v 正对M 点进入该电场后,从N 点飞离cd 边界,再经磁场偏转后又从P 点垂直于cd 边界回到电场区域,并恰能返回O 点.粒子重力不计.试求:()1粒子从N 点飞离cd 边界时的速度大小和方向;()2P 、N 两点间的距离;()3圆形有界匀强磁场的半径以及磁感应强度大小;()4该粒子从O 点出发至再次回到O 点的总时间.【答案】()012v ,方向与边界cd 成30o 角斜向下;(532L , ;(3)54L , 0835mv qL;()0035342L L v π 【解析】【分析】(1)利用运动的合成和分解,结合牛顿第二定律,联立即可求出粒子从N 点飞离cd 边界时的速度大小,利用速度偏向角公式即可确定其方向;(2)利用类平抛规律结合几何关系,即可求出P 、N 两点间的距离;(3)利用洛伦兹力提供向心力结合几何关系,联立即可求出圆形有界匀强磁场的半径以及磁感应强度大小;(4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,结合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立即可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如图所示:粒子从O 到N 点时间:t 1=0L v 粒子在电场中加速度:a=qE m 203v 粒子在N 点时竖直方向的速度:v y =at 130粒子从N 点飞离cd 边界时的速度:v=2v 0速度偏转角的正切:tan θ=y0v v 3故θ=600,即速度与边界cd 成300角斜向下.(2)粒子从P 到O 点时间:t 2=0L 2v 粒子从P 到O 点过程的竖直方向位移:y 2=221at 23 粒子从O 到N 点过程的竖直方向位移:y 1=211at 23 故P 、N 两点间的距离为:Y PN =y 1+y 2=53L 8(3)设粒子做匀速圆周运动的半径为r ,根据几何关系可得:r 0cos 60+r=53L 8 解得粒子做匀速圆周运动的半径:53 根据洛伦兹力提供向心力可得:qvB=m 2v r解得圆形有界匀强磁场的磁感应强度:B=mv qr 083mv根据几何关系可以确定磁场区域的半径:R=2r 0cos30即圆形有界匀强磁场的半径:R=5L 4(4)粒子在磁场中运动的周期:T=2πr v 粒子在匀强磁场中运动的时间:t 3=23粒子从O 点出发至再次回到O 点的总时间:t=t 1+t 2+t 3=03L 2v+0L 18v 【点睛】本题考查带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,还要分析好从电场射入磁场衔接点的速度大小和方向;运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【平抛运动问题】1.如图所示,射击枪水平放置,射击枪与目标靶中心位于离地面足够高的同一水平线上,枪口与目标靶之间的距离s=100 m,子弹射出的水平速度v=200m/s,子弹从枪口射出的瞬间目标靶由静止开始释放,不计空气阻力,取重力加速度g为10 m/s2,求:1)从子弹由枪口射出开始计时,经多长时间子弹击中目标靶?2)目标靶由静止开始释放到被子弹击中,下落的距离h为多少?2.跳台滑雪是勇敢者的运动,它是利用山势特别建造的跳台,运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观.设一位运动员由山坡顶部的A点沿水平方向飞出,到山坡上的B点着陆.如图所示,已知运动员水平飞的速度为v0=20 m/s,山坡倾角为θ=37°,山坡可以看成一个斜面.(g =10m/s2,sin 37°=0.6,cos 37°=0.8)求:1)运动员在空中飞行的时间t ;2)AB间的距离 s;3.一次扑灭森林火灾的行动中,一架专用直升飞机载有足量的水悬停在火场上空320 m高处,机身可绕旋翼的轴原地旋转,机身下出水管可以从水平方向到竖直向下方向旋转90°,水流喷出速度为30 m/s,不计空气阻力,取g=10 m/s2.请估算能扑灭地面上火灾的面积.(计算结果保留两位有效数字)4.质量为m=2 kg 的物体在光滑的水平面上运动,在水平面上建立x0y坐标系,t=0时,物体位于坐标系的原点0.物体在x轴和y轴方向上的分速度v x、v y随时间t变化的图象如图甲、乙所示.求:(1)t =3.0 s时,物体受到的合力的大小和方向;(2)t =8.0 s时,物体速度的大小和方向;(3)t =8.0 s时,物体的位置(用位置坐标x、y表示)5.在某次篮球运动中,球打到篮板上后垂直反弹,运动员甲跳起来去抢篮板,刚好没有碰到球,球从站在他身后的乙的头顶擦过,落到了地面上(如图所示).已知甲跳起的摸高是h1,起跳时距篮板的水平距离为s1,乙的身高是h2,站立处距甲的水平距离为s2,请根据这此数据求出篮球垂直反弹的速度v0.6.抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)(1)若球在球台边缘O点正上方高度为h1处以速度v1水平发出,落在球台的P1(如图实线所示),求P1点距O点的距离s1;(2)若球在O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台的P2点(如图虚线所示),求v2的大小;(3)若球在O点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3处,求发球点距O点的高度h3.7.一水平放置的水管,距地面高h =1.8 m,管内横截面积S =2.0 cm2.有水从管口处以不变的速度v=2.0 m/s源源不断地沿水平方向射出,设出口处横截面上各处水的速度都相同,并假设水流在空中不散开.取重力加速度g =10 m/s2,不计空气阻力.求水流稳定后在空中有多少立方米的水.8..如图所示,排球场总长18 m,设网的高度为2m,运动员站在网前的3 m线上正对网前紧直跳起把球水平击出。
若击球点的高度不够,无论球被水平击出的速度多大,球不是触网就是出界,则击球点的高度不低于多少?9.一水平放置的圆盘绕竖直固定轴转动,在圆盘上沿半径开有一条宽度为2 mm的均匀狭缝.将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于圆盘的上下两侧,且可以同步地沿圆盘半径方向匀速移动,激光器连续向下发射激光束.在圆盘转动过程中,当狭缝经过激光器与传感器之间时,传感器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线.图 (a)为该装置示意图,图(b)为所接收的光信号随时间变化的图线,横坐标表示时间,纵坐标表示接收到的激光信号强度,图中Δt1=1.0×10-3 s, Δt2=0.8×10-3 s.1)利用图(b)中的数据求1 s时圆盘转动的角速度;2)说明激光器和传感器沿半径移动的方向;3)求图(b)中第三个激光信号的宽度Δt3;【水平面上圆周运动】1.河流的拐弯处外测堤坝要更加坚固,这是由于内侧堤坝仅需承受水的静压强(p0+ρgh,p0为大气压强),而外侧堤坝除了受到静压强处,由于河流弯曲还要受到附加的动压强.设河流在转弯处宽度为b,水深为h,水的流速为v.拐弯处近似看成一半径为R的圆弧,求外侧堤坝内侧的底部受到的水平压强.(水的密度为ρ,重力加速度为g,b<<R).2.如图所示,表面粗糙的圆盘以恒定角速度ω匀速运动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径,弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离.(1)若m沿半径向内移动后,物体仍能与圆盘一起运动,且保持相对静止,k、m、ω需要满足什么条件?(2)若m沿半径向外移动后,物体仍能与圆盘一起转动,且保持相对静止,k、m、ω需要满足什么条件?3.某游乐场中有一种叫“空中飞椅”的游乐设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋.若将人和座椅看成是一个质点,则可简化为如图所示的物理模型.其中P为处于水平面内的转盘,可绕竖直转轴OO'转动,设绳长l =10 m,质点的质量 m=60 kg,转盘静止时质点与转轴之间的距离d =4 m.转盘逐渐加速度转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角θ=37°.(不计空气阻力及绳重,绳子不可伸长,sin 37°=0.6,cos37°=0.8,g=10 m/s2)求:1)质点与转盘一起做匀速圆周运动时转盘的角速度及绳子的拉力;2)质点从静止到做匀速圆周运动的过程中,绳子对质点做的功.4.有一种叫“飞椅”的游乐项目,示意图如图所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.5.如图所示,将10多个悬挂椅挂在圆形架的边缘上,圆形架的半径R =10 m,圆形架的转轴与竖直方向的夹角θ=15°,悬挂椅本身尺寸很小,可以自由摆动,已知当圆形架匀速运动时,悬挂椅在最低点处,与竖直方向的夹角为β=30°.求:(1)圆形架转动时的角速度大小;(2)悬挂椅摆到最高点时,椅和竖直方向的夹角α.(g取10 m/s2)【竖直面内圆周运动】1.如图所示,一个水平放置的圆桶线轴00'匀速转动,转动角速度ω=2.5π rad/s,桶壁上P处有一圆孔,桶壁很薄,桶的半径R=2 m当圆孔运动到桶的上方时,在圆孔的正上方h=3.2 m处有一个小球由静止开始下落,已知圆孔的半径略大于小球的半径.试通过计算判断小球是否和圆桶碰撞(不考虑空气阻力,g=10 m/s2)2.如图所示,光滑圆管的AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r R,有一质量为m,半径比r略小的光滑小球,以水平初速度v0射入圆管.1)若要小球能从C端出来,初速度v0应为多大?2)在小球从C端出来的瞬间,试探讨小球对管壁的压力有哪几种情况,初速度v0各应满足什么条件?3.一半径为R =25 m的四分之一光滑圆弧轨道,其下端与很长的水平雪道相接,如图所示,滑雪运动员在光滑圆弧轨道的顶端以水平速度v0=5 m/s 飞出,在落到光滑圆弧轨道上时,运动员靠改变姿势进行缓冲使自己只保留沿圆弧切线方向的分速度而不弹起,除缓冲过程外运动员可视为质点.设滑雪板与水平雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g=10 m/s2,关系式:x3 + x -10=(x - 2)(x2+ 2x + 5 )供参考)4.在用高级沥青铺设的高速公路上,汽车的设计时速是108km/h。
汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍。
1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?(取g=10m/s2)5.质量为m的小球由长为L的细线系住,细线的另一端固定在 A点,AB是过A的竖直线,且AB=L,E为AB的中点,过E作水平线 EF,在EF上某一位置钉一小钉D,如图9所示.现将小球悬线拉至水平,然后由静止释放,不计线与钉碰撞时的机械能损失.1)若钉子在E点位置,则小球经过B点前后瞬间,绳子拉力分别为多少?2)若小球恰能绕钉子在竖直平面内做圆周运动,求钉子D的位置离E点的距离x.3)保持小钉D的位置不变,让小球从图示的P点静止释放,当小球运动到最低点时,若细线刚好达到最大张力而断开,最后小球运动的轨迹经过B点.试求细线能承受的最大张力T.6.如图是电动打夯机的结构示意图,电动机带动质量为 m的重锤(重锤可视为质点)绕转轴0匀速转动,重锤转动半径为R.电动机连同打夯机底座的质量为M,重锤和转轴0之间连接杆的质量可以忽略不计,重力加速度为g.(1)重锤转动的角速度为多大时,才能使打夯机底座刚好离开地面?(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?7.某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。
已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。
图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。
问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2 )8.过山车是游乐场中常见的设施。
下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径12.0mR=、21.4mR=。
一个质量为 1.0m=kg的小球(视为质点),从轨道的左侧A点以012.0m/sv=的初速度沿轨道向右运动,A、B间距16.0L=m。
小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的。