基站天线角度的调试
基站天线的设置技术
基站天线的设置技术摘要:在移动通信中,天线的作用是将基站的射频信号有效地发射到规定的覆盖区域,使服务区域有效覆盖而不干扰其他的区域。
论述移动通信中基站天线设置的几个重点技术,并分析实际应用中天线设置的数据选取。
关键词:下倾角;方向角;分级;隔离中图分类号:TN828 文献标志码:A 文章编号:1000-8772(2009)18-0122-02一、下倾角设置(一)考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。
因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点为该基站的实际覆盖边缘。
在基站周围环境理想情况下,下倾角可按以下公式计算:θ=actan(H/R)+β/2θ为天线的下倾角,H为天线有效高度,β为天线的垂直半功率角。
R为该小区最远的覆盖距离,即覆盖长径R。
在理想情况下R=2D/3。
实际上天线的辐射方向图不可能完全适配三叶草型蜂窝结构。
水平半功率角为60度左右的天线与之比较接近,而水平半功率角为90度的天线则相差较大。
因此对于使用水平半功率角为90度天线的基站,取R=D/2,D为站间距离。
(二)考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。
为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点为该基站的实际覆盖边缘。
在基站周围环境理想情况下,下倾角可按以下公式计算:θ=actan(H/R)二、天线方向角的设置理想状况下,即在各基站均匀分布、不考虑地形地物等因素、各基站均为定向站的情况下,基站各扇区之间的夹角应均为120度,如此可以达到蜂窝网络的最小干扰。
但实际上由于基站分布极不规则,同时地形地物错综复杂,各基站的方向角可以根据实际情况确定。
为了减少混乱的方向角带来的网络干扰的不确定性,应尽量保证各扇区间天线的夹角为120度,最低要求不能小于90度。
三、天线挂高的设置基站天线的有效挂高对覆盖和干扰的影响是显而易见的。
基站天线方向性和倾斜角的设置和优化
基站天线方向性和倾斜角的设置和优化在移动通信网络中,基站天线的设置与倾斜角的优化是一项重要的工作。
通过合理设置天线方向性和倾斜角,可以提高网络的覆盖范围和信号质量,进而提升用户的通信体验。
本文将介绍基站天线方向性和倾斜角的设置和优化的相关知识和技术。
1. 基站天线方向性的设置和优化基站天线的方向性是指天线主瓣的辐射方向。
合理设置基站天线方向性可以使信号覆盖更加集中和聚焦,提高信号强度和覆盖范围。
在设置基站天线方向性时,需要考虑以下因素:1.1 综合考虑地形和建筑物地形和建筑物会对信号传播产生阻挡和衰减,因此,在设置基站天线方向性时需要结合地形和建筑物等因素进行综合考虑。
对于山区、丘陵地区或者高层建筑多的城市区域,可以选择采用高增益和窄波束宽度的天线,以增加覆盖范围。
1.2 考虑用户分布和流量分布根据用户和流量的分布情况,可以调整基站天线的方向性。
例如,在人口稠密的地区,可以将天线的主瓣指向人口聚集区域,以增加信号强度和覆盖范围。
1.3 考虑邻频干扰和同频干扰邻频干扰和同频干扰会对无线信号的传输和接收产生影响,因此,在设置基站天线方向性时需要考虑减小邻频干扰和同频干扰的影响。
可以通过调整基站天线的方向性和波束宽度,实现对干扰源的屏蔽或远离,从而减小干扰。
2. 基站天线倾斜角的设置和优化基站天线倾斜角是指天线挂角的调整,通过调整倾斜角可以改变天线的辐射方向和覆盖范围。
合理的设置和优化基站天线倾斜角可以达到以下目的:2.1 提高边缘区域的覆盖边缘区域的信号质量一般较差,通过调整基站天线的倾斜角可以增加信号到达边缘区域的能量,从而提高边缘区域的覆盖范围和信号质量。
2.2 避免重叠覆盖和干扰重叠覆盖和干扰会对网络性能产生负面影响,通过优化基站天线的倾斜角可以减小重叠覆盖区域和干扰范围,从而提高网络的容量和质量。
2.3 提高网络容量和信号质量根据用户的分布和流量需求,合理设置和优化基站天线的倾斜角可以增加网络容量和提高信号质量。
电信基站的施工方案与天线安装调试
电信基站的施工方案与天线安装调试随着移动通信技术的不断发展,电信基站的建设变得越来越重要。
本文将介绍电信基站的施工方案以及天线的安装和调试流程,以帮助读者对此有更全面的了解。
一、施工方案1. 地点选择在选择基站建设地点时,需要考虑到信号覆盖的范围和需求量。
通常选择海拔较高、无需要建筑物遮挡的地点,以确保信号的稳定传输。
2. 设备采购施工前需要采购必要的设备,包括天线、支架、馈线、接头等。
根据实际需求,选择合适的设备型号和数量。
3. 基站规划基站的规划包括天线的选址和整体布局。
优先选择合适的天线安装位置,再考虑其他设备的布置,以保证信号覆盖范围和传输质量。
4. 施工步骤(1)建设基站主体结构:包括铺设基站地基、搭建支架等。
(2)安装天线:根据规划好的位置,将天线固定在支架上,并连接馈线及接头。
(3)连接设备:将天线的馈线连接到设备端口,确保连接牢固。
(4)接地保护:为了保护设备和人身安全,必须进行接地保护措施,确保基站接地良好。
5. 施工注意事项(1)安全第一:施工人员必须具备安全意识,佩戴好安全帽、安全鞋等防护装备,遵守操作规程。
(2)施工质量:确保施工过程中的每一个环节都符合工程要求,保证基站设备的安全和稳定。
二、天线安装与调试1. 天线安装(1)安装位置选择:根据基站规划确定天线的安装位置,如屋顶、塔楼等。
(2)固定天线:使用螺栓或焊接等方式将天线固定在安装支架上,确保稳固可靠。
(3)连接馈线:将天线馈线与设备的馈线连接,注意接头的正确安装,确保连接良好。
2. 天线调试(1)信号质量检测:使用专业仪器检测天线所接收到的信号质量,包括信号强度、误码率等指标。
(2)调整方向:根据信号质量检测结果,调整天线的方向和角度,以获得更好的传输效果。
(3)参数调优:根据实际情况,调整设备的参数设置,如频率、功率等,以优化信号传输质量。
(4)故障排查:如果在调试过程中出现问题,需要进行故障排查,逐一排除可能影响信号传输的因素。
基站天线安装角度规范
基站天线安装角度规范引言基站天线的安装角度是影响无线通信系统覆盖范围和性能的重要因素之一。
为了确保基站天线的正常工作和网络的稳定性,制定基站天线安装角度规范是至关重要的。
本文将介绍基站天线安装角度规范的相关内容,帮助网络运维人员进行正确的安装和调整。
规范说明安装角度的定义基站天线的安装角度是指天线与地平面之间的夹角。
安装角度的调整可以影响天线的辐射方向和覆盖范围。
安装角度的调整原则在正常情况下,基站天线的安装角度应符合以下原则:1.垂直方向调整:基站天线的垂直方向调整应根据地理环境和网络需求来确定。
一般情况下,天线应垂直于地面安装,夹角误差不应超过5度。
2.水平方向调整:基站天线的水平方向调整应根据网络布局和覆盖需求来确定。
一般情况下,天线应朝向目标覆盖区域,夹角误差不应超过10度。
安装角度的调整步骤为了正确调整基站天线的安装角度,可以按照以下步骤进行:1.定位天线:在选择安装位置时,应考虑地理环境和网络布局,选择位置合适的地点安装基站天线。
2.安装天线:使用合适的安装工具将天线牢固地安装在支架上,确保天线的稳定性和固定度。
3.调整水平方向:使用天线调整工具或者电子设备,将天线调整到水平方向。
4.调整垂直方向:使用天线调整工具或者电子设备,将天线调整到垂直方向,并确保夹角误差不超过规定范围。
5.锁定天线:在调整完安装角度后,使用适当的螺丝或固定装置将天线固定住,避免因外力影响导致天线角度发生变化。
6.测试与验证:安装完毕后,进行相关的测试和验证,确保基站天线的覆盖范围和性能符合设计要求。
安装角度调整的注意事项1.避免天线与障碍物的干扰:在选择安装位置时,应尽量避开高楼大厦、电力设施等可能对天线信号造成干扰的障碍物。
2.考虑电磁辐射对人体的影响:安装人员在调整天线角度时,应注意个人安全,避免过度接触天线和暴露在辐射范围内。
3.定期维护与检查:基站天线安装角度的调整应定期进行检查和维护,及时发现和处理异常情况。
常见天线以及调整方法及规范
常见天线以及调整方法及规范常见天线以及调整方法及规范1、板状天线调整方式板状天线就是定向天线,板状天线是移动通信系统天线的一种,主要用于室外信号覆盖。
无论是GSM 还是CDMA、LTE,板状天线是用得最为普遍的一类极为重要的基站天线。
这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
1.1 天线方位角调整使用扳手等工具对锯齿夹码处的螺丝进行松动(上图中红圈位置),然后将天线以安装抱杆为中心转动调节,达到期望方位角后再次将螺丝拧紧固定好。
板状天线方位角调整范围比较大,可以根据实际需求调整.1.2 下倾角的调节1.2.1 机械下倾角的调节使用扳手等工具对连接臂处的螺丝进行松动(图片中红圈位置),然后对天线的机械角度进行调节,达到期望角度后将螺丝拧紧固定好。
电子下倾的调整1.2.2 电子倾角的调节板状天线电调有两种,一种是旋转调节,一种是插拔调节。
上图为旋钮式调节电调。
旋转旋钮(图中蓝色部分),电调滑标会移动,红色指针(图中箭头指示的地方)到达某一刻度电调即为多少度。
上图为插拔式调节电调。
在调节电子下倾的时候直接通过插拔电调滑标(图中红圈标示部分)即可对其进行调节,滑标漏出的刻度即为当前电子下倾值。
电子下倾的可调范围一般在天线标签上都有标示,如下图:2、美化天线的调节随着移动通信网络的迅速发展,传统基站天线与周边环境的冲突越来越大,很难融入周边的环境,因此直接影响到城市的美好环境。
另外,随着人们环保意识的提高,大多数市民因为对移动通信基站的不了解而对基站进入其周边大楼具有一种盲目的排斥心理。
这些都极大地加大了移动通信运营商基站物业协调、工程实施和基站维护等工作的难度。
天线美化工程作为一种手段,满足了人们对城市环境要求越来越高的需求,越来越受到有关各方的广泛关注。
美化天线一般可以分为以下几个类型分类:1、美化排气管2、美化集束3、美化路灯杆4、美化方柱5、美化空调6、其他美化天线2.1 美化天线的调整方式2.1.1 美化排气管河南联通LTE-FDD美化排气管目前已知只有京信和摩比两种天线方位角的测量中心点(上图中红圈内的点)对着的方向为天线的主控方向,也就是方位角,在测量时罗盘方向与主控方向一致,读出示数即为当前方位角。
基站天线调试与性能优化的最佳实践
基站天线调试与性能优化的最佳实践在现代通信网络中,基站天线调试与性能优化是确保通信系统稳定运行的关键环节。
本文将探讨基站天线调试与性能优化的最佳实践,从理论到实践,全面剖析如何提高基站天线的性能以及优化通信网络的效果。
天线调试是通信网络建设中至关重要的一环。
首先,天线的安装位置对通信信号的覆盖范围和质量有着直接影响。
在进行天线安装时,应充分考虑地形、建筑物以及其他物体的遮挡情况,选择合适的位置和方向安装天线,以最大程度地优化信号覆盖范围。
其次,天线的机械特性也是影响其性能的重要因素。
在安装过程中,应确保天线的机械结构完好,固定牢靠,避免因风吹雨打等外界因素导致天线松动或变形,从而影响通信质量。
针对基站天线的性能优化,一方面需要充分利用现代化的调试工具和仪器,如频谱分析仪、天馈线扫描仪等,对天线进行全面的性能测试和分析。
通过对天线的驻波比、增益、方向性等参数进行监测和调整,及时发现并解决天线存在的问题,提高其工作效率和性能。
另一方面,基站天线的性能优化还需要结合实际的网络环境和运行情况,进行系统性的优化调整。
例如,在高负荷时段增加天线数量,提高信号覆盖密度,以应对用户量剧增的情况;或者通过优化天线方向和天线倾角,减少信号干扰,提高通信质量。
此外,定期的维护和保养也是保证基站天线长期稳定运行的关键。
应定期对天线进行清洁和检查,及时发现并处理可能存在的故障和问题,确保通信网络的持续稳定性和可靠性。
综上所述,基站天线调试与性能优化是通信网络建设中不可或缺的环节。
通过合理的安装位置选择、机械结构保障、性能测试与调整以及系统优化等措施,可以有效提高基站天线的性能,优化通信网络的效果,为用户提供更加稳定、高效的通信服务。
通信基站天线安装质量检验与调试方法
通信基站天线安装质量检验与调试方法摘要:通信基站天线的安装质量检验与调试是保证通信网络正常运行和信号覆盖效果良好的关键环节。
本文将介绍通信基站天线安装质量检验与调试的一般方法和注意事项,帮助读者更好地了解和掌握相关知识。
关键词:基站天线;技术管理;研究总结;深化应用引言通信基站天线的安装质量检验与调试是确保通信网络正常运行和信号覆盖效果良好的关键步骤。
随着通信技术的不断发展,对于天线的安装质量要求也越来越高。
本文将介绍通信基站天线安装质量检验与调试的一般方法和注意事项,旨在帮助读者全面了解和掌握相关知识。
1通信基站天线安装质量检验与调试方法之间的关联通信基站天线安装质量检验与调试方法之间存在密切的关联。
它们共同构成了通信基站天线安装质量的全面保障。
首先,安装质量检验是在天线安装过程中进行的,其目的是确保天线本身的完好无损以及与其他设备之间的连接牢固可靠。
通过外观检查、连接检查、方向检测、馈线检查以及天线高度和俯仰角的检查,我们可以发现潜在问题并及时修复,保证天线的正确安装。
这些检验的高质量结果直接影响到后续的调试工作。
然后,调试是在天线安装完成后进行的,旨在优化天线的性能和提高信号覆盖效果。
通过信号测试、干扰排查、功率调整以及故障排除等调试方法,我们可以确保无线信号的覆盖范围和质量达到最佳状态。
调试的目标是解决信号弱或断网、干扰干扰等问题,保证通信网络的正常运行。
因此,安装质量检验和调试方法是一体两翼,相互依存、相互支持的。
只有通过严格的安装质量检验,确保天线安装正确无误,才能为调试工作提供良好的基础;而通过合理的调试方法,进一步优化天线的性能,才能让安装质量得到充分发挥和体现。
通信基站天线安装质量检验与调试方法是紧密关联的,它们共同确保了通信基站天线的安装质量和信号覆盖效果,保证了通信网络的正常运行和用户的通信需求。
2通信基站天线安装质量检验与调试过程中面临的问题2.1天线连接不牢固天线与其他设备之间的连接出现松动或接触不良,可以导致信号衰减或中断。
基站天线调试与性能优化的实用技巧
基站天线调试与性能优化的实用技巧在实际基站天线调试与性能优化中,掌握一些实用技巧是至关重要的。
本文将就这些技巧进行深入探讨,帮助读者更好地理解基站天线调试与性能优化的关键要点。
首先,要注意的是基站天线的安装位置。
合理选择安装位置可以最大程度地减少信号干扰和衰减,提高天线的接收和发送性能。
一般来说,天线应该远离高建筑、大型金属结构等可能影响信号传输的物体,并确保在开阔地区安装,以获得最佳的信号覆盖范围。
其次,调试天线时要注意天线的方向和角度。
根据实际情况,调整天线的方向和角度可以优化信号覆盖范围和信号质量。
通过使用专业的天线调试工具,可以准确地测量信号强度和质量,从而调整天线的方向和角度,使其达到最佳状态。
另外,保持天线清洁也是非常重要的。
天线表面的污物和尘埃会影响信号的传输和接收效果,降低天线的性能。
定期对天线进行清洁和维护,可以保持天线的良好状态,确保其正常工作。
此外,合理选择天线类型和天线参数也是优化基站性能的关键因素之一。
不同类型的天线适用于不同的环境和需求,选择合适的天线类型可以提高基站的性能和覆盖范围。
同时,根据实际情况调整天线的参数,如增益、波束宽度等,可以进一步优化基站的性能。
最后,定期检查和维护基站设备也是至关重要的。
及时发现和修复设备故障可以保证基站的正常运行,提高基站的稳定性和性能。
综上所述,掌握基站天线调试与性能优化的实用技巧对于提高基站性能和覆盖范围具有重要意义。
通过合理选择安装位置、调整天线方向和角度、保持天线清洁、选择合适的天线类型和参数,以及定期检查和维护基站设备,可以有效地优化基站的性能,提高通信质量和用户体验。
基站天线覆盖倾角调整
1 天 线下倾 角计 算 方法 对 于分布在市 区的基站 ,当天线无倾 角或倾角很 小时 ,各 小区的 实 际服务范围取决 于天 线高度 、方位 角 、增益 、发 射功率 ,以及 地形 地物等 ,此时覆盖半径 可以采用O u uaH t G M 0 ) O T 3 km r a — a( S 90 或C S 21
苴
i
’
、 、
圆 1千
俪 录 音 因
从 图1 可以看 出 ,当天线倾角为O 度时天线 波束 主瓣 即主要能量沿水 平方向辐射 ;当天线下倾 S 度时 ,主瓣方 向的延长线最终必将与地面一 点 (点 ) A 相交。由于天线在垂直方向有一定 的波束宽度 ,因此在A 点往 B 点方向 , 仍会有较强 的能量辐射到 。根据 天线技术性能 , 在半功率角 内, 天线增益下降缓慢 ; 超过半功率角后 ,天线增益迅速下降 ,因此在 考虑天线倾角大小 时可 以认 为半功率 角延 长线到地平 面交 点 ( 点 )内 B 为该天线 的实际覆盖范 围。根据上述分析以及 三角几何原理 ,可以推导 出天线高度、下倾角、覆盖距离三者之间的关 系为 :
= rtn l ) aca f/ D () 2 其 中:覆盖 目 标距离为D ,天线 高度为H m , 角为 ; ㈤ () 倾 。 例如 :假设有一 位于 山顶 的全 向站 ,天线相对 山下路 面的高度为 72 ( 40 尺 ,忽略 手机天线 高度 ),如果 要改善 1公里 ( . 3米 2 0英 O 62 英 里 ) 的覆盖 ,天线倾角应该为4 度 。对于该 全向站 ,如果覆盖 目 处 . 2 标明 确 ,可以采用预置4 度倾角 的电子下倾全 向天线 ;如果不想影响更远处 的覆盖 ,可以选择有零点填充 的全向天线 。 覆盖 目 标距离与倾角 的关系如图2 :
《精确调整天线方位角的实操指南》
温馨小提示:本文主要介绍的是关于《精确调整天线方位角的实操指南》的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇《精确调整天线方位角的实操指南》能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)《精确调整天线方位角的实操指南》一、前言在现代通信技术中,天线方位角的准确调整对于信号的稳定性和质量有着至关重要的作用。
无论是对于无线电通信、卫星通信,还是移动通信,天线的指向直接影响到传输的效率和可靠性。
因此,理解并掌握天线方位角的调整技巧,对于无线通信工程师和维护技术人员来说,都是必备的专业知识。
天线方位角调整的重要性天线方位角的调整,是指根据通信需要,精确改变天线波束的指向。
这一过程对于提高通信质量、增大覆盖范围、减少干扰和提高频率利用率等方面都有着显著影响。
例如,在无线电广播中,正确的天线方位角调整能够使得信号覆盖更加均匀,提升广播质量;在卫星通信中,方位角的微调可以确保信号的最优路径传输,降低信号衰减和延迟;在移动通信基站的建设中,通过精确的天线指向调整,可以避免或减少基站间的干扰,提高网络的整体性能。
实操指南的目的与意义本实操指南的制定,旨在为通信工程技术人员提供一套系统、实用的天线方位角调整操作指导。
通过本指南的学习,用户不仅能够了解到天线方位角调整的理论基础,更能够通过实操步骤的学习,掌握天线调整的精确方法。
此外,本指南还提供了多种情景下的实操案例,帮助读者在实际工作中遇到问题时,能够迅速找到解决方案。
本指南的内容遵循了通信技术实操的规范要求,避免理论上的抽象和脱离实际,力求使每一个实操步骤都具有可操作性和实用性。
一种调整通信基站天线方位角的方法与流程
一种调整通信基站天线方位角的方法与流程随着通信技术的不断发展,通信基站的建设和维护成为了现代社会不可或缺的一部分。
而通信基站的天线方位角调整,对于提高通信质量和覆盖范围具有重要意义。
本文将介绍一种调整通信基站天线方位角的方法与流程,希望能对相关从业人员提供一定的参考和帮助。
一、方法概述1.1 目的和意义通信基站的天线方位角调整,旨在优化信号覆盖范围,提高通信质量,解决盲区和弱覆盖等问题,从而更好地满足用户的通信需求,提升通信运营商的竞争力。
1.2 调整原理通信基站的天线方位角调整,是通过改变天线的方向,调整信号的辐射范围和覆盖角度,从而实现信号覆盖范围的优化和调整。
1.3 方法优势本方法采用先进的调整设备和精确的调整流程,能够提高调整精度和效率,减少人力资源的浪费,确保调整效果和通信质量的提升。
二、调整流程2.1 调整前准备在进行天线方位角调整之前,需要对调整设备和相关工具进行检查和准备,确保设备的正常运转和调整所需的准备工作。
2.2 基站确认与准备确认需要进行天线方位角调整的通信基站信息,包括基站名称、编号、位置、当前方位角等相关信息。
对通信基站进行安全检查和准备工作,确保调整过程的安全进行。
2.3 调整设备连接将调整设备与通信基站进行连接,确保设备与基站的通信畅通,能够准确获取基站的信号参数和调整参数。
2.4 参数获取与分析通过调整设备获取通信基站的信号参数和调整参数,对当前信号的覆盖情况和调整需求进行分析和评估,确定需要调整的方位角范围和调整幅度。
2.5 调整操作与监测根据参数分析结果,通过调整设备对通信基站的天线方位角进行实时调整,同时监测调整过程中的信号变化和效果,及时调整和应对可能出现的问题。
2.6 调整结果确认在完成天线方位角调整之后,对调整结果进行确认和评估,观察调整效果和信号覆盖情况,确保调整结果达到预期的效果和要求。
2.7 调整报告与记录根据调整结果和调整过程,编制调整报告和记录,包括调整时间、参数信息、调整效果、存在问题和解决方案等内容,作为调整结果的确认和调整效果的评估。
基站天线的下倾角设置建议(1)
基站天线的下倾角设置建议一、 下倾角概述基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。
基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。
合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA 网络而言),而且可以加强本基站覆盖区内的信号强度。
通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。
这两个侧重方向分别对应不同的下倾角算法。
一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。
1.1.考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。
因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B 点)为该基站的实际覆盖边缘。
在基站周围环境理想情况下,下倾角可按以下公式计算。
α=actan (H/R )+β/2 公式一倾角θ天线高度同频小区基站天线覆盖示意图覆盖距离服务区异频区图1、 基站天线控制干扰时的下倾角应用图其中α为天线的下倾角,H 为天线有效高度,β为天线的垂直半功率角。
R 为该小区最远的覆盖距离,即覆盖长径R 。
1.2.考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。
为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。
在基站周围环境理想情况下,下倾角可按以下公式计算。
α=actan(H/R)公式二公式二含义如下图所示。
图二、基站天线控制信号强度时的下倾角应用图二、下倾角设置的应用分析2.1.下倾角分类目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。
天线下倾角设置参考表
天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。
由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。
1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。
(1)为减少干扰,应选用水平半功率角接近于60度的天线。
这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。
如下图所示。
(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。
由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。
(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。
综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。
例如水平半功率角为65度的15dBi双极化天线。
2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。
但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。
此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。
所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。
3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。
(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在这种情况下,我们必须减小基站的覆盖范围,降低天线的高度,否则会严重影响我们
的网络质量。其影响主要有以下几个方面பைடு நூலகம்
a. 话务不均衡。基站天线过高,会造成该基站的覆盖范围过大,从而造成该基站的话务量很大,而与之相邻的基站由于覆盖较小且被该基站覆盖,话务量较小,不能发挥
根据覆盖公式:
下倾角=Atan(天线高度h/覆盖距离)*180/Pi+V-HPBW/2+经验修正值,在乡村修正值为0、市区为1、基站密集区为2ioK
具体说明:
天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下:
S=2R(H+h)$(哦*K:JFD本文来自移动通信网,版权所有
(c) 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取 1.6~3km;
(d) 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3~5km;若基站位
于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。 以上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全 s也f12dK:JFD()本文来自移动通信网,版权所有
链路损耗计算:
基站的选址和布局直接影响到整个系统的服务质量情况。因此,根据合适的传播模型及路径损耗,可以计算出基站的覆盖半径。
在过去的基站覆盖半径计算中,典型的传播模型是Hata城市传播模型。Hata模型如(1)式表述:
Hata城市传输模型:
L=46.3+33.9log(f)-13.82log(Hb)+(44.9-6.55log(Hb))log(d)+Cm……(1)
其中:R-地球半径,约为6370km;
H-基站天线的中心点高度;
h-手机或测试仪表的天线高度。
由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度决定的。
天线下倾角的调整
天线俯仰角的调整是网络优化中的一个非常重要的事情。选择合适的俯仰角可以使天线至本小区边界的射线与天线至受干扰小区边界的射线之间处于天线垂直方向图中增益衰减变化最大的部分,从而使受干扰小区的同频及邻频干扰减至最小;另外,选择合适的覆盖范围,使基站实际覆盖范围与预期的设计范围相同,同时加强本覆盖区的信号强度。
天线高度的调整
天线高度直接与基站的覆盖范围有关。一般来说,我们用仪器测得的信号覆盖范围受两方向因素影响:
一是天线所发直射波所能达到的最远距离;
二是到达该地点的信号强度足以为仪器所捕捉。
900MHz移动通信是近地表面视线通信,天线所发直射波所能达到的最远距离(S)直接与
收发信天线的高度有关,具体关系式可简化如下:
3G传播模型:
L=149.32-18log(Hb)+40(1-0.004Hb)log(d) ……(4)
电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。
L=40(1-0.004Hb)log(d)-18log(Hb)+21log(f)+80 ……(2)
其中,各参数的意义同(1)式。
在WCDMA中,当f=2000MHz时,则上述两式简化为:
Hata城市传播模型:d知
L=161.17-13.82log(Hb)+(44.9-6.55log(Hb))log(d) ……(3)
现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"
与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区
的信号时,很容易因没有切换关系而引起掉话。
电子下倾角与物理下倾角作用是一样的,就是控制天线主瓣的覆盖范围。电子的优点是下倾后旁瓣不会扩展太多。判断是否需要下倾角主要还是根据预测的主瓣覆盖距离和天线高度进行计算。这种计算是一种繁琐的计算过程,其实目前有很多天线覆盖计算软件,不过原理都是基于下面的思想:
其中,L为最大路径损耗(dB);
f为载波频率(MHz);
Hb为天线高度(米);
d为到基站的距离(千米)。
中等规模城市或市郊中心,树木的稀疏程度中等时:Cm=0,
大城市市区中心:Cm=3。fds1fads不针对3G系统,3G组织也特别推荐了一个模型,该传播模型如下:
天线的覆盖范围主要取决于天线高度、下倾、天线增益、天线口功率、无线链路等因素。
一般网络规划对市区可按照:
(a) 繁华商业区;
(b) 宾馆、写字楼、娱乐场所集中区;
(c) 经济技术开发区、住宅区;
(d)工业区及文教区;等进行分类。
一般来说:
(a)(b)类地区应设最大配置的定向基站,如8/8/8站型,站间距在0.6~1.6km;
常用的有内置电机和外置电机两种驱动方式。一般有手动和遥控调节。内置电调,是已经改变了功率分配,出厂前就有几度的下倾。
A小区:方向角度0度,天线指向正北;
B小区:方向角度120度,天线指向东南;
C小区:方向角度240度,天线指向西南。
在GSM建设及规划中,我们一般严格按照上述的规定对天线的方位角进行安装及调整,这也是天线安装的重要标准之一,如果方位角设置与之存在偏差,则易导致基站的实际覆盖与所设计的不相符,导致基站的覆盖范围不合理,从而导致一些意想不到的同频及邻频干扰。
一般来说,俯仰角的大小可以由以下公式推算:
θ=arctg(h/R)+A/2oitre4328K:
其中:θ--天线的俯仰角东
h--天线的高度
R--小区的覆盖半径
A-天线的垂直平面半功率角
上式是将天线的主瓣方向对准小区边缘时得出的,在实际的调整工作中,一般在由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地覆盖在本小区之内。
在目前的移动通信网络中,由于基站的站点的增多,使得我们在设计市区基站的时候,一般要求其覆盖范围大约为500M左右,而根据移动通信天线的特性,如果不使天线有一定的俯仰角(或俯仰角偏小)的话,则基站的覆盖范围是会远远大于500M的,如此则会造成基站实际覆盖范围比预期范围偏大,从而导致小区与小区之间交叉覆盖,相邻切换关系混乱,系统内频率干扰严重;另一方面,如果天线的俯仰角偏大,则会造成基站实际覆盖范围比预期范围偏小,导致小区之间的信号盲区或弱区,同时易导致天线方向图形状的变化(如从鸭梨形变为纺锤形),从而造成严重的系统内干扰。因此,合理设置俯仰角是保证整个移动通信网络质量的基本保证。
向或二小区基站,站间距离5km-20km左右。ouierpoej道K:JFD()
覆盖的目的就是为了给客户带来更好无线业务服务,不过还需要注意几个方面:
1、看覆盖环境,不同的地区采用不同下倾方式和天线挂高;
2、看天线类型、参数,是否带电倾角,看天线参数以及其方向图进行评估;
3、实地CQT测试,更加贴近用户的方式。
答:天线下倾角的调整是网络优化中的一个非常重要的事情。选择合适的下倾角可以使天线至本小区边界的射线与天线至受干扰小区边界的射线之间处于天线垂直方向图中增益衰减变化最大的部分,从而使受干扰小区的同频及邻频干扰减至最小;另外,选择合适的覆盖范围,使基站实际覆盖范围与预期的设计范围相同,同时加强本覆盖区的信号强度。电子下倾角与物理下倾角作用是一样的,就是控制天线主瓣的覆盖范围。电子的优点是下倾后旁瓣不会扩展太多。本文来自移动通信网,版权所有
天线方向角的调整对移动通信的网络质量非常重要。一方面,准确的方向角能保证基站的实际覆盖与所预期的相同,保证整个网络的运行质量;另一方面,依据话务量或网络存在的具体情况对方向角进行适当的调整,可以更好地优化现有的移动通信网络。
根据理想的蜂窝移动通信模型,一个小区的交界处,这样信号相对互补。与此相对应,在现行的GSM系统(主要指ERICSSON设备)中,定向站一般被分为三个小区,即:
应有作用,导致话务不均衡。
b. 系统内干扰。基站天线过高,会造成越站无线干扰(主要包括同频干扰及邻频干
扰),引起掉话、串话和有较大杂音等现象,从而导致整个无线通信网络的质量下降。
c. 孤岛效应。孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等
特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出
公式 B=arctg(H/R)+A/2,
天线高度H,
所希望得到的覆盖半径R,
天线垂直平面的半功率角A,
B就是天线的倾角。
该算法是以天线垂直波瓣的外边界作为覆盖的,也可以根据主瓣方向作边界,你可以根据三角形公式自行推算DC= H/tan(a-HPBW/2)
转换过来就是:a=arctan(H/DC)+HPBW/2;
S=2R(H+h)
其中:R-地球半径,约为6370km;