数值分析06总复习

合集下载

数值分析复习资料

数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

数值分析期末复习资料

数值分析期末复习资料

数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。

2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。

数值分析期末复习要点总结

数值分析期末复习要点总结

故一般取相对误差为
er x*
e x* x*
x x* x*
如果存在正数 r 使得
er x*
ex*
x*
r
则称 r为 x*的相对误差限.
(1-4)
4
绝对误差、相对误差和有效数字
有效数字
如果近似值 x* 的误差限是 1 10n 则称x*
2
准确到小数点后第n位,并从第一个非零数字到 这一位的所有数字均称为有效数字.

e(x* ) x x*
(1-2)
通常称 为近似值 x* 的绝对误差限,简称误差限.
定义2 设 x* 为准确值 x 的近似值,称绝对误差与
准确值之比为近似值 x* 的相对误差,记为 er (x* )

er
x*
ex*
x
x
x* x
(1-3) 3 3
绝对误差、相对误差和有效数字
由于在计算过程中准确值 x 总是未知的,
设 z0(x), z1(x), ... , zn(x) 构成 Zn(x) 的一组基,则插值多项式 P(x) = a0z0(x) + a1z1(x) + ···+ anzn(x)
通过基函数来构造插值多项式的方法就称为基函数插值法
基函数法基本步骤
① 寻找合适的基函数
② 确定插值多项式在这组基下的表示系数
数值分析
期末复习要点总结
1
第一章 误差
一. 误差的来源: 1.模型误差 2.观测误差 3.截断误差 4.舍入误差
二. 绝对误差、相对误差和有效数字
2
第一章 误差
2
绝对误差、相对误差和有效数字
定义1 设 x* 为准确值x的一个近似值,称

数值分析期末复习(整理版)

数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。

(整理)《数值分析》期末复习纲要.

(整理)《数值分析》期末复习纲要.

《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。

特点:可正可负,带量纲。

(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。

注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。

2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。

数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。

P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。

(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。

迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。

主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。

(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。

数值分析复习题及答案

数值分析复习题及答案


.
y y x2 y
y1 1
的计 算公
16. 设 x* 2.40315是真值 x 2.40194 的近似值,则 x* 有
位有效数字。
17. 对 f ( x) x3 x 1, 差商 f [0,1,2,3] (
)。
18. 设 X
(2,
T
3,7) ,
则 || X ||

n
C ( n) k
19. 牛顿—柯特斯求积公式的系数和 k 0
15. 设初值问题 的公式;
y 3x 2y
0 x1
y(0) 1
. (1)
写出用 Euler 方法、 步长 h=解上述初值问题数值解
(2) 写出用改进的 Euler 法(梯形法)、步长 h=解上述初值问题数值解的公式,并求解
y1, y2 ,保留两位小数。 16.
取节点 x0
0, x1
0.5, x2
1,求函数 y
.
f x1, x2
2. 设一阶差商
f x2 x2
f x1 x1
14 21
3 f x2, x3

f x3 f x2 x3 x2
61 5 42 2
则二阶差商 f x1, x2, x3 ______
3. 设 X (2, 3, 1)T , 则 || X ||2
, || X ||

4.求方程 x2 x 1.25 0 的近似根,用迭代公式 x x 1.25 ,取初始值 x0 1 , 那么

8、若线性代数方程组 AX=b 的系数矩阵 A为严格对角占优阵,则雅可比迭代和高斯


- 塞德尔迭代
9、解常微分方程初值问题的欧拉( Euler )方法的局部截断误差为

数值分析总复习

数值分析总复习

A
4
5
4,
X
x2
,
8 4 22
x3
解: l11 a11 16 4,
l21 a21 l11 4 4 1,
l31 a31 l11 2,
4
b
3
.
10
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 19 第20页/共36页
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 18 第19页/共36页
一. 用平方根法求线性方程组AX=b, 其中
16 4 8
x1
26
第27页/共36页
六. 确定求解初值问题
y' f ( x, y), a x b,
y(a)
y0 .
的二步隐式Adams方法
yn1
yn
h 12
(5
fn1
fn
fn1 )
中的参数, 使该方法成为三阶方法, 并写出其局部截断误差主项.
可用数值积分方法或Taylor展开方法
8,
Rn1
1 24
h4
解 (1) 由已知, 当 f (x)分别为1, x, x2时, 求积公式等号成立. 即
11x3dx 1
0 1dx 14
11 2
((1x13
1)x23
)
2
故该公式具有3次代数精确度.
1 xdx 1
0

数值分析总复习

数值分析总复习

样条插值;整体连续光滑,且不需知导数值。
插值问题提法:已知
x y f(x)
x0 y
x1 y
xn y
0
1
n
求一个三次分段函数 S(x) 使
1,
S(
xi
)
y i
x x 2, 在 [ , ] 上是三次多项式
i
i 1
C 3, S(x) 2 ( a,b )
i 0, 1, , n
计算三次样条算法
由边界条件 i , i , , i 0 ,1,, n
插值基函数方法
插值问题解的一般形式 :
n (x) a0 a1 x an xn
(1 )
实质上是在求多项式的 自然基底 Bn Span{1, x , ,xn}
张成的线性空间中的一 个点 —一个多项式 (1) ,由(2 18)
式知,解存在唯一 ,只要解方程组求出线 性组合系数 {ai}
就可以了 , 但计算量太大 .
定理2.5(余项) .
(2 - 35)
设H (x)是过 x0 , x1 的 Hermite 插值多项式 , C f f(x) 3 , ( 4 )(x)在 (a,b) 内存在, (a,b)是
(a,b)
含点 x0 , x1 的任一区间, 则对任意给定的
x (a,b) 总存在一点ξ (x)使
R(x)
f(x) H(x)
f
( 4 )(ξ
4!
)
(x
x0
)2(x
x1
)2
分段三次 Hermite 插值多项式及余项
∑ y h m H n
H (x) [ (x)
( x)]
i0
ii
ii
定理2.7(余项) :

数值分析期末复习要点总结

数值分析期末复习要点总结
11
11
数值计算中的一些原则 1.避免两个相近的数相减 2.避免大数“吃”小数的现象
3.避免除数的绝对值远小于被除数的绝对值 4.要简化计算,减少运算次数,提高效率 5. 要有数值稳定性,即能控制舍入误差的传播
例如 为提高数值计算精度, 当正数x充分大时,应将
2x 1 2x 1 改写为
2 2x 1 2x 1
解: 为了减小截断误差,通常选取插值点 x 邻接的插值节点
线性插值:取 x0=0.5, x1=0.6 得
L1( x)
y0
x x1 x0 x1
y1
x x0 x1 x0
0.1823 x
1.6046
将 x=0.54 代入可得:ln 0.54 L1(0.54) =-0.6202
18
抛物线插值:取 x0=0.4, x1=0.5, x2=0.6, 可得 ln 0.54 L2(0.54) =-0.6153
一般地,如果近似值 x* 的规格化形式为
x* 0.a1a2 an 10 m
(1-5)
其中m为整数,a1 0, ai i 1,2, 为0到9之间的整数.
如果
x x* 1 10mn 2
则称近似值 x* 有n位有效数字.
(1-6)
例如 x* 1.414 0.1414101.
2 1.414 1 103 1 1014
xi ƒ(xi) 一阶 二阶差商 三阶差商 … n 阶差商 差商
x0 ƒ(x0)
x1 ƒ(x1) ƒ[x0, x1]
x2 ƒ(x2) ƒ[x1, x2] ƒ[x0, x1, x2]
x3 ƒ(x3) ƒ[x2, x3] ƒ[x1, x2, x3] ƒ[x0, x1, x2, x3]

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

数值分析期末复习知识点

数值分析期末复习知识点

第一章(有效数字位数)1、经四舍五入取近似值,其绝对误差限不超过末尾数字的半个单位。

2、设X*为准确值,X为近似值,称e=X*-X为近似值X的绝对误差,简称误差(显然e可正可负,准确值X*未知,因此e的准确值无法求出)3、|e|=|X-X*|≤ŋ,则称ŋ为近似值X的绝对误差限,简称误差限。

4、e r=e/X*称为相对误差,由于准确值X*总是未知的,所以也把e r*=e/X称为近似值X的相对误差5、|e r*|=|e/X|≤ŋ*,则称ŋ*为近似值X的相对误差限6、设X是X*的近似值,如果|X*-X|≤1/2×10-k,则称用X近似值表示X*时准确到小数点后第k位,并称从小数点后第k位起,直到最左边的非零数字之间的所有数字为有效数字,称有效数字的位数为有效数位。

7、设X是X*的近似值,X=±10m×0.a1a2…,其中a i(i=2,3…)是0到9之间的自然数,a1≠0,m为整数,如果|X*-X|≤1/2×10m-n,那么称近似值有n位有效数字。

8、四舍五入所得到的数均为有效数字,但并不是说非四舍五入所得到的数不能为有效数字。

第二章、非线性方程求根(不动点迭代、牛顿法、弦截法、快速弦截法、局部收敛、全局收敛、收敛阶)1、不动点迭代法(迭代法)(单根区间求解方法):将非线性方程f(x)=0化为一个同解方程x=ø(x),若要求f(x*)=0,则x*=ø(x*),称x*为f(x)的零点,为ø(x)的一个不动点。

2、定理:设迭代函数ø(x)在【a,b】上连续,且满足(1)当x∈【a,b】时,a≤ø(x)≤b,(2)存在一正数L,满足0<L<1,且∀x∈【a,b】,有|ø/(x)|≤L<1。

则1、方程x=ø(x)在【a,b】内有唯一解x*。

2、对于任意初值x0∈【a,b】,迭代法x k+1=ø(x k)均收敛x*3、设ø(x)有不动点x*,如果存在x*的一个邻域 S:|X*-X|< ŋ,对任意初值x0∈S,迭代过程x k+1=ø(x k)均收敛,则称迭代过程在根x*邻近局部收敛。

数值分析总复习提纲

数值分析总复习提纲

数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。

在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。

一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。

基本的问题是(1)1()(01)(1)!n n f x x n θεθ++<<<+,已知ε求n 。

例1.1:计算e 的近似值,使其误差不超过10-6。

解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。

由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n θθ+=+++++<<+当x=1时,1111(01)2!!(1)!e e n n θθ=+++++<<+故3(1)(1)!(1)!n e R n n θ=<++。

当n =9时,R n (1)<10-6,符合要求。

此时,e≈2.718 285。

2、绝对误差、相对误差和误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。

基本的计算公式是:①e(x)=x *-x =△x =dx② *()()()ln r e x e x dxe x d x x x x==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x =⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,))((,))(,)f x x f x x f x x εδ=⑦注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式或,这样计算简单。

数值分析复习总结

数值分析复习总结

数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。

观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。

解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。

已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。

理工类专业课复习资料-数值分析知识点总结

理工类专业课复习资料-数值分析知识点总结

数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。

一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r r e ε=的一个上界。

有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。

即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。

其中m 位该数字在科学计数法时的次方数。

例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。

2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。

对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。

(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档