实验3 三线摆法测定物体的转动惯量
03-实验三 用三线摆法测定物体的转动惯量
两质量为m2的圆柱对称放置后总转动惯量:
I2
=
(m0
+ 2m2)gRr 4π2H0
T22
每个圆柱对中心轴的转动惯量:
I柱实
=
1 gRr 2 4π2H0 [
m0
+ 2m2
T22
− m0T02]
圆柱的理论转动惯量:
I柱实
=
m2x2
+
1 2
m2R22
注意事项
➢ 调节水准器 ➢ 注意钢卷尺(或米尺)、游标卡尺的读数及不确定度。 ➢ 下圆盘绕中心轴的摆动角度不能过大(5°左右),出现
ቤተ መጻሕፍቲ ባይዱ
实验仪器
三线摆、测定仪、钢卷尺(或米尺)、游标卡尺、电子天 平、待测圆环1个和待测圆柱体2个
实验原理
测定物体的转动惯量
下盘绕中心轴的转动惯量:
I0
=
m0gRr 4π2H0
T02
放置m1的待测圆环后总转动惯量:
I1
=
(m0 + m1)gRr 4π2H1
T12
待测圆环的转动惯量:
I环实
= I1
− I0
gRr = 4π2H1 [
m0 + m1
T12 − m0T02]
I
1m 2
R内2
R外2
圆环的理论转动惯量
I理
=
1 2
m(R2内
+
R2外)
相对不确定度
E
=
|I环实 − I理
I理|
×
100%
R m
转动惯量平行轴定理
质量为m的物理绕过其质心轴的转动惯量为IC,转轴平移x后 的转动惯量为IC+mx2。
三线摆测物体转动惯量实验报告资料
三线摆测物体转动惯量实验报告资料
三线摆测物体转动惯量实验是常用于研究物体转动惯量的实验方法之一。
通过测量物
体杆的振动频率,可以推导出该物体的转动惯量。
实验装置:用来完成三线摆测物体转动惯量实验的装置是一个加速度传感器和三根悬
挂分别加在转动物体杆上的拉索,加速度传感器可以测量一定频率下转动杆的振动加速度。
实验操作:首先,在拉索的支撑点处调整物体杆的长度和角位置,使之对加速度传感
器位置水平;然后,接着通过调节加速度传感器的测量频率,使之与物体杆振动的自振频
率一致,并且将杆从静止状态打开;最后,我们可以根据杆的振动特征计算出杆的转动惯量。
实验结果:经过实验,我们得出了经实验检测出来的转动惯量大小是0.94 kg·m2。
实验总结:通过本次三线摆测物体转动惯量实验,我们已经能够准确完成物体转动惯
量的测定工作,该实验简单易行,可以满足实验结果中更高准确度要求。
同时,该实验结
果还可以作为参考,帮助下一次实验角度调整。
三线摆测转动惯量实验报告
三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。
转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。
二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。
当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。
2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。
在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。
三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。
(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。
(3) 在三线摆的一端挂上质量为m的小球。
(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。
2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。
(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。
3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。
角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。
因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。
三线摆测物体的转动惯量实验报告
三线摆测物体的转动惯量实验报告三线摆是物理实验中常用的一种实验装置,用于研究物体的转动惯量。
转动惯量是描述物体旋转惯性的物理量,是物体对于绕某一轴线旋转的惯性大小的度量。
在实验中,我们可以通过三线摆实验来测量物体的转动惯量,并得到相应的实验数据。
我们需要明确实验的目的和原理。
本实验的目的是通过三线摆实验测量物体的转动惯量。
转动惯量的计算公式为I=mr^2,其中m为物体的质量,r为物体绕轴线旋转的距离。
三线摆实验通过测量物体在不同条件下的摆动时间来间接地计算出物体的转动惯量。
接下来,我们需要准备实验装置和材料。
实验装置包括三线摆支架、摆线、物体等。
材料可以选择不同形状和质量的物体,以便进行不同条件下的实验。
在实验前,我们需要对实验装置进行校准和调整,以确保实验的准确性和可靠性。
实验开始前,我们需要先确定实验的条件和测量方法。
在三线摆实验中,我们可以改变物体的质量和长度,改变摆动的振幅和周期等条件,以便得到不同条件下的实验数据。
测量方法可以采用计时器或其他测量工具来记录物体摆动的时间,并进行相应的数据处理和分析。
实验过程中,我们需要按照实验条件和方法进行测量和记录。
首先,我们可以选择一个固定的条件,比如固定物体的质量和长度,然后测量物体在不同摆动振幅下的摆动时间。
通过记录不同振幅下的时间数据,我们可以绘制出物体摆动时间与振幅之间的关系曲线。
然后,我们可以选择另一个固定的条件,比如固定摆动振幅,然后测量物体在不同质量和长度下的摆动时间。
同样地,通过记录不同质量和长度下的时间数据,我们可以绘制出物体摆动时间与质量、长度之间的关系曲线。
实验完成后,我们可以对实验数据进行处理和分析。
首先,我们可以通过拟合曲线的方法,得到物体摆动时间与振幅、质量、长度之间的数学关系。
然后,我们可以根据转动惯量的计算公式I=mr^2,将实验数据代入公式中,计算出物体的转动惯量。
最后,我们可以比较不同条件下的转动惯量数据,分析其变化规律和影响因素。
《用三线摆法测定物体的转动惯量》简明实验报告
《用三线摆法测定物体的转动惯量》简明实验报告实验目的:通过使用三线摆法,测定不同物体的转动惯量,并探究物体质量、几何形状及质心位置对转动惯量的影响。
实验原理:转动惯量是描述物体转动惯性的物理量,表示了物体对转动所表现出的惯性大小。
对于一个质量为m、质心到转轴距离为r的物体,其转动惯量可以通过以下公式计算得出:I=m*r^2而对于一个不规则形状的物体,可以通过将其分解为一组质点,然后分别计算每个质点的转动惯量,并将其求和来得到总转动惯量:I=∑(m_i*r_i^2)在使用三线摆法进行测量时,需要固定物体在转轴上,并通过三根细线将物体悬挂起来。
当物体开始转动时,通过测量物体的摆动周期T和细线长度L,可以利用以下公式计算出转动惯量:I=(T^2*m*g*L)/(4π^2)实验装置:1.一个三线摆装置2.不同形状、不同质量的物体(如圆环、长方体、球体等)3.量角器4.绳子5.计时器6.秤实验步骤:1.将三线摆装置固定在桌面上,并调整好其水平度。
2.选择一个物体,将其通过一根细线绑在摆装置上,并调整好细线的长度,使得物体可以自由摆动。
3.将量角器放在与物体摆动平面垂直的位置,用来测量摆动的振幅角。
4.将绳子固定在物体上,并通过一张纸卡片保持绳子长度不变。
这样可以控制绳子长度的一致性。
5.用计时器测量物体的摆动周期T,反复测量多次以取得平均值。
6.用秤测量物体的质量m,并记录下来。
7.将摆装置往一侧推动,观察物体的摆动情况。
如果摆动不稳定,要重新调整摆装置和细线的位置。
8.重复步骤2-7,测量其他不同形状、不同质量的物体。
实验结果:根据测量得到的摆动周期T、细线长度L、质量m以及重力加速度g,可以计算出物体的转动惯量I。
将测量结果整理成表格,并绘制转动惯量与物体质量、几何形状及质心位置的关系图。
实验讨论:通过实验结果可以看出,质量、几何形状及质心位置都对物体的转动惯量有影响。
质量越大的物体,其转动惯量也越大;几何形状越复杂的物体,其转动惯量也越大;质心离转轴越远的物体,其转动惯量也越大。
三线摆法测量物体的转动惯量实验报告
三线摆法测量物体的转动惯量实验报告一、实验目的1、掌握三线摆法测量物体转动惯量的原理和方法。
2、学会使用秒表、游标卡尺、米尺等测量工具。
3、研究物体的转动惯量与其质量分布及转轴位置的关系。
二、实验原理三线摆是由一个均匀圆盘,用三条等长的摆线(摆线长度为 l)对称地悬挂在一个水平的圆盘上构成。
当圆盘绕垂直于盘面的中心轴OO' 作微小扭转摆动时,若略去空气阻力,圆盘的运动可以看作简谐运动。
设圆盘的质量为 m₀,半径为 R₀,对于通过圆盘中心且垂直于盘面的轴的转动惯量为 I₀。
当下盘扭转一个小角度φ 后,它将在平衡位置附近作简谐振动,其周期为:\(T₀=2π\sqrt{\frac{I₀}{m₀gh}}\)其中,g 为重力加速度,h 为上下圆盘之间的距离。
若将质量为 m 的待测物体放在圆盘上,且使待测物体的质心与圆盘的中心轴重合,此时系统对于中心轴的转动惯量为 I,则系统的摆动周期为:\(T =2π\sqrt{\frac{I}{(m + m₀)gh}}\)联立以上两式可得待测物体对于中心轴的转动惯量为:\(I =(m + m₀)\frac{T²}{T₀²}I₀\)三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测物体(圆环、圆柱等)、电子天平。
四、实验步骤1、调节三线摆的上、下圆盘水平。
通过调节底座上的三个旋钮,使上圆盘水平。
然后,在下圆盘上放置水准仪,调节下圆盘的三个地脚螺丝,使下圆盘也处于水平状态。
2、测量上下圆盘的半径 R₀和 R 以及两圆盘之间的距离 h。
用游标卡尺分别测量上、下圆盘的半径,测量 6 次,取平均值。
用米尺测量两圆盘之间的距离 h,测量 3 次,取平均值。
3、测量下圆盘的质量 m₀和待测物体的质量 m。
使用电子天平分别测量下圆盘和待测物体的质量。
4、测定下圆盘的摆动周期 T₀。
轻轻转动下圆盘,使其在平衡位置附近作小角度摆动。
用秒表测量下圆盘摆动 50 次的时间,重复测量3 次,计算出平均摆动周期 T₀。
实验3 用三线摆测物体的转动惯量(new)
实验3用三线摆测定物体的转动惯量实验3 用三线摆测定物体的转动惯量转动惯量是刚体在转动中惯性大小的量度,它与刚体的质量的大小、转轴的位置和刚体质量的分布有关。
对于形状简单规则的均匀刚体,测出其外形尺寸和质量,可用数学方法计算出其绕特定转轴的转动惯量,而对于形状复杂,质量分布不均匀的刚体用数学方法求转动惯量非常困难,有时甚至不可能,一般要通过实验方法来测定。
测定刚体转动惯量的实验方法有多种,如三线摆法及转动惯量仪法等。
本实验用三线摆法测定刚体的转动惯量,其特点是操作简单。
为了便于与理论计算值比较,实验中被测物体仍采用形状简单规则的刚体。
对于形状较复杂的刚体,如枪炮、弹丸、电动机转子、机器零件等都可以测量出其转动惯量。
【实验目的】1. 学会正确测量长度、质量和时间的方法;2. 用三线摆测定圆盘和圆环对称轴的转动惯量;3. 验证转动惯量的平行轴定理。
【实验仪器】FB 210A 型三线摆组合实验仪、FB213A 型数显计时计数毫秒仪、米尺、游标卡尺。
【实验原理】物理学中转动惯量的数学表达式为∑•=2iirm I 。
式中,m i 为质元的质量、r i 为该质元到转轴的距离。
1.测定悬盘绕中心轴的转动惯量J 0 图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
因悬盘来回摆动的周期与其转动惯量大小有关,所以,悬挂物不同,转动惯量也就不同,相应的摆动周期也将发生变化。
如图2示,当悬盘离开平衡位置向某一方向转过一个很小的角度θ时,整个悬盘的位置也将升高一高度h ,即悬盘既绕中心轴转动,又有升降运动,在任何时刻其转动动能为2012d J dt θωω⎛⎫= ⎪⎝⎭,上下运动的平动动能为⎪⎭⎫⎝⎛=dt dh v mv 221,重力势能为mgh ,如果忽略摩擦力,则在重力场中机械能守恒,即 2012d J dt θ⎛⎫ ⎪⎝⎭+221⎪⎭⎫ ⎝⎛dt dh m +mgh =恒量 (1)上式中m 为悬盘的质量,J 0为其转动惯量。
大学物理实验三线摆测量物体的转动惯量
实验有关数据
g重力加速度= 9.793 m/s2
m0圆盘 = 1182 g
m1圆环 = 380 g
m21圆柱=
g
m22圆柱=
g
x两圆柱离中心距离= 4.50 cm
数据表格
表1 待测刚体的有关尺寸的数据表
项目
acm
圆盘ຫໍສະໝຸດ bcmHcm圆环
D内cm D外cm
圆柱
D21cm D22cm
1 7.668 16.07 44.85 10.018 15.010 2.492 2.490
第一阶段实验项目
一、弹簧振子振动周期的测量 二、用三线摆测量物体的转动惯量
实验简介 实验目的 实验原理 实验内容
仪器及调整 实验数据 预习题
思考题
圆环的转动惯量为
D D I1m 2 2
8
1
2
√
圆柱的转动惯量为
I
1 mR2
mx2
2
绕自轴旋转
实验原理
验证公式,假设: 下盘质量 悬点离各自中心距离
预习思考题
1.用三线摆测刚体转动惯量时,为什么必须保持下盘水平 2.在测量过程中,如下盘出现晃动,对周期有测量有影响吗 如有影响,应如何避免之 3.三线摆放上待测物后,其摆动周期是否一定比空盘的转动 周期大 为什么 4.测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合, 对实验结果有何影响
平均值
表2 待测刚体的摆动周期的数据表35次
次 数
空载刚与体圆盘t0s
1
2
3
4
5 平均值 T=t/35
49.43 49.47 49.48 49.39 49.46
下盘与圆环t1s
48.90 48.90 48.95 48.99 48.88
大学物理实验三线摆测量物体的转动惯量
学习使用测量转动惯量的实验设备
熟悉实验设备的构成和操作方法,包括三线摆装置、测量尺 、计时器等。
学习如何正确安装和调整实验装置,确保实验结果的准确性 和可靠性。
了解转动惯量的物理意义和实际应用
理解转动惯量的物理意义,包括转动 惯量在物体运动中的作用以及与力的 关系。
了解转动惯量在实际问题中的应用, 如机械系统中的转动惯量计算、运动 状态的改变等。
VS
详细描述
在完成数据整理、数据拟合和误差分析后 ,需要对实验结果进行讨论和总结。讨论 部分应包括对实验结果的分析、比较和解 释,以及对实验中遇到的问题和解决方法 进行阐述。在总结部分,需要概括实验结 论,指出实验的局限性和不足之处,并提 出改进建议和未来研究方向。
05
实验总结与思考
实验收获与体会
详细描述
在实验结束后,需要将测量得到的数据进行整理,包括实验条件、测量步骤、数据记录等。为了方便 分析和对比,需要将数据整理成表格形式,表格中应包含实验序号、测量值、误差等必要信息。
数据拟合与误差分析
总结词
数据拟合与误差分析是实验结果分析的重要环节,通过数据拟合可以找到数据的规律,误差分析则可以评估实验 结果的可靠性。
大学物理实验三线摆测量 物体的转动惯量
• 实验目的 • 实验原理 • 实验步骤 • 实验结果分析 • 实验总结与思考
01
实验目的
掌握三线摆测量转动惯量的原理
01
理解三线摆测量转动惯量的基本 原理,包括转动惯量的定义、计 算公式以及三线摆的测量方法。
02
掌握如何通过测量三线摆的周期 来计算转动惯量,理解周期与转 动惯量之间的关系。
问题2
测量数据存在误差。
解决方案
三线摆法测量转动惯量实验报告
三线摆法测量转动惯量实验报告1. 实验目的说到转动惯量,这个名词听起来是不是有点高深莫测?其实啊,转动惯量就像是物体在转动时的一种“固执程度”,越大就越难转,越小则容易旋转。
这次实验的目的就是用三线摆法来测量转动惯量,弄明白这个“固执”的家伙到底是怎么回事。
2. 实验原理2.1 三线摆的构造三线摆,顾名思义,就是有三根线的摆。
这三根线可不是随便的线,而是精心设计过的,用来让我们测量转动惯量的。
在实验中,通常会有一个旋转的物体,比如一个小圆盘,然后把它固定在三根线的底端,让它可以自由转动。
这样的设计不仅有趣,还特别实用,简直是物理界的“神器”!2.2 转动惯量的计算转动惯量的计算公式有点复杂,但别怕,咱们只要记住几个关键点。
首先,要知道物体的质量和它的形状,这些都会影响到转动惯量。
然后,通过测量摆动的角度和时间,我们就能用公式把这些数据转化成转动惯量。
简直就是数学和物理的完美结合,既能动脑又能动手!3. 实验步骤3.1 准备工作实验开始之前,我们得先准备好所有的工具和材料。
首先要有一个稳稳当当的三线摆,别让它像风筝一样乱飞。
然后就是我们的小圆盘,别忘了它的质量哦!接下来,准备一个计时器,用来测量摆动的时间。
这可不是“玩儿命”,而是要让数据更加准确。
3.2 实际操作一切准备就绪后,开始实验啦!首先把圆盘挂在三线摆的底端,调整好位置,确保它能顺利转动。
然后,轻轻地拉一下线,让圆盘开始摆动。
此时,大家都要屏息凝神,静静观察,记下摆动的时间和角度。
每个人的心里都像打鼓一样,不知道结果会不会让我们大吃一惊。
4. 数据记录与分析实验结束后,数据就像金矿一样,等着我们去挖掘!记录下每次摆动的时间和对应的角度,把这些数据整理成表格,简直就像是给自己上了一堂数学课。
然后,利用转动惯量的公式,把这些数据代入计算,得出最终结果。
此时,心里简直乐开了花,看到数值就像是在解锁成就,既有成就感又充满期待。
5. 实验总结经过一番折腾,转动惯量终于在我们的手中显现!在这个过程中,不仅学到了物理知识,还体会到了动手实验的乐趣。
三线摆测物体转动惯量实验报告
三线摆测物体转动惯量实验报告一、实验目的1、掌握三线摆测量物体转动惯量的原理和方法。
2、学会使用秒表、游标卡尺、米尺等测量工具。
3、研究物体的转动惯量与其质量分布、形状和转轴位置的关系。
二、实验原理三线摆是由三根等长的悬线将一圆盘水平悬挂而成。
当圆盘绕中心轴扭转一个小角度后,在重力作用下圆盘将做简谐振动。
其振动周期与圆盘的转动惯量有关。
设圆盘的质量为$m_0$,半径为$R$,对于通过其中心且垂直于盘面的轴的转动惯量为$J_0$,上下圆盘之间的距离为$H$,扭转角为$\theta$。
当下圆盘转过角度$\theta$ 时,圆盘的势能变化为:$\Delta E_p = m_0g \Delta h$其中,$\Delta h$ 为下圆盘重心的升高量,可近似表示为:$\Delta h =\frac{R^2 \theta^2}{2H}$根据能量守恒定律,圆盘的势能变化等于其动能变化,即:$\frac{1}{2} J_0 \omega^2 = m_0g \frac{R^2 \theta^2}{2H}$又因为圆盘做简谐振动,其角频率$\omega =\frac{2\pi}{T}$,所以有:$T^2 =\frac{4\pi^2 J_0}{m_0gR^2} \cdot \frac{H}{R^2}$设待测物体的质量为$m$,放在下圆盘上,此时系统的转动惯量为$J$,则系统的振动周期为$T'$,有:$T'^2 =\frac{4\pi^2 J}{(m + m_0)gR^2} \cdot \frac{H}{R^2}$则待测物体对于中心轴的转动惯量为:$J =\frac{T'^2 (m + m_0)gR^2 H}{4\pi^2 R^2} J_0$三、实验仪器三线摆实验装置、游标卡尺、米尺、秒表、待测物体(圆柱体、圆环等)、天平。
四、实验步骤1、用天平测量下圆盘、待测物体的质量。
2、用游标卡尺测量下圆盘、待测物体的直径和高度。
大学物理实验报告实验3三线摆法测定物体的转动惯量
大学物理实验教案实验名称:三线摆法测定物体的转动惯量1 实验目的1)掌握水平调节与时间测量方法;2)掌握三线摆测定物体转动惯量的方法; 3)掌握利用公式法测定物体的转动惯量。
2 实验仪器三线摆装置 计数器 卡尺 米尺 水平器 3 实验原理3.1 三线摆法测定物体的转动惯量机械能守恒定律:ω20021I mgh =简谐振动:tT πθθ2sin0= t T T dt d ππθθω2cos 20==通过平衡位置的瞬时角速度的大小为:T 002πθω=; 所以有:⎪⎭⎫⎝⎛=T I m gh 02122πθ根据图1可以得到:()()1212!BC BC BC BC BC BC h +-=-=()()()()22222r R l AC AB BC --=-=从图2可以看到:根据余弦定律可得()()022211cos 2θRr r R C A -+= 所以有:()()()()02222112121cos 2θRr r R l C A B A BC -+-=-= 整理后可得:102102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=θθH BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以:H Rr h 220θ=整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:22012T H mgab I π=若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:2112112)(T H gab M m I π+=待测物的转动惯量为: I= I 1-I 03.2 公式法测定物体的转动惯量圆环的转动惯量为:()D D M I 222181+=4 教学内容4.1 三线摆法测定圆环绕中心轴的转动惯量1)用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); 2)调节三线摆底坐前两脚螺丝使上盘水平3)调节三线摆悬线使悬盘到上盘之间的距离H 大约50cm 左右,并调节悬盘水平; 4)用米尺测定悬盘到上盘三线接点的距离H ;5)让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
大学物理实验-用三线摆法测定物体的转动惯量
⼤学物理实验-⽤三线摆法测定物体的转动惯量⽤三线摆法测定物体的转动惯量转动惯量是刚体在转动中惯性⼤⼩的量度,它与刚体的总质量、形状⼤⼩、密度分布和转轴的位置有关。
对于形状较简单的刚体,可以通过数学⽅法算出它绕特定轴的转动惯量。
但是,对于形状较复杂的刚体,⽤数学⽅法计算它的转动惯量⾮常困难,⼤都⽤实验⽅法测定。
例如:机械零部件、电机转⼦及枪炮弹丸等。
因此学会刚体转动惯量的测定⽅法,具有重要的实际意义。
测量转动惯量,⼀般是使刚体以⼀定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进⾏转换测量。
常⽤的测量⽅法有三线扭摆法、单线扭摆法、塔轮法等。
本实验采⽤三线扭摆法,由摆动周期及其他参数的测定计算出物体的转动惯量。
为了便于和理论值进⾏⽐较,实验中的被测物体⼀般采⽤形状规则的物体。
【实验⽬的】1、掌握三线扭摆法测量物体转动惯量的原理和⽅法;2、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系;3、学会正确测量长度、质量和时间的⽅法。
【实验仪器】FB210型三线摆转动惯量测定仪、游标卡尺、钢卷尺、数字毫秒计、物理天平、待测物体等。
【实验原理】图1是三线摆实验装置的⽰意图。
上、下圆盘均处于⽔平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中⼼轴O O '作扭摆运动。
当下盘转动⾓度很⼩,且略去空⽓阻⼒时,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中⼼轴O O '的转动惯量(推导过程见本实验附录)。
2002004T H gRrm I π= (1)式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各⾃圆盘中⼼的距离;0H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重⼒加速度(在杭州地区g =9.793m/s 2)。
将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。
三线摆法测量物体的转动惯量实验报告
三线摆法测量物体的转动惯量实验报告一、实验目的。
本实验旨在通过三线摆法测量物体的转动惯量,探究物体的转动惯量与其质量、转动半径的关系,并通过实验数据的处理和分析,验证转动惯量的计算公式。
二、实验原理。
1. 转动惯量。
物体的转动惯量是描述物体对转动运动的惯性大小的物理量,通常用符号I表示。
对于质量均匀分布的物体,其转动惯量可由公式I=mr^2计算得出,其中m为物体的质量,r为物体的转动半径。
2. 三线摆法。
三线摆法是一种用来测量物体转动惯量的实验方法。
实验装置由一根轻绳和两个固定在同一直线上的固定点组成,物体通过轻绳悬挂在固定点上,并形成一个等腰三角形。
当物体受到外力作用时,将产生转动运动,通过测量物体的角加速度和转动半径,可以计算出物体的转动惯量。
三、实验装置。
1. 实验仪器,三线摆装置、计时器、测量尺、质量秤。
2. 实验器材,小球、细绳。
四、实验步骤。
1. 悬挂小球,将小球用细绳悬挂在三线摆装置上,并调整细绳的长度,使小球形成一个等腰三角形。
2. 测量转动半径,使用测量尺测量小球的转动半径r。
3. 施加外力,将小球摆开一个小角度,并释放,记录小球摆动的周期T。
4. 重复实验,重复以上步骤3次,取平均值作为最终实验数据。
五、实验数据处理与分析。
1. 计算角加速度,根据实验数据计算小球的角加速度α。
2. 计算转动惯量,利用公式I=mr^2,结合实验数据计算小球的转动惯量I。
3. 数据分析,对实验数据进行统计分析,绘制实验数据的图表,并进行数据的比较和讨论。
六、实验结果与结论。
通过实验数据处理和分析,得出小球的转动惯量I为x kg·m^2。
实验结果表明,物体的转动惯量与其质量和转动半径的平方成正比,验证了转动惯量的计算公式I=mr^2。
七、实验心得体会。
本次实验通过三线摆法测量物体的转动惯量,加深了对物体转动惯量的理解,同时也锻炼了实验操作和数据处理的能力。
在实验中,我们也发现了一些问题和不足之处,对于实验过程中的误差和影响因素,需要进一步探讨和改进。
三线摆法测量物体的转动惯量实验报告
三线摆法测量物体的转动惯量实验报告三线摆法测量物体的转动惯量实验报告引言:转动惯量是描述物体绕轴旋转时所具有的抗拒转动的性质,是物体旋转动力学性质的重要参数之一。
本实验通过三线摆法测量不同物体的转动惯量,旨在探究物体的形状、质量和转动轴的位置对转动惯量的影响。
实验装置与方法:实验装置主要包括一个三线摆装置、一组不同形状和质量的物体、一台计时器以及一组测量工具。
实验步骤如下:1. 将三线摆装置固定在实验台上,并调整摆线的长度和角度,使其保持稳定。
2. 选择一个物体,将其绑在摆线的下端,确保物体能够自由摆动。
3. 用计时器测量物体在摆动过程中的周期,重复多次测量并取平均值。
4. 更换其他物体,重复步骤2和3,直到测量完所有物体。
5. 根据实验数据计算每个物体的转动惯量。
实验结果与分析:我们选择了三个不同形状和质量的物体进行实验:一个长方体、一个圆柱体和一个球体。
通过测量得到的周期数据,我们计算出了每个物体的转动惯量。
首先,我们观察到不同形状的物体在摆动过程中具有不同的周期。
长方体的周期最短,球体的周期最长,圆柱体的周期位于两者之间。
这是因为不同形状的物体在摆动过程中所受到的阻力和惯性力的大小不同,从而影响了摆动的周期。
其次,我们发现物体的质量对转动惯量也有影响。
通过比较相同形状但不同质量的物体,我们发现质量越大,转动惯量也越大。
这是因为质量的增加使物体具有更大的惯性,从而抗拒转动的能力增强。
最后,我们研究了转动轴的位置对转动惯量的影响。
在实验过程中,我们将物体绑在摆线的不同位置,并测量了相应的周期。
结果显示,转动轴离物体质心越远,转动惯量越大。
这是因为转动轴离质心越远,物体的质量分布越分散,惯性矩也越大。
结论:通过三线摆法测量不同物体的转动惯量,我们得出了以下结论:1. 不同形状的物体具有不同的转动惯量,长方体的转动惯量最小,球体的转动惯量最大。
2. 物体的质量对转动惯量有影响,质量越大,转动惯量越大。
三线摆测物体转动惯量实验报告
三线摆测物体转动惯量实验报告一、实验背景在物理学中,转动惯量是一个至关重要的概念。
它决定了物体在转动时的惯性。
咱们的实验旨在通过三线摆测量不同物体的转动惯量,搞明白它们的转动特性。
想象一下,拿着一个铁球,转动时的感觉和拿着一个木块完全不同,这就是转动惯量在作祟。
1.1 三线摆的原理三线摆,简单说就是利用重力和摆动来测量。
三个线圈,连接在一起,像一根灵活的触手。
摆动起来,底下的重物受力,旋转的状态便可捕捉。
这种方法虽然看似简单,但却是极其有效的。
1.2 测量步骤先把物体挂上去,调整好位置。
然后轻轻放手,观察摆动的幅度和周期。
记录下数据,慢慢汇总。
大家都知道,细节决定成败,尤其是在这样的实验中。
二、实验过程实验过程中,我们遇到了一些小插曲。
开始的时候,摆的角度没调好,导致数据偏差。
但这也没关系,调试一下,重新开始。
每一次摆动,都是一次新的发现。
2.1 数据记录数据记录至关重要,不能马虎。
每一次摆动后,尽量记录清楚,确保数据的准确性。
比如,摆动的周期、角度,甚至是环境的温度,都是影响因素。
我们小组成员认真对待,每个人的脸上都流露出专注。
2.2 分析数据有了数据,就得分析。
利用公式计算转动惯量,得出结果。
每个人都有自己的计算方法,大家聚在一起讨论时,那种氛围热烈得很。
有人提出了不同的看法,互相启发,真是妙不可言。
2.3 实验结果最终,我们得到了不同物体的转动惯量。
通过对比,我们发现重物的形状和质量分布对结果有显著影响。
比如,圆形物体的转动惯量往往小于方形的。
这些结果让我们对物理有了更深的理解。
三、实验总结经过一系列的测量与分析,我们不仅获得了数据,还领悟到了一些更深层次的道理。
转动惯量并不是一个孤立的概念,它与物体的形状、质量都有密切关系。
3.1 实验收获在这个过程中,大家的团队合作意识提升了。
每个人都在为共同的目标努力,讨论中充满了智慧的碰撞。
每个人的想法都是一颗珍珠,串联在一起,形成了我们的“知识项链”。
三线摆测物体的转动惯量实验报告
三线摆测物体的转动惯量实验报告“三线平衡法”是用于测定物体转动惯量的方法,是把物体分成三线,任意选取两点,在两点之初用一根线,相切物体的轴,将物体的重心拉回轴线,使其达到平衡,则符合三线平衡条件。
本实验是在实验室条件下,使用“三线平衡法”测定被试验物体的转动惯量,并绘制出物体转动惯量-转动速率曲线。
一、实验装置及材料1.实验装置:试验台、扭力测定仪、微型超声波控制器全自动计算仪、半球数显三脚架2.实验材料:被试验物体、型号为“B34-05”轴承等二、实验原理1.物体转动惯量是它的质量、几何形状及其分布的函数,可以利用三线平衡法测得物体的转动惯量。
三、实验步骤1.准备实验:安装实验台,准备好数显三脚架,并将其安装在实验台上,把被试验物体(轴承)放在台面中心点;安装好微型超声波控制器全自动计算仪,并将它测定仪准确放置在台面上,连接它们之间,将扭力测定仪连接到实验台,以便检测轴承的转动惯量,并绘制出物体转动惯量-转动速率曲线。
2.实施实验:将架子放置在台面中心点,选取轴承上的两点,分别将半球数显三脚架放置到两点,然后使用扭力测定仪测得轴承转动惯量。
3.记录数据:以架子角度为参照,改变架子角度,记录架子角度与轴承转动惯量之间的关系。
四、实验结果及总结1.实验结果:实验采用“三线平衡法”,将被试验物体的重心拉回轴线,使之达到三线平衡,通过调整数显三脚架的角度和轴承的转动惯量进行实验分析。
结果表明,当架子的角度达到一定值时,轴承的转动惯量随着架子角度的增加而减小,可以生成轴承转动惯量-转动速率曲线,曲线上表明,当轴承转动速率越id大,轴承转动惯量越小。
2.实验总结:本实验结果显示,使用“三线平衡法”,可以精确测量物体的转动惯量,并绘制出物体转动惯量-转动速率曲线,从而可以确定物体的转动惯量及其质量、几何形状及其分布。
实验结果验证了“三线平衡法”的有效性。
三线摆测物体转动惯量实验报告
三线摆测物体转动惯量实验报告一、实验目的本次实验的主要目的是通过三线摆测物体转动惯量的实验,了解并掌握三线摆的基本原理、结构和使用方法,学会利用三线摆测量物体的转动惯量,为后续学习打下基础。
二、实验原理1. 三线摆是什么?三线摆就是一个由三条平行的杆子组成的摆,我们称之为“三线摆”。
它是一种简单而有趣的物理实验装置,可以用来研究物体在不同角度下的受力情况,从而计算出物体的转动惯量。
2. 三线摆的结构三线摆主要由三条平行的杆子组成,其中一条杆子固定不动,称为“摆柱”;另外两条杆子可以在一定范围内摆动,称为“摆臂”。
这两根摆臂通过一个铰链与摆柱相连。
3. 三线摆的工作原理当摆臂受到外力作用时,它们会绕着摆柱做周期性的摆动。
这种摆动会产生一个角加速度a,使得物体沿着圆周运动。
根据牛顿第二定律F=ma,我们可以得出物体所受的合力F等于它的质量m乘以角加速度a。
因此,通过测量三线摆在不同角度下的受力情况,我们就可以计算出物体的转动惯量I。
4. 如何测量物体的转动惯量?首先需要将三线摆调整到合适的位置和角度,然后让物体挂在上面。
接着记录下物体在不同角度下的受力情况(包括重力、支持力、摩擦力等),并用公式I=mg2/r2计算出物体的转动惯量。
最后再将结果进行单位换算即可得到最终结果。
三、实验步骤1. 首先组装好三线摆,并将其调整到合适的位置和角度。
注意要保证三个支点在同一平面内且相互垂直。
2. 然后将待测物体挂在三线摆上,并记录下物体的质量m和长度l。
这些数据对于计算转动惯量非常重要。
3. 接着让三线摆自由摆动一段时间,直到它停止为止。
在此过程中要注意观察物体的运动轨迹和受力情况,并及时记录下来。
4. 最后根据实验数据计算出物体的转动惯量I,并进行单位换算。
如果结果不够准确,可以适当调整三线摆的位置和角度重新进行实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验教案
实验名称:三线摆法测定物体的转动惯量
1 实验目的
1)掌握水平调节与时间测量方法;
2)掌握三线摆测定物体转动惯量的方法; 3)掌握利用公式法测定物体的转动惯量。
2 实验仪器
三线摆装置 计数器 卡尺 米尺 水平器 3 实验原理
3.1 三线摆法测定物体的转动惯量
机械能守恒定律:
ω20021I mgh =
简谐振动:
t
T π
θθ2sin
0= t T T dt d ππθθω2cos 20==
通过平衡位置的瞬时角速度的大小为:
T 0
02πθω=
; 所以有:
⎪
⎭
⎫
⎝⎛=
T I m gh 021
22
πθ
根据图1可以得到:()()1
2
12!BC BC BC BC BC BC h +-=
-=
()()()()22222r R l AC AB BC --=-=
从图2可以看到:
根据余弦定律可得()()02
2211cos 2θRr r R C A -+= 所以有:
()()()()02222
112121cos 2θRr r R l C A B A BC -+-=-= 整理后可得:
10
2
102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=
θθ
H BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以:
H Rr h 22
0θ=
整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:2
20
12T H mgab I π=
若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:
2
1
1
2112)(T H gab M m I π+=
待测物的转动惯量为: I= I 1-I 0
3.2 公式法测定物体的转动惯量圆环的转动惯量为:
()D D M I 22
2
1
8
1+=
4 教学内容
4.1 三线摆法测定圆环绕中心轴的转动惯量
1)用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); 2)调节三线摆底坐前两脚螺丝使上盘水平
3)调节三线摆悬线使悬盘到上盘之间的距离H 大约50cm 左右,并调节悬盘水平; 4)用米尺测定悬盘到上盘三线接点的距离H ;
5)让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
);
6)用计数器测定50个摆动周期摆动的时间t ;
7)把待测圆环置于悬盘上(圆环中心必须与悬盘中心重合)再测定悬盘到三线与上盘接点间的距离H 1,重复步骤5、6。
2、公式法测定圆环绕中心轴的转动惯量
用卡尺分别测定圆环的内径和外径,根据表中圆环绕中心轴的转动惯量计算公式确定其转动惯量测定结果。
(圆环质量见标称值) 5 实验教学组织及教学要求
1)检查学生的预习实验报告,同时给学生一定时间观察器材,并注意和以前学过的实验做比较。
2)讲解实验要点及注意事项,同时以提问的方式检查学生的预习情况,加深学生对实验原理和实验设计的理解。
3)随时注意学生的实验操作过程,及时指导解决实验中遇到的问题和困难。
4)检查每个学生的实验数据,记录实验情况。
6 实验教学的重点及难点 1)重点:
1)三线摆水平的调节(上盘、悬盘的水平调节)。
2)掌握利用三线摆仪器测量物体转动惯量的数据处理方法。
2)难点:
1)三线摆水平的调节(上盘、悬盘的水平调节)。
2)数据处理有几种方法。
7 实验中容易出现的问题 1)仪器没有调水平。
2)摆动周期的摆动时间偏大。
8 实验参考数据
9实验结果检查方法
1)检查游标卡尺的读数是否正确。
2)检查各测量值是否符合要求。
10 课堂实验预习检查题目
1)三线摆法主要公式。
2)三线摆装置上下盘调节有哪些要求。
3)讨论两种测定物体转动惯量的方法的特点并对两种方法的测量结果进行比较,说明何种方法较精确。
4)三线摆法测定转动惯量的实验中,摆动时摆幅不可过大,若摆幅过大对测量结果有何影响。
5)分析三线摆法测定转动惯量的测量误差,说明各物理量的测量误差对其的影响情况,你有何提高测量精确度的改进方法。
出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。