恒温箱温度控制器(M16+DS18B20)

合集下载

恒温箱实验报告

恒温箱实验报告

计算机控制系统设计报告设计名称:恒温箱温度计算机控制系统设计姓名:高川学号: 20121851班级:自动化1203学院:信息工程学院任课教师:聂诗良2015年11月21日基于单片机的恒温箱控制系统设计摘要:本设计是基于AT89C52单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:电源、温度传感器、显示屏、控制、晶闸管驱动和报警的设计;软件包括:键盘管理程序设计、显示程序设计、PID控制程序设计和温度报警程序设计。

编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行液晶显示,当加热到设定值后立刻报警。

本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C52为主控芯片,液晶作为显示输出,实现了对温度的实时测量与恒定控制。

关键词:单片机、晶闸管、恒温、PID算法。

引言:本课题采用单片机控温度实现恒温控制,这个环节有温度传感器将恒温箱内的温度信号传输给单片机,单片机通过对输入的温度信号与设定值比较,再把比较后的信号通过PID 控制器得出控制信号,从而保持控制晶闸管的通断状态,达到平滑的控制灯泡两端电压实现对恒温箱温度的全程控制。

一、本课题设计要求如下图所示,恒温箱采用木箱或纸箱(外形尺寸不大于30cm×30cm×30cm),内置白炽灯泡(功率不大于100W)用于加热。

木箱或纸箱白炽灯泡≤100W30cm10cm自制恒温箱要求(1)温度采集传感器采用热电阻或热电偶,或一体化数字温度传感器DS18B20。

(2)控制灯泡亮度或发热量,采用可控硅平滑控制。

(3)采用单片机89C51作为控制器。

(4)采用LCD的液晶显示器作为显示器,同时显示给定温度和实际温度。

(5)采用自制按键的键盘作为温度给定值输入。

(6)恒温箱实际温度达到给定值时(误差要求±1℃)需声光提示,声音延时5秒后停止。

(7)恒温箱最高温度≤100℃。

恒温箱温度控制系统设计

恒温箱温度控制系统设计

一·设计任务恒温箱工作在70℃-80℃,精度℃,有越线报警;具有断电保护,报警等功能;二·原理框图三.总体方案本次设计的以“AT89C52单片机”为核心,模数转换器和LED数码管为主的硬件电路;用C语言编写程序为软件;做成一个自动控制的恒温箱;其主要功能是通过数字温度传感器DS18B20实时测量箱内的温度,并及时的显示;并通过报警功能实时监控恒温箱的工作状态,同时采用后备电源实现断电保护功能;四·系统器件分析1、温度传感器本实验采用数字温度传感器DS18B20,与传统的热敏电阻相比, 他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式;可以分别在和750ms内完成9位和12位的数字量, 并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线单线接口读写, 温度变换功率来源于数据总线, 总线本身也可以向所挂接的DS18B20供电, 而无需额外电源;因而使用DS18B20可使系统结构更趋简单,可靠性更高,成本更低;测量温度范围为~55℃~+125℃;C,在一10℃~+85℃;C范围内,精度为±℃;DS1822的精度较差为±2℃;现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性;2.单片机本次设计选择AT89C52作为单片机,AT89C52是美国的ATMEL公司生产的CMOS8位单片机有着低电压,高性能的特性,片内含有8k bytes的可反复擦写的只读程序存储器Flash和256 bytes的随机存取数据存储器,器件采用的是ATMEL公司的高密度、非易失性存储的技术生产,还兼容标准MCS-51系统指令,片内置通用Flash存储单元和8位中央处理器3.报警报警功能由蜂鸣器实现,当由于意外因素导致电阻炉温度高于设置温度时,单片机驱动蜂鸣器鸣叫报警;报警上限温度值为预置温度+5℃,即当前温度上升到高于预置温度+5℃时报警,并停止加热;报警下限温度值设为预置温度-5℃,即当前温度下降到低于预置温度-5℃,且报警允许时报警,这是为了防止开始从较低温度加温时误报警;报警的同时也关闭电电炉;4.断电保护温箱断电后将由后备电源继续提供电源,达到保护器件的目的;D转换器ICL7135是美国的Intersil公司是较流行的双积分A/D转换器,其具有4位半的精度相当于14位A/D的转换器,自动校零,自动极性输出,单基准电压,动态字位扫描BCD码输出;ICL7135具有精度高相当于14位双积分型A/D转换,价格低的优点.其转换速度与时钟频率相关;所以选择ICL7135为这次设计的A/D转换器;五.硬件原理框图六·控制算法PID调节是连续系统中技术最成熟的、应用最广泛的一种控制算方法;它结构灵活,不仅可以用常规的PID调节,而且可以根据系统的要求,采用各种PID的变型,如PI、PD 控制及改进的PID控制等;它具有许多特点,如不需要求出数学模型、控制效果好等,特别是在微机控制系统中,对于时间常数比较大的被控制对象来说,数字PID完全可以代替模拟PID调节器,应用更加灵活,使用性更强;所以该系统采用PID控制算法;七·系统流程图。

DS18B20智能温度控制器(附软件程序)

DS18B20智能温度控制器(附软件程序)

DS18B20智能温度控制器DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

DS18B20、 DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS1822的精度较差为± 2°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V 的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

DS18B20、 DS1822 的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。

可选更小的封装方式,更宽的电压适用范围。

分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS18B20的简化版本。

省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。

继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。

DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20中文资料(全)

DS18B20中文资料(全)

-0.5
1111 1111 1111 1000
-10.125
1111 1111 0101 1110
-25.0625
1111 1110 0110 1111
-55
1111 1100 1001 0000
*上电复位时温度寄存器默认值为+85℃
数据输出(十六进制) 07D0h 0550h 0191h 00A2h 0008h 0000h FFF8h FF5Eh FE6Eh FC90h
DS18B20通过达拉斯公司独有的单总线协议依靠一个单线端口通讯。当全部器件 经由一个3态端口或者漏极开路端口(DQ引脚在DS18B20上的情况下)与总线连接 的时候,控制线需要连接一个弱上拉电阻。在这个总线系统中,微控制器(主器 件)依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地 址。 由于每个装置有一个独特的片序列码,总线可以连接的器件数目事实上是无 限的。单总线协议,包括指令的详细解释和“时序”见单总线系统节。
DS18B20 可以通过从 VDD 引脚接入一个外部电源供电,或者可以工作于寄生电源 模式,该模式允许 DS18B20 工作于无外部电源需求状态。寄生电源在进行远距离 测温时是非常有用的。寄生电源的控制回路见图 1,当总线为高电平时,寄生电 源由单总线通过 VDD 引脚。这个电路会在总线处于高电平时偷能量,部分汲取的
报警操作信号
DS18B20 完成一次温度转换后,就拿温度值与和存储在 TH 和 TL 中一个字节的用 户自定义的报警预置值进行比较。标志位(S)指出温度值的正负:正数 S=0,负 数 S=1。TH 和 TL 寄存器是非易失性的,所以它们在掉电时仍然保存数据。在存 储器节将解释 TH 和 TL 是怎么存入高速暂存器的第 2 和第 3 个字节的。

电烘箱温度控制器设计

电烘箱温度控制器设计

电烘箱温度控制器设计作者:宋春霖来源:《卷宗》2013年第08期摘要:针对电烘箱温度稳定控制的重要性,设计了对电烘箱温度进行自动控制的电路。

该电路采用AT89S51单片机控制,采用数字式温度传感器DS18B20对温度进行监测,由继电器对加热丝电流进行通断控制,使电烘箱温度控制在恒定值。

关键字:电烘箱;温度控制;单片机1 引言温度是一个基本的物理常量,是工业对象的主要被控参数之一。

在冶金、化工、机械、食品等各类工业中,广泛使用这种加热炉、烘箱、恒温箱等,他们均需要对温度进行相应的控制。

利用所学知识,应用电路仿真的软件设计一个电烘箱的温度测试及控制器,经过软件编程及硬件调试,使其具有温度测量及控制的作用,达到准确而迅速按所定要求进行温度控制的目的。

2 系统设计框架设计以AT89S51单片机为核心研制的一种电烘箱温度控制器。

采用数字式温度传感器DS18B20对温度进行监测,由继电器对加热丝电流进行通断控制,使电烘箱温度控制在恒定值。

3 系统硬件设计3.1 单片机控制系统电烘箱温度控制器以单片机为控制中心,AT89S51单片机作为本设计的核心控制器件,它是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

3.2 温度传感器测量电路在本设计中,采用美国Dallas半导体公司继DS1820之后推出的一种改进智能温度传感器DS18B20作为温度检测元件,测温范围为-55~125℃,最大分辨率可达0.0625℃。

3.3 显示模块电路液晶显示模块不仅显示直观方便,而且与单片机连线方便,无需驱动电路,占用口线也相对与LED数码管减少许多,其连接电路如图3所示。

单片机恒温箱温度控制系统的设计说明

单片机恒温箱温度控制系统的设计说明

课程设计课题:单片机培养箱温控系统设计本课程设计要求:温度控制系统基于单片机,实现对温度的实时监控,实现控制的智能化。

设计了培养箱温度控制系统,配备温度传感器,采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数字传输,采用PID控制技术,可保持温度在要求的恒定范围内,配备键盘输入设定温度;配备数码管L ED显示温度。

技术参数及设计任务:1、使用单片机AT89C2051控制温度,使培养箱保持最高温度110 ℃ 。

2、培养箱温度可预设,干燥过程恒温控制,控温误差小于± 2℃.3、预设时显示设定温度,恒温时显示实时温度。

采用PID控制算法,显示精确到0.1℃ 。

4、当温度超过预设温度±5℃时,会发出声音报警。

和冷却过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数传7 、人机对话部分由键盘、显示器、报警三部分组成,实现温度显示和报警。

本课程设计系统概述一、系统原理选用AT89C2051单片机作为中央处理器,通过温度传感器DS18B20采集培养箱的温度,并将采集的信号传送给单片机。

驱动培养箱的加热或冷却。

2、系统整体结构总体设计应综合考虑系统的总体目标,进行初步的硬件选型,然后确定系统的草案,同时考虑软硬件实现的可行性。

经过反复推敲,总体方案确定以爱特梅尔公司推出的51系列单片机为温度智能控制系统核心,选用低功耗、低成本的存储器、数显等元器件。

总体规划如下:图1 系统总体框图2、硬件单元设计一、单片机最小系统电路Atmel公司的AT2051作为89C单片机,完全可以满足本系统所需的采集、控制和数据处理的需要。

单片机的选择在整个系统设计中非常重要。

该单片机具有与MCS-51系列单片机兼容性高、功耗低、可在接近零频率下工作等诸多优点。

广泛应用于各种计算机系统、工业控制、消费类产品中。

AT 89C2051 是 AT89 系列微控制器中的精简产品。

恒温箱温度计算机控制系统

恒温箱温度计算机控制系统

恒温箱温度计算机控制系统作者:陈婕羽来源:《硅谷》2015年第04期摘要在科学技术的支持下,恒温箱随之产生,恒温箱的作用是显著的,在医疗、家居与生产中均有着广泛的应用。

随着社会的发展,人们的生活环境不断变化,对恒温系统的要求日益提高,普通的恒温箱温度控制系统已经不能满足人们的需求,因此,本文将研究恒温箱温度计算机控制系统,主要分析其原理与设计,旨在发挥该系统的作用,实现其进一步发展。

关键词恒温箱;计算机控制系统;硬件设计;软件设计中图分类号:TM41 文献标识码:A 文章编号:1671-7597(2015)04-0013-01随着科学技术水平的提升,恒温箱温度计算机控制系统随之产生,这一系统的核心为单片机。

在该系统中充分展现了单片机的优点,如:较高的性能、较小的体积等,同时这一系统也满足了人们对恒温箱温度控制系统的要求,本文将研究恒温箱温度计算机控制系统的原理与设计,旨在通过深入的研究,使其得到更加广泛的应用。

1 恒温箱计算机控制系统的原理在恒温箱温度计算机控制系统中最为关键的便是单片机,主要是其能够有效地控制温度,并且能够对数字信号进行相应的处理。

恒温箱的使用流程如下:键盘按键,输入温度范围,采集温度值,对比温度,判断温度,启动升降温装置等。

一旦单片机采集的温度与输入的温度范围不相符合,便要运用升降温装置,在范围下限时,则要加热升温;在范围上限时,则要冷却降温。

此时,温度的升降主要是通过二极管实现的,红色发光的二极管代表升温,绿色发光的二极管代表降温。

二极管的发光是由继电器闭合实现的,在这一过程中,显示屏将对温度范围与实时的温度进行显示[1]。

2 恒温箱计算机控制系统的设计2.1 在硬件设计方面系统的硬件设计主要包括主控模块、采集模块、对话模块与控制模块等,下面将对不同的模块进行阐述。

主控模块也可以称之为CPU模块,CPU不仅具有运算功能,还具有控制功能,因此,在控制系统中,CPU是最为重要的器件。

数字温度传感器的标定方法

数字温度传感器的标定方法

山西安防网 山西安防网 山西安防,山西监控,太原安防,山西监控摄像机,山西物联网,为您服务 数字温度传感器的测试方法
温度传感器型号:DS18B20
生产商:美国DALLAS 公司
测温范围:-55∽+125℃,在-10∽+85℃时精度为±0.5℃。

DS18B20温度传感器提供的是数字信号,计算机将其读出、显示,测温的精度是厂家出厂时保证的。

也不能重新用软件标定。

因为其优异的总线性能和精度,特别适合混凝土蒸汽养护的温度检测使用。

因为该种温度传感器是一种全新概念的新型温度传感器,计量测试所一般没有专用的仪表与之连接,所以,在测试时,一般采用“比对法”进行标定。

具体办法是:同时使用我们的测温系统和计量所的测温系统,将数字温度传感器和计量所的标准温度传感器,放入同一介质中(例如恒温箱、或者简单的冷水瓶和热水瓶),将我们的系统上显示的温度与计量所仪表上显示的温度,进行比较,就能确定我们的系统是否测温正确。

考虑到计量收费的问题,一般检测两个温度点即可。

例如20℃和50℃。

计量检定收费是按照每支传感器的测温点收取的。

计量所向用户出具的是测试报告。

各地、各厂都是这么做的。

根据规定,确定检测的温度传感器的数量。

温度控制系统(课程设计)

温度控制系统(课程设计)

长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。

题目。

摘要。

需求分析。

方案比较。

硬件设计。

硬件电路设计。

总体电路设计。

软件设计。

调试及结果分析。

附录1 电路程序。

附录2 电路总图。

题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。

控制对象为自定。

图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。

(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。

(4)温度控制的静态误差≤2℃。

扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。

恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。

ds18b20工作原理

ds18b20工作原理

ds18b20工作原理
DS18B20温度传感器是一种数字温度传感器,采用"1-wire"
(单总线)接口通信,其工作原理如下:
1. 传感器结构:DS18B20传感器由温度传感器芯片、电源线
和数据线组成。

芯片内部包含温度传感器、模数转换器和存储器。

2. 电源供电:传感器通过电源线从计算机、微控制器或其他设备中获取供电。

传感器的VDD和GND引脚用于供电。

3. 温度测量:传感器使用其内部温度传感器测量环境温度。

当温度变化时,传感器内部的温度传感器会产生电压变化。

4. 模数转换:传感器内部的模数转换器将温度传感器测量到的电压转换为数字信号。

转换后的数字信号可以在数据线上传输。

5. 通信协议:传感器使用1-wire接口协议进行通信。

该协议
允许使用单根数据线进行数据传输。

传感器通过数据线将温度数据发送给主控设备。

6. 数据读取:主控设备发送读取指令给传感器,传感器将温度数据通过数据线返回给主控设备。

主控设备可以通过读取传感器返回的数据来获取环境温度。

总结:DS18B20温度传感器工作原理基于温度传感器芯片和
模数转换器的结构,在供电后,传感器通过测量温度传感器的
电压变化来获取环境温度,并通过1-wire接口协议将温度数据传输给主控设备。

基于单片机的恒温箱温度控制系统的设计

基于单片机的恒温箱温度控制系统的设计

基于单片机的恒温箱温度控制系统的设计课程设计题目:单片机恒温箱温度控制系统的设计本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。

设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,能够使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。

技术参数和设计任务:1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。

2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。

3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。

4、温度超出预置温度±5℃时发出声音报警。

5、对升、降温过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述1、系统原理选用AT89C2051单片机为中央处理器,经过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。

2、系统总结构图总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。

总体方案经过重复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图:图1系统总体框图二、硬件各单元设计1、单片机最小系统电路单片机选用Atmel公司的单片机芯片AT89C2051 ,完全能够满足本系统中要求的采集、控制和数据处理的需要。

温度控制器实验报告

温度控制器实验报告

温度控制器实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (2)3. 实验原理 (3)二、实验内容与步骤 (4)1. 实验内容 (5)1.1 温度控制器的基本操作 (6)1.2 温度控制器的参数设置与调整 (7)2. 实验步骤 (8)2.1 安装温度控制器 (9)2.2 校准温度计 (9)2.3 设置温度控制器参数 (11)2.4 观察并记录实验数据 (13)2.5 分析实验结果 (13)三、实验数据与结果分析 (14)1. 实验数据 (15)1.1 温度控制器的温度读数 (17)1.2 温度控制器的设定温度 (18)1.3 温度控制器的实际输出温度 (19)2. 结果分析 (19)2.1 温度控制器的性能评价 (20)2.2 温度控制器在不同条件下的适应性分析 (21)四、实验结论与建议 (22)1. 实验结论 (23)2. 实验建议 (24)一、实验概述本实验旨在通过设计和制作一个温度控制器,让学生了解温度控制器的基本原理、结构和工作原理,并掌握温度控制器的制作方法。

学生将能够熟练掌握温度控制器的设计、制作和调试过程,为今后从事相关领域的工作打下坚实的基础。

本实验的主要内容包括,在实验过程中,学生将通过理论学习和实际操作相结合,全面掌握温度控制器的相关知识和技能。

1. 实验目的本实验旨在探究温度控制器的性能及其在实际应用中的表现,通过一系列实验,了解温度控制器的控制原理、操作过程以及性能特点,验证其在实际环境中的温度控制精度和稳定性。

本实验也旨在培养实验者的实践能力和问题解决能力,为后续相关领域的深入研究和实践打下坚实的基础。

2. 实验设备与材料温度控制器:作为实验的核心设备,本实验选择了高精度数字式温度控制器,具备较高的稳定性和精确度,能够确保实验结果的可靠性。

恒温箱实验箱:为了模拟不同的环境温度,采用了具有温控功能的恒温箱或实验箱。

通过调节箱内的温度,可以观察温度控制器在不同环境下的表现。

基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计恒温箱是一种用于保持物品恒定温度的设备,广泛应用于实验室、医院、工厂等场所。

为了更好地控制恒温箱的温度,我们可以设计一种基于单片机的恒温箱控制系统。

首先,我们需要选择适合的单片机。

常用的单片机有51系列、AVR 系列、STM32系列等。

在选择单片机时,需要考虑其性能、功耗、价格等因素。

在本设计中,我们选择STM32系列的单片机,因为它具有较高的性能和较低的功耗,同时价格也比较合理。

接下来,我们需要设计恒温箱的硬件电路。

恒温箱的硬件电路主要包括温度传感器、加热器、风扇等。

温度传感器可以选择DS18B20等数字温度传感器,它具有高精度、数字输出等优点。

加热器可以选择PTC加热器或电热丝等,它们可以根据需要进行控制。

风扇可以用于调节恒温箱内部的空气流动,以达到更好的温度均匀性。

然后,我们需要编写单片机的程序。

程序的主要功能是读取温度传感器的数据,根据设定的温度范围控制加热器和风扇的工作。

程序可以采用C语言编写,使用Keil或IAR等集成开发环境进行开发。

在编写程序时,需要注意程序的稳定性和可靠性,避免出现死循环、死机等问题。

最后,我们需要进行系统测试和调试。

测试时可以使用温度计等工具对恒温箱的温度进行实时监测,以验证系统的稳定性和准确性。

调试时需要根据测试结果对程序进行优化和调整,以达到更好的控制效果。

综上所述,基于单片机的恒温箱控制系统设计需要选择适合的单片机、设计恒温箱的硬件电路、编写单片机的程序以及进行系统测试和调试。

这种控制系统可以实现对恒温箱温度的精确控制,提高恒温箱的使用效率和稳定性。

基于IoT控制的便携式血液运输恒温箱

基于IoT控制的便携式血液运输恒温箱

緣2科枚Journal of Green Science and Technology第6期2019年3月基于IoT控制的便携式血液运输恒温箱马子薇,李锡哲,宋涛,徐晓辉(河北工业大学电子信息工程学院,天津300401)摘要:设计了一种应用于突发事件发生后血液运输所需的便携式恒温箱。

通过IoT技术实现了对恒温箱的远程控制,应用半导体技术实现制冷.利用DS18B20模块采集温度信息并用GPRS进行数据传输.采用低压直流电配合太阳能电池板供电.使得恒温箱方便携带、不受环境因素制约、操作简单。

关键词:恒温箱;血液运输;IoT技术;半导体制冷;PID控制理论中图分类号:TP368文献标识码:A文章编号:1674-9944(2019)6-0196-041引言传统的血液恒温箱主要有压缩机制冷一电热加温恒温箱和蓄冷型恒温箱两种。

压缩机制冷一电热加温恒温箱由于采用传统的压缩机制冷,一般具有体积大、不易携带、有振动和噪声、对电源要求严格、温度波动范围大、不能卧放等缺陷。

而蓄冷型恒温箱由于主要采用低温相变蓄冷材料蓄冷,温度难以准确控制、恒温时间有限。

传统的血液恒温箱可以满足日常医疗对于血液存储的需求,但在如地震、泥石流的突发事件面前往往束手无策。

由于突发事件发生后环境因素的制约,需要一款轻便易携、温度范围容易控制、恒温时间较长、获取信息及时的血液运输箱。

因此.通过半导体制冷技术将恒温箱体积减小,并引入了IoT技术.GPS/BDS系统、网页制作技术.使这款恒温箱具有了显示运输信息、可远程监控的功能。

2方案设计基于IoT控制的便携式血液运输恒温箱,利用TEC1-12706半导体片进行制冷/制热、IoT技术实现远程监控、网页制作技术显示信息.GPS/BDS模块进行位置追踪、GPRS传输芯片进行数据传输.STM32F103嵌入式系统实现数据处理、锂电池辅以太阳能电池板进行供电。

最终实现工作温度调节范围一18°C〜24°C,温度控制精度达士0.5°C,降温及升温速率$5.0°C/ min。

基于单片机的恒温箱控制系统设计方案

基于单片机的恒温箱控制系统设计方案

设计一个基于单片机的恒温箱控制系统涉及到硬件设计和软件编程两个方面。

下面是一个简要的设计方案:硬件设计:1. 传感器选择:选择合适的温度传感器,如DS18B20数字温度传感器,用于实时监测箱内温度。

2. 执行器:选择合适的加热器或制冷器作为执行器,用于调节箱内温度。

3. 单片机:选择适合的单片机,如Arduino Uno或STM32等,作为控制核心。

4. 显示器:可以添加LCD显示屏,用于显示当前温度和设定温度。

5. 输入设备:可以添加旋钮或按钮,用于设定目标温度。

软件设计:1. 温度读取:编写程序从温度传感器读取实时温度数据。

2. 控制算法:设计恒温控制算法,比如PID控制算法,根据实际温度和设定温度调节加热器或制冷器。

3. 用户界面:编写程序实现与用户的交互,包括设定目标温度和显示当前温度。

4. 安全保护:添加温度过高或过低的报警功能,保护箱内物品和系统安全。

5. 实时监控:实现实时监控功能,定时记录温度数据并可通过串口或WiFi上传至PC进行分析。

实施步骤:1. 进行硬件连接,将温度传感器、执行器和单片机连接好。

2. 编写单片机程序,包括温度读取、控制算法等功能。

3. 测试程序功能,确保可以准确地读取温度并控制箱内温度。

4. 调试控制算法,优化控制效果,确保恒温箱可以稳定工作。

5. 添加用户界面和安全保护功能,完善系统设计。

通过以上硬件设计和软件编程,可以实现一个基于单片机的恒温箱控制系统,能够稳定地控制恒温箱内的温度,满足不同实验或存储需求。

在实际应用中,还可以根据具体需求对系统功能和性能进行进一步优化和扩展。

文献综述-恒温箱自动控制系统设计

文献综述-恒温箱自动控制系统设计

恒温箱自动控制系统设计组员:院系:指导教师:【摘要】本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。

处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。

温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。

【关键字】单片机温度传感器半导体制冷器控制一、设计方案比较1.1总体设计方案这里利用DS18B20芯片作为恒温箱的温度检测元件。

DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。

单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。

控制结果通过液晶显示器LCD12864予以显示。

系统整体框图如图一所示:图一、系统整体框图1)温度检测元件的选择:方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。

此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。

方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。

DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。

与方案一比较更加简单实用,因此我们选择方案二。

2)显示方案选择:方案一:温度的显示可以用数码管,但数码管只能显示简单的数字,它有电路复杂,占用资源较多,显示信息少等缺点。

方案二:LCD12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字,128个字符及64×256点阵显示RAM。

基于单片机的恒温箱控制器的设计

基于单片机的恒温箱控制器的设计

基于单片机的恒温箱控制系统设计电子信息工程王锋[摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。

本设计是基于AT89C51单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。

编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。

另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。

本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C51作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。

[关键词]单片机;温度传感器;恒温;控制;报警The Design of Refrigerator Door Shell Shaping Control SystemBased on Siemens WINCCElectronic Information Engineering WANG Feng Abstract:The system makes use of the single chip AT89C51 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.Keywords:DS18B20;MCU;Constant temperature control; 1-wire transmission目录1 引言 (1)2 系统概述 (1)2.1 简述 (1)3 设计思路分析 (2)4 方案论证 (2)4.1 温度传感器 (2)4.2 显示部分 (2)4.3 输出控制 (3)5 硬件设计及工作原理 (3)5.1 系统功能及工作流程介绍 (3)5.2 功能模块 (5)5.3 系统硬件设计 (5)5.3.1 DS18B20测温电路 (5)5.3.2 DS18B20的特点介绍 (6)5.3.3 单线(1-wire)技术 (6)5.3.4 DS18B20的引脚及功能介绍 (7)5.3.6 输出控制电路 (9)5.3.7 温度越线报警电路 (10)6 系统的应用软件设计 (10)6.1 软件描述 (10)6.1.1 键盘管理模块 (10)6.1.2 显示模块 (11)6.1.3 控制模块 (11)6.1.4 温度报警模块 (12)6.1.5 主程序和中断服务程序流程 (12)7 系统调试与仿真 (14)7.1 硬件调试 (14)7.1.1 脱机检查 (14)7.1.2 仿真调试 (14)7.1.3 检查CPU的时钟电路 (14)7.1.4 对扩展的RAM、ROM进行检查调试 (15)7.2 软件调试 (15)7.2.1 交叉汇编 (15)7.2.2 用汇编语言 (15)7.2.3 手工汇编 (15)7.3 系统仿真 (15)8 抗干扰技术 (18)8.1 硬件抗干扰技术 (18)8.2 软件抗干扰技术 (18)9 系统制作与测试 (19)结束语 (21)参考文献 (22)致谢 (23)1 引言温度控制是工业生产过程中经常遇到的过程控制,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。

DS18B20水温控制系统+电路图程序

DS18B20水温控制系统+电路图程序

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。

温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内, 固有测温分辨率为0.5 ℃。

水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制。

系统具备较高的测量精度和控制精度,能完成升温和降温控制。

关键字: AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling. DS18B20, digitized temperature sensor, provides the temperature signal by "a main line". In -10~+85℃the scope, DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control. The system has the higher measuring accuracy and the control precision, it also can complete the elevation of temperature and the temperature decrease control.Key Words:AT89C51 DS18B20 Water temperature control目录1. 系统方案选择和论证 (2)1.1 题目要求 (2)1.1.1 基本要求 (2)1.1.2 发挥部分 (2)1.1.3 说明 (2)1.2 系统基本方案 (2)1.2.1 各模块电路的方案选择及论证 (2)1.2.2 系统各模块的最终方案 (5)2. 硬件设计与实现 (6)2.1系统硬件模块关系 (6)2.2 主要单元电路的设计 (6)2.2.1 温度采集部分设计 (6)2.2.2 加热控制部分 (8)2.2.3 键盘、显示、控制器部分 (8)3. 系统软件设计 (10)3.1 读取DS18B20温度模块子程序 (10)3.2 数据处理子程序 (10)3.3 键盘扫描子程序 (12)3.4 主程序流程图 (13)4. 系统测试 (14)4.1 静态温度测试 (14)4.2动态温控测量 (14)4.3结果分析 (14)附录1:产品使用说明 (15)附录2:元件清单 (15)附录3:系统硬件原理图 (16)附录4:软件程序清单 (17)参考文献 (26)1.系统方案选择和论证1.1题目要求设计并制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。

温度传感器ds18b20

温度传感器ds18b20

温度传感器ds18b20温度传感器DS18B201. 简介温度传感器DS18B20是一种数字温度传感器,可用于测量环境温度。

该传感器由Maxim Integrated公司生产,并在许多应用中得到了广泛的应用,如家庭自动化、气象站、工业控制等。

DS18B20采用了数字化接口,并具有高精度、可编程分辨率和低功耗等特点。

2. 技术规格DS18B20的技术规格如下:- 工作电源:3.0V至5.5V- 测量范围:-55°C至+125°C- 分辨率:可编程为9、10、11或12位- 精度:±0.5°C(在-10°C至+85°C范围内)- 通信接口:一线式数字接口3. 工作原理DS18B20采用了一线式数字接口,这意味着它只需要一根数据线进行通信。

传感器从控制器接收命令,并通过数据线将温度数据发送回控制器。

传感器的数据线同时起到了供电的作用。

DS18B20通过内部的精密温度传感器测量环境温度。

传感器将温度转换为数字信号,并通过数据线将其发送给控制器。

传感器的分辨率可以根据需要进行编程,从而在精度和响应速度之间进行平衡。

4. 使用方法使用DS18B20温度传感器非常简单。

首先,将传感器的电源引脚连接到可用的电源引脚,并将数据线连接到控制器的GPIO引脚。

然后,通过控制器向传感器发送命令,请求温度数据。

传感器将在一段时间后将温度数据发送回控制器,控制器可以读取这些数据并进行相应的处理。

DS18B20还具有一些特殊的命令,如启动温度转换、复位传感器和读取ROM代码等。

这些命令可以通过与控制器的通信来实现。

5. 应用领域温度传感器DS18B20在许多应用中得到了广泛的应用。

以下是一些常见的应用领域:- 家庭自动化:DS18B20可以用于监测室内温度,从而实现智能化的温控系统。

- 气象站:DS18B20可以用于监测室外温度,并将数据发送到气象站系统进行分析和显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这个温度控制器通过继电器控制加热管加热,恒温设定温度要比环境温度高几摄氏度才能正常工作,需要设定两个参数,一个是上限关负载温度设定,分辨率0. 1摄氏度,范围2-80摄氏度,另一个是下限开负载温度设定,分辨率0.1摄氏度,范围也是2-80摄氏度,如果下限设置比上限高,自动修改下限值,以上限减去2摄氏度做为下限。

两组数码管显示,上面的显示当前温度,下面的交替显示设置的上下限值
共有四个控制按键,从左到右依次是K1,K2,K3,K4。

1)下限设置:
按下K1,进入温度上限设置,数字闪烁,同时左第1位最上面显示一横,表示上限设置,按一次K2温度值加0.1摄氏度,按一次K3,温度值减小0.1摄氏度,设置好上限;
这时再按K1一次,进入下限温度设置,数字闪烁,同时左第1位最下面显示一横,表示是下限设置,按一次K2温度值加0.1摄氏度,按一次K3,温度值减小0.1摄氏度,设置好下限,再按一次K1,退出上下限设置,并把设置好的上下限参数保存到EEPROM中。

2)负载载控制开关控制:
有时不需要控制负载,就是待机状态,在工作状态下,按下K4,下面的数码管会关显示,什么也不显示,表示不控制负载,这时再按下K4,又回到工作状态,设置状态也保存EEPROM中,交替显示所设定的温度上下限值。

有原理图和源程序,编译环境是ICCAVR
(原文件名:18B20.jpg)
引用图片
(原文件名:温控器.jpg)
引用图片
(原文件名:ALL.jpg)
引用图片。

相关文档
最新文档