八年级下册平行四边形教案

合集下载

人教版数学八年级下册第十七章平行四边形教案

人教版数学八年级下册第十七章平行四边形教案

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质(1)课型: 上课时间:课时:学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、忆一忆:1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?3.你能总结出平行四边形的定义吗?。

如图,平行四边形ABCD可以表示为:,几何表示定义:二、想一想:1、由定义可知平行四边形具有什么性质?2、自己亲自动手画一个平行四边形,观察一下,除了“两组对边分别平行”以外,它的边,角之间有什么关系?度量一下,是否和你的猜想一致?结论:平行四边形的性质:;。

你能证明你所得出的结论吗?证明:3、如图所示,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中AB 边长为8m ,其他三边的长各是多少?4、如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .三、练一练:1、课本练习;2.计算(1)在平行四边形ABCD 中,∠A=500,求∠B 、∠C 、∠D 的度数。

(2)在平行四边形ABCD 中,∠A=∠B+400,求∠A 的邻角的度数。

(3)平行四边形的两邻边的比是2:5,周长为28cm ,求四边形的各边的长。

(4)在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

5. 如图,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF .6.(选择)在下列选项中,平行四边形不一定具有的是( ).(A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是7.如图:在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个8.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,360求证:AB=CE四、拓展拓展:1.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶12.□ABCD 的周长为36 cm ,AB =BC ,则较长边的长为( ) A.15 cm B.7.5 cmC.21 cmD.10.5 cm 3. 平行四边形的周长为36 cm ,一组邻边之差为4 cm ,求平行四边形各边的长.4.如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长.五、小结与反思:18.1.1平行四边形的性质(2)课型: 上课时间: 课时:学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养推理论证能力和逻辑思维能力.学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:75一、 忆一忆:1、什么样的四边形是平行四边形?四边形与平行四边形的关系是:2、平行四边形的性质:①具有一般四边形的性质:②角:③边:二、活动活动:1. 在纸上画两个全等的ABCD 和EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将ABCD 绕点O 旋转,观察它还和EFGH 重合吗?你从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现OA 与OC 、OB 与OD 的关系吗?那么平行四边形还有什么性质呢?(阅读教材上面探究中的方框内容) 结论:平行四边形又一性质:2.将你得到的上述结论用全等的方法证明:(如图)已知:求证:证明:三、练一练:1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2. 已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD的面积.1803.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm . 4.ABCD 一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD 的周长是__ ___.5.如图,ABCD 的周长是36㎝,AB=8㎝,BC= ;当∠B=60°时,AD 、BC 的距离AE= ,ABCD 的面积= 。

平行四边形优秀教案6篇

平行四边形优秀教案6篇

平行四边形优秀教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、演讲致辞、条据文书、合同协议、心得体会、自我鉴定、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, written documents, contract agreements, insights, self-evaluation, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形优秀教案6篇编写好教案可以帮助我们更好地理清教学思路和目标,提高教学的针对性和有效性,编写教案可以帮助教师更好地组织和安排教学材料和教学资源,以下是本店铺精心为您推荐的平行四边形优秀教案6篇,供大家参考。

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

八年级下册平行四边形的教案

八年级下册平行四边形的教案

第 十 九 章 四 边 形19.1 平行四边形一、平行四边形的定义(1)定义: 两组对边分别平行的四边形叫做平行四边形。

(2)几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD (3就一定具有“两组对边分别平行”性质。

(4)平行四边形的表示:用符号 表示,如 A BCD二、平行四边形的性质(1)共性:具有一般四边形的性质 (2)性质:定义性质 平行四边形的两组对边分别平行角 平行四边形的对角相等边 平行四边形的对边相等对角线 平行四边形的对角线互相平分边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

角:对角相等(定理1);邻角互补。

(3)应用格式:∵ 四边形ABCD 是平行四边形,∴ AB ∥ CD ,AD ∥ BC 。

(平行四边形的两组对边分别平行)∴AB= CD ,AD=BC (平行四边形的对边相等)∴∠AB C=∠AD C ,∠BAD=∠BCD (平行四边形的对角相等)∴AO=OC,BO=OD (平行四边形的对角线互相平分)(4)平行四边形是中心对称图形,平行四边形绕其对角线交点旋转180º后与自身重合,我们说平行四边形是中心对称图形,对称中心为对角线交点。

三、两条平行线之间的距离1、定义:在两条平行线中,其中一条上的任意一点到另一条直线的距离叫做这两条平行线的距离。

2、平行线的性质: 夹在两条平行线间的平行线段相等注意:(1)两相交直线无距离可言;(2)与两点的距离、点到直线的距离的区别与联系四、平行四边形的面积在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底”是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.平行四边形的面积等于它的底和该底上的高的积。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

平行四边形教案(7篇)

平行四边形教案(7篇)

平行四边形教案(7篇)作为一位杰出的老师,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?读书破万卷下笔如有神,以下内容是本文范文为您带来的7篇《平行四边形教案》,如果能帮助到亲,我们的一切努力都是值得的。

平行四边形教案篇一导学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

能根据判别方法进行有关的应用。

3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

导学重点:平行四边形的判别方法。

导学难点:根据判别方法进行有关的应用导学准备:多媒体课件导学过程:一、快速反应1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?结论:______________________________________符号表示:4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。

图中有哪些互相平行的线段?二、议一议1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。

(2)两组对边分别相等的四边形是平行四边形。

(3)一组对边平行且相等的。

四边形是平行四边形。

平行四边形的性质一集体备课教案

平行四边形的性质一集体备课教案

1.平行四边形的概念 2.平行四边形对边、对角相等的性质
考查知识点
平行四边形的定义,平行四边形对角、对 边相等的性质,以及性质的应用.
学习重点
运用平行四边形的性质进行有关的论证和 计算.
学习难点
教学课时
教学设计
针对本章节内容及学生实际设置更 精炼有效的问题。 一.课堂引入
我们一起来观察下图中的竹篱笆格子 和汽车的防护链,想一想它们是什么几何 图形的形象? 平行四边形是我们常见的图形,你还能举 出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗? 平行四边形是我们常见的图形,你还能举 出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗?
数学学 科 参加人:初 二数学组全 体教师
主备人:
初二下册数学集体备课教案
章节内容:18.1.1 平行四边形的性质
主备人初备思路
集体交流补行四边形的概念和平行四 边形对边、对角相等的性质. 2.会用平行四边形的性质解决简单的平行 四边形的计算问题,并会进行有关的论 证. 3.培养学生发现问题、解决问题的能力及 逻辑推理能力.
教学设计
出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗? 平行四边形是我们常见的图形,你还能举 出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗?
1

【人教版八年级数学下册教案】18.1.1平行四边形的性质第1课时

【人教版八年级数学下册教案】18.1.1平行四边形的性质第1课时

第十八章平行四边形18.1 平行四边形平行四边形的性质第1课时教课目的【知与技术】1.理解平行四形定,能依照定研究平行四形的性.2.掌握平行四形的角相等,相等性,能用它解决的.3.掌握两条平行的距离的含.【程与方法】培育学生的推理和研究平行四形的性及运用性解决的的程,演能力,展学生的抽象思和形象思.【感情度】在研究平行四形的性及运用性解决的程中,培育学生独立思虑的,感觉得成功的趣,激学情 .教课重难点【教课要点】.平行四形的角相等,相等的性的研究和用【教课点】两条平行的距离的含.课前准备无教课过程一、情境入,初步世界中,四形也在装点着我的生活,宏的建筑物、地面的地板、具一格的窗、天空舞的筝⋯⋯都有四形的身影,此中平行四形与我的生活关系更亲密,你能出一些平时生活中的平行四形的例子?【教课明】学生互相沟通,通平时生活中的平行四形例感觉平行四形的含,初步体平行四形的特点 .二、思虑研究,取新知平行四形的观点两分平行的四形是平行四形,往常用“如“平行四形ABCD”可作“ABCD” .思虑如所示的ABCD中,除了“两分平行”外,它的、角之有什么关系?你能明原由?【教课说明】教师提出问题后,学生独立思虑并互相沟通. 教师关注学生的沟通活动,针对学生思虑结果的实质状况,展开师生互动,如教师发问、学生自主沟通或学生向教师提出怀疑等,让学生能感觉到要想获取察看和猜想中结论“平行四边形的对角相等”、“平行四边形的对边相等”时,需经过增添协助线获取全等三角形来达到目的,从而理解并掌握平行四边形的这些性质. 在指引学生连结对角线AC(或 BD)后,让学生自己达成证明,达到获取知识的目的,教师也可指引学生在论证“两组对角分别相等”时,还可利用平行四边形的平行线性质获取结论.平行四边形的性质平行四边形的对边相等;平行四边形的对角相等.研究如图, a,b 是两条平行线,从直线 a 上任一点 A 向直线 b 作垂线,垂足为 B,再过 a 上另一点 C 作 CD⊥ b 于 D,你能发现 AB与 CD的关系吗?【教课说明】学生互相沟通,教师关注学生对问题的商讨过程,让学生获取平行线间的距离的感性认识,最后教师予以解说、概括和总结,得出结论,两条平行线间的距离:过一条平行线上任一点作另一条平行线的垂线,这点和垂足之间的线段的长度叫做两条平行线间的距离 .三、典例精析,掌握新知例 1 如图,小明用一根长为 36m的绳索围成了一个平行四边形场所,此中 AB 边长为8m,其余三边的长各是多少?解:∵四边形ABCD是平行四边形,∴AB=CD, AD=BC.∵AB=8m,∴ CD=8m又. AB+BC+CD+DA=36m,∴AD=BC=10m即.其余三边长分别为 10m,8m,10m.例 2如图,在ABCD中, BE均分∠ ABC交 AD于 E, DF均分∠ ADC交 BC于 F. 求证:BE∥ DF.【剖析】要证明BE∥ DF,依照图形特点,需获取同位角∠BEA=∠ FDA或∠ EBF=∠DFC.这时联想到平行四边形的性质有∠ ABC=∠ADC , AD ∥ BC ,再借助角均分线定义可获取结论 .证明:∵四边形 ABCD 是平行四边形,∴ AD ∥ BC ,∠ ABC=∠ ADC. ∵ BE 均分∠ ABC ,∴∠ 2= 1∠ ABC.2又 DF 均分∠ ADC ,∴∠ 3= 1∠ ADC ,∴∠ 2=∠ 3.2∵ AD ∥BC ,∴∠ 1=∠ 2. ∴∠ 1=∠ 3,∴ BE ∥ DF.【教课说明】上述两例均可让学生自己独立达成,最后教师再展现解答过程四、运用新知,深入理解.1. 一个平行四边形的一个内角是 58°,这个平行四边形的每个内角的度数是多少?为何?2. 如图,在ABCD 中, AE ⊥ BC 于 E , AF ⊥CD 于 F ,且∠ EAF=60°, BE=2cm , DF=3cm ,试求ABCD 的周长 .【教课说明】第 1 题可由学生独立达成, 而第 2 题教师应赐予适合点拨, 先求∠ C=120°,从而∠ B=∠D=60° . 易有∠ BAE=∠ DAF=30°,从而 AB=2BE=4cm ,AD=2DF=6cm ,从而可得结论 .【答案】 1. 解:因为平行四边形的两组对边分别平行,故它的邻角互补,因此它的每个内角分别为 122°, 58°, 122°, 58° .2. 解:∵ AE ⊥ BC , AF ⊥ CD ,∠ EAF = 60°, ∴∠ C = 360° -90 ° -90 °-60 °= 120° .∴∠ B =∠ D = 180° -120 °= 60°. ∴∠ BAE=∠ DAF=90° -60 ° =30° . 在 Rt △ ABE 中,∠ BAE = 30°, BE = 2cm ,∴ AB=2BE =4cm. 同理: AD=2DF =6cm.故 ABCD 的周长为 2(AB+AD )= 2×( 4+6)= 20cm. 五、师生互动,讲堂小结1. 在研究平行四边形性质的过程中,你有哪些认识?2. 在运用平行四边形的性质解题时,应注意哪些问题?课后作业1. 部署作业:从教材“习题 18.1 ”中选用 .2. 达成练习册中本课时练习 .教课反省教课反省本课时中,课本的设计企图是利用图形平移和旋转的特点来得出平行四边形的性质. 因此教课时应先列出平时生活中所用到的一些物体,领会平行四边形在平时生活中的宽泛应 用,从而给出平行四边形的定义, 从定义出发获取第一个性质,再由学生着手操作和教师演示旋转获取其余性质 . 因为本章课注明确要修业生可以严格说理过程,因此教师在得出平行四边形性质的同时要加上几何语言的描绘,在练习中也要注意规范学生的说理过程.。

八年级数学教案:《平行四边形》(最新7篇)

八年级数学教案:《平行四边形》(最新7篇)

八年级数学教案:《平行四边形》(最新7篇)平行四边形教案篇一课型:新授课。

教学分析:本节课是在学生已经认识长方形、正方形的基础上进行教学。

重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。

教学目标:(一)知识与技能:引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。

会在方格纸上画长方形、正方形,并认识平行四边形。

(二)过程与方法:学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。

(三)情感态度价值观:培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。

教学策略:创设情景、动手实践、交流合作。

教具学具:多媒体课件、长方形、正方形、格子纸、三角板。

教学流程:一、创设情景,提出问题。

今天,我们的好朋友智慧星要带领大家到图形王国去参观。

参观之前提一个小小的要求,请你仔细观察、多动脑筋。

(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。

引出课题)二、协作探索,研究问题。

1、教学长方形、正方形。

(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?(2)教学对边的概念:在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。

(多媒体演示)(3)小组合作研究长方形、正方形的特点。

下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。

长方形的对边和正方形的边有什么特点,角有什么特点?(4)指名汇报,并演示自己发现的过程。

共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。

(5)在方格纸上画出长方形、正方形2、教学平行四边形。

(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?我们把这样的四边形叫做平行四边形。

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。

快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。

平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。

它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。

二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。

学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。

因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。

2、理解平行四边形的这两种判定方法,并学会简单运用。

【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。

2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。

3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。

18.1平行四边形的判定(教案)

18.1平行四边形的判定(教案)
3.增强学生的几何直观:让学生在解决实际问题时,能够运用所学知识进行直观判断,提高解决问题的能力,并培养几何直观素养。
三、教学难点与重点
1.教学重点
(1)掌握平行四边形的定义及基本性质,理解其对边平行且相等的特点;
举例:强调平行四边形两组对边分别平行且相等,对角线互相平分等核心性质。
(2)熟练运用平行四边形的判定方法,包括:两组对边分别平行、一组对边平行且相等、两组对边分别相等、对角线互相平分;
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行四边形的基本性质和判定方法。
在学生小组讨论环节,虽然同学们积极参与,但部分学生的观点较为片面。我应该在讨论过程中,适时提出一些挑战性的问题,引导学生从不同角度思考问题,提高他们的逻辑思维和分析问题的能力。
最后,总结回顾环节,我发现部分学生对平行四边形判定的理解仍不够深入。在今后的教学中,我需要更加关注学生的掌握情况,通过设计不同难度的练习题,帮助他们巩固知识点,提高解题能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、判定方法和应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形判定知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学八年级下册18.1平行四边形说课稿

人教版数学八年级下册18.1平行四边形说课稿
(二)学习障碍
在学习本节课之前,学生已经掌握了四边形的基本概念、一元一次方程、不等式等前置知识。然而,他们在学习平行四边形时可能遇到以下障碍:1.对平行四边形性质的理解不够深入,容易混淆;2.对平行四边形判定方法的掌握不够熟练,难以运用到实际问题中;3.空间想象能力和逻辑推理能力有限,导致解题困难。
1.知识与技能目标:掌握平行四边形的定义、性质及判定方法,能够运用这些知识解决实际问题。
2.过程与方法目标:通过自主探究、合作交流的方式,培养学生的空间想象能力、逻辑推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对几何学习的兴趣,培养学生的团队合作意识和勇于探索的精神。
(三)教学重难点
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的题目,让学生独立完成,及时巩固所学知识。
2.小组讨论:组织学生进行小组讨论,共同解决练习中的难题,培养学生的合作能力和解决问题的能力。
3.实践活动:让学生在课后观察生活中的平行四边形,并尝试运用所学知识解释其性质和判定方法。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,让学生认识到平行四边形在实际生活中的广泛应用,从而激发他们的学习兴趣;
2.设计有趣的问题和例题,引导学生积极参与课堂讨论,培养他们的主动思考能力;
3.组织小组合作学习,让学生在互相交流、探讨中共同进步,提高合作能力;
此外,培养学生的空间想象能力和逻辑推理能力也是本节课的教学难点。在教学过程中,教师应注重引导学生观察、思考、总结,从而提高学生的几何素养。总之,本节课的教学难点在于让学生在掌握知识的同时,培养其几何思维能力。
二、学情分析导

平行四边形教学方案

平行四边形教学方案

平行四边形教学方案平行四边形教学方案9篇为了确保工作或事情能高效地开展,往往需要预先制定好方案,方案可以对一个行动明确一个大概的方向。

那么大家知道方案怎么写才规范吗?下面是店铺整理的平行四边形教学方案,仅供参考,欢迎大家阅读。

平行四边形教学方案1考点要求:1、掌握平行四边形的概念和性质及它们之间的关系2、以下定理可以作为证明和计算的依据:平行四边形的对边相等、对角相等、对角线互相平分;一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形.一、预习准备:1.完成《导学式》P76-78,了解平行四边形的判定和性质。

2.记录下你的问题和其他同学交流。

二、例题精讲:例1、将下列图形(1)(2)(3)分别剪一刀后拼成平行四边形、梯形、平行四边形。

例2、如图1,有一张菱形纸片ABCD,, .(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长。

(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形。

(注:上述所画的平行四边形都不能与原菱形全等)周长为__________ 周长为__________例3、如图,四边形ABCD是平行四边形,AE⊥BD,CF⊥BD,垂足分别为E、F,连结AF、CE。

求证:AF=CE巩固案1.下面几组条件中,能判断一个四边形是平行四边形的是()A.一组对边相等 B.两条对角线互相平分C.一组对边平行 D.两条对角线互相垂直2.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形3.平行四边形四内角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形4.在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .5.以三角形的三个顶点及三边中点为顶点的平行四边形共有个6.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是 cm.7.如图,在□ABCD中,已知AD=8?,AB=6?,DE平分∠ADC交BC边于点E,则BE等于8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=9.在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC 和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为10.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.(1)证明:当旋转角为时,四边形是平行四边形;(2)试说明在旋转过程中,线段与总保持相等;(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.平行四边形教学方案2教学目标:1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。

八年级数学获奖教案:《平行四边形》

八年级数学获奖教案:《平行四边形》

八年级数学获奖教案:《平行四边形》八年级数学获奖教案:《平行四边形》(通用12篇)作为一名教学工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。

那么问题来了,教案应该怎么写?下面是店铺整理的八年级数学获奖教案:《平行四边形》,希望能够帮助到大家。

八年级数学获奖教案:《平行四边形》篇1教学目标:1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法――转化与等积变形。

教学方法:利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教具、学具准备:多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

教学过程:一、情境激趣二、自主探究古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。

可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。

老地主十分苦恼,不知如何是好。

这个难题同学们想想办法能解决吗?在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。

老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?1、数方格,比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

八年级数学下册人教版18.2特殊的平行四边形优秀教学案例

八年级数学下册人教版18.2特殊的平行四边形优秀教学案例
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,树立自信心,形成积极的数学学习态度;
2.培养学生勇于探索、坚持真理的精神,锻炼学生的意志品质;
3.培养学生团队协作、互相帮助的良好品质,提高学生的人际沟通能力;
4.通过对特殊平行四边形的探究,使学生认识到数学在实际生活中的重要性,培养学生的社会责任感。
5.教学内容的逻辑性和连贯性:教师从导入新课到讲授新知,再到学生小组讨论、总结归纳和作业小结,教学内容的安排具有逻辑性和连贯性,使学生能够系统地学习和掌握特殊平行四边形的性质及其应用。
在教学过程中,我以“以人为本”的教育理念为指导,充分考虑学生的认知规律和学习兴趣,采用多元化的教学方法和评价方式,激发学生的学习积极性,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.理解矩形、菱形、正方形的定义及其性质;
2.学会运用特殊平行四边形的性质解决实际问题;
3.掌握平行四边形到特殊平行四边形的判定方法;
3.及时反馈学生的学习情况,指导学生调整学习策略,提高学习效果。
在教学过程中,我将注重学生的反思与评价,帮助学生发现自己的优点和不足,指导学生调整学习方法,提高学生的综合能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的矩形、菱形、正方形实例,如建筑、设计、工程等,引导学生关注特殊平行四边形在现实中的应用;
在教学过程中,我将关注学生的情感态度与价值观的培养,以爱心、耐心和责任心对待每一个学生,营造和谐、民主的课堂氛围,使学生在愉悦的情感状态下学习,提高学生的情感态度与价值观。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的建筑、设计、工程等为例,引入特殊平行四边形的概念,让学生感受到数学与生活的紧密联系;

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案生:升降机,楼梯上的扶手,伸缩衣架,梯子师:所以在生活中我们可以找到许多平行四边形的形状。

师:小学我们就学习过平行四边形,那大家还记得平行四边形的定是什么吗?生:有两组对边分别平行的四边形叫做平行四边形.师:如图1,如何用符号语言来描述平行四边形的定义?生:、AB∥CD, BC∥AD,所以四边形ABCD是师:表达方法是什么?图1生:口ABCD师:口ABCD的高是?对边,对角有哪些?生:口ABCD的高有AE,AF.对边:AD与BC,AB与CD.对角有∠BAC与∠C,∠B与∠D.(师生问答)设计意图:使学生回忆出平行四边形定义,表达方式及相关概念、,从而使学生融融入本节课的学习氛围中,增强学生学习兴趣。

(二)、合作探究:1、动手操作: (约8分钟)师:根据定义画一个平行四边形,观察它,除了“两组对边分别平行”外它的边之间有什么关系?它们的角之间有什么关系,动手量一量,测一测,是不是和自己猜测的一样?(独立操作)师:根据图1,大家测量以后有什么发现? (举手回答)生1: AB=CD, AD=BC,生2: ∠A=∠C ,∠B二∠D师:大家都找到了它们之间的联系,怎么用语言来表达呢?生:平行四边形的对边相等。

生:平行四边形的对角相等。

(先让同学动测量发现平行四边形之间的联系,再让学生归纳用语言方式表达出来。

)设计意图:加强学生的动于能力,语言根概述能力,使全体学生都参与到课堂情境中。

2、师生交流,推理论证。

(约10分钟)师: 通过观察和度量,我们猜想:平行四边形的对边相等;平行四边形的对角相等,下而我们对它进行证明。

例1:如图2,在口ABCD 中,求证:AB=CD ,BC=DA, ∠B 二∠D, ∠A=∠C 。

师:上述猜想涉及线段相等、角相等.我们知道.利用三角形全等得出全等三角形的对应边边、对应角都相等,是证明线段相等、角相等的一种重要的方法,为此,我们通过添加辅助线,构造两个三角形,通过三角形全等进行证明。

人教版八年级下册数学《平行四边形》教学设计

人教版八年级下册数学《平行四边形》教学设计

18.1.1平行四边形的性质【教学目标】一、理解平行四边形的概念.二、探索并掌握平行四边形的对边相等、对角相等的性质.三、初步体会几何探究的一般思路与方法.【重点难点】重点:平行四边形边、角的性质探索与证明.难点:平行四边形性质的灵活应用.【教学过程】一、创设情景,导入新课问题1 观察下列图片,它们是否都有平行四边形的形象?由课件动画演示平行四边形,引入课题,归纳平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.二、观察归纳,学习新知问题 2 我们用符号“△”与三个顶点字母表示三角形;对于平行四边形,我们也有类似的表示方法吗?类比三角形表示方法表示出平行四边形以及几何语言表示方法.思考:组成平行四边形的基本元素有哪些?思考:平行四边形和四边形的联系是什么?针对训练一1. 你能从以下图形中找出平行四边形吗?三、合作交流探索性质1、画一画2、猜一猜3、量一量4、证一证在证明平行四边形的性质时,引导学生由目标(证明线段相等,角度相等)出发分析达到目标的方法(通过证明三角形全等证明边、角相等),引导学生连接对角线,构造全等三角形进行证明.四、归纳总结,巩固提升1、总结归纳平行四边形的性质以及几何语言.2、针对训练二.如图,在 ABCD 中.(1) 若∠A = 130°,则∠B =______ ,∠C =______ ,∠D =______.(2) 若 AB = 3,BC = 5,则它的周长 = ______.(3) 若∠A + ∠C = 200°,则∠A =_____,∠B =______.五、学以致用,典例精析例1 如图,在□ABCD 中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:AE = CF.例2 直线a∥b,A,C是直线a上任意两点,点A到直线b的距离和点C 到直线b的距离相等吗?为什么?针对训练三已知直线 a∥b,点M到直线 a 的距离是6cm,到直线 b 的距离是3cm,那么直线 a 和直线 b之间的距离为 ____________.六、当堂小结,理顺新知你今天学到了什么知识?七、拓展训练,深化理解△ABC是等腰三角形,AB=AC,P是底边BC上一动点,PE∥AB,PF∥AC,点E,F分别在AC,AB上,求证:PE+PF=AB.八、板书设计一、定义有两组对边分别平行的四边形叫平行四边形.二、平行四边形的性质:1、平行四边形的对边相等;2、平行四边形的对角相等.3、教师例题讲解。

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1一. 教材分析《平行四边形》是浙教版数学八年级下册第4章的内容,本节课主要介绍了平行四边形的定义、性质及其判定。

教材通过生活中的实例引入平行四边形的概念,接着引导学生探究平行四边形的性质,最后通过练习巩固所学知识。

本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质,具备了一定的观察、操作和推理能力。

但部分学生对平行四边形的概念和性质理解不深,容易与其它四边形混淆。

因此,在教学过程中,教师需要关注学生的认知基础,通过实例和操作活动,帮助学生建立清晰的概念,加深对平行四边形性质的理解。

三. 教学目标1.知识与技能:让学生掌握平行四边形的定义、性质及其判定方法。

2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:平行四边形的定义、性质及其判定。

2.难点:平行四边形性质的推理和应用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识平行四边形,激发学生的学习兴趣。

2.动手操作法:让学生通过实际操作,观察和总结平行四边形的性质。

3.小组讨论法:引导学生分组讨论,培养学生的团队合作意识和沟通能力。

4.启发式教学法:教师提问,学生思考,引导学生主动探究平行四边形的性质。

六. 教学准备1.教学课件:制作课件,展示平行四边形的图片和实例。

2.学生活动材料:准备一些平行四边形的图形,供学生观察和操作。

3.教学视频:准备一些关于平行四边形的视频资料,帮助学生更好地理解平行四边形的概念和性质。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图片,如电梯、窗户等,引导学生关注平行四边形。

提问:你们知道这些图形是什么吗?它们有什么特点?从而引出平行四边形的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.问题:在刚才的探究活动中,你发现 RtΔABC 中,BO 与 AC 有什么特殊关系吗?
思考
2.归纳结论:直角三角形斜边上
的中线等于斜边的一半。
A
D
(三)。例题
O
O
D
例 1.矩形 ABCD 的两条对角线相
交于点 O,∠AOB=60º,AB=7cm, B
C
求矩形对角线的长。
分析:由矩形对角线的性质可知ΔAOB 等四个小角形都
重 点
目标 1、2
难 点
菱形特殊性质的理解与灵活运用
教具 三角板
准备
教学内容
师生互动
一、创设情景,感知概念
1.观察教具演示: 一个平行四边形,当它的
观察、思考
一条边如图移动,使它的
邻边相等时,此时的平行
四边形变为哪种特殊的四边形? 2.得出定义:有一组邻边相等的平行四边形叫做菱形
交流、归纳
教 思考:定义中,包含几个条件?(是平行四边形,而且
O
四边形,再证对角线相等
BB

矩形
判定 3:有三个角是直角的四边形是矩形
D 交流、归纳
D
C
需要四个角都是直角吗?为什么?
及时小结:共有定义法、对角线法、直角法这三种
方法。
4.体会矩形在生活中的应用:
(1)说一说工人师傅判定门窗为矩形的方法的道理
(2)说一说李芳同学画矩形方法的道理。
(二)、例题
例 1、如图,四边形 ABCD 中,AC⊥BD 于 O,点 E、
到小数点后一位)
A
(答案:AC=20cm,BD≈34.64cm,
花坛的面积 S 菱形≈346.4m2)
B
延伸:求例 1 中菱形的高。
A
A
D
A C
四.练习巩固.P98.1.2 A
补充练习 1:若菱形的两邻角之比为 1﹕2,周长为
尝试解答
40cm.则较短的对角线长为( )
2.如图,在菱形 ABCD 中,E、F

3、提高分析、推理能力。
新授课
重 点
目标 1、2
难 点
对角线判定方法的理解与运用
教具
三角板
准备
教学内容
师生互动
一、复习与引入
1. 菱形的周长为 16cm,一条对角线的长是 10cm,则这 个菱形的面积是( )cm.
回忆
2. 菱形的定义和性质是什么?与矩形有什么区别?
3.仿照矩形的性质与判定的互逆关系,菱形有哪些判定

问题 2:当∠a 变为直角时,其余三个内角是什么样的 角?
思考、讨论
问题 3:当∠a 变为直角时,测量两条对角线的长度,
会是什么关系?
问题 4:是轴对称图形吗?
学生观察、猜想、交流、然后教师归纳。
矩形是特殊的平行四边形,是轴对称图形,不但具 有平行四边形的所有性质,还具有特殊性:
交流、归纳
矩形性质 1:矩形的四个角都是直角。
轴。 程 菱形性质 1:菱形的四条边都相等
菱形性质 2:菱形的两条对角线互相垂直,并且每一条
对角线平分一组对角。
按照研究平行四边形性质的一般方法进行表述和记忆 边:对边平行,四条边都相等
讨论,归纳
角:对角相等
对角线:对角线互相垂直平分,且每一条对角线平分一
组对角
对称性:是轴对称图形
比较:菱形的性质与矩形有什么区别?
筋,做成一个四边形,转动木条,这个四边形什么时候
变成菱形?
问题(1):这个四边形是怎样的四边形?
问题(2):转动木条,什么时候这个四边形变为菱形?
小组交流后归纳:
判定 3:对角线互相垂直的平行四边形是菱形。
利用边的关系:先证平行四边形,再对角线互相垂

启发:也可以用来画菱形 (二)、例题
尝试解答
例 1.如图, ABCD 的对角线 AC、BD 相D交于点 O,且 AB=10,AO=8,B0=6。
角法)并进行灵活应用
尝试解答
P102、1.8
作 补充作业:已知,如图,ΔABC 中,O 是 AC 的中
业 点,过点 O 作 MN//BC,交∠ACB 的平分线于 F。
布 求证:四边形 AECF 为矩形
M
置 正板书
C B
B A
A
19.2.1 矩形(二)


矩形的判定 1.
例1


2.
A
O E
C C
BC B
课外思考:如图,菱形 ABCD 的对角线的长分别为 4cm 和 7cm,点 P 是 AC 上任
意一点(点 P 不与 A、C 重合),且 PE//BCA 交 AB 于点 E,PF//CD 交 AD 于点 F,
作 求阴影部分的面积。
业 分析:可证四边形 ADPF 是菱形,

置 可知 S△EPF =S△AEP,故 S 阴=S△ABC=
C、对边相等
C、对角线互相平分
2.如图,矩形 ABCD 中, EF⊥CE,EF=CE,DE=2, A
E D
矩形的周长为 16,求
F
AE 的长。
B
四。小结
C
1.掌握矩形的定义、性质,注意其性质的特殊性。
2.掌握直角三角形的特殊性:(1)直角三角形斜边上的
中线等于斜边的一半。(2)30 º角所对的直角边等于斜
准备
教学内容
师生互动
一、引入新课
请大家观察 P94 图 19.2—1 中的图形,是什么形状?
这些图形,在小学,我们称为长方形,在初中,我们称
为矩形。事实上,矩形也是平行四边形,从本节开始, 我们将进一步研究大家很熟悉的一些特殊的平行四边
进入学习情景
形:矩形、菱行、正方形和梯形。
二、新课

(一)。理解矩形的定义和性质 探究:在平行四边形的活动框架上,用橡皮筋做出两条
B
E
C
A B
D E
∠DCE 的度数。
A
分析:由直角三角形斜边上的 C
中线性质知 CE=AE,则∠ACE=∠A=20º,进而求出
∠DCE=90º-∠A-∠ACE=90 º -20 º -20 º =50 º
三。练习:P95、3
补充练习:
1.矩形具有,而一般平行四边形不具有的性质是( )
A、对角相等
B、对角线相等
方法?
二、新课

(一)探索菱形的判定方法: 由菱形的定义,我们很容易得到怎样的判定方法?
理解,画图
1.定义法:一组邻边相等的平行四边形是菱形。
利用边的关系:先证平行四边形,再证邻边相等
学 师生活动:先画两条等长的线段 AB、AD,然后分别以 B、
D 为圆心、AB 为半径画弧, 得到两弧的交点 C,连接 BC、
矩形性质 2:矩形的对角线相等。
(定理的证明,由教师画图,学生口述完成)
这两条性质,是矩形的特性。如果按照研究平行四边形
性质的方法,矩形的性质可以怎样表述记忆?
边:对边平行且相等 角:四个角都是直角
理解矩形的特
对角线:对角线相等且互相平分 对称性:是轴对称图形
殊性
学生练习:P95.练习:1,2
(二)理解矩形性质定理的推论:直角三角形的特殊性
观察、思考
对角线,通过∠a 的变化,改变这个平行四边形的形状。
问题 1:当其中一个锐角∠a 变为什么角时,平行四边
学 形变为矩形? 归纳:

矩形的定义:有一个角是直角的平行四边形是矩形 从矩形的定义看,矩形跟平行四边形相比有什么不同?
理解定义
(有一个角是直角,是特殊的平行四边形),那么,矩
形有具有怎样的性质呢?继续根据教具演示思考:
求证: ABCD 是菱形。
A
C
三、练习巩固
P100.1.2.3
B
补充练习:如图, ABCD 中,
对角线 AC 的垂直平分线交 AD 于 E,交 BC 于 F。
A
E
D
求证:四边形 AFCE 是菱形。 B
F
C
四、小结
1.掌握菱形的三种判定方法,并进行灵活运用。
2.体会菱形的判定与性质之间的关系。
P103.6.10
教 学 时 间 课 题
标教

标目 标标


星期
总第 38 课时
பைடு நூலகம்
19.2.1 矩形(一)
课型
新授课
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系。 2.会初步运用矩形的概念和性质,解决有关问题。 3.发展分析和推理能力。
bia biao
重 点
矩形的性质及推论
难 点
矩形性质的得出及灵活运用
教具 三角板
2.掌握菱形面积的计算方法。
作业
P102.5.11.12
布置
正板书
副板书

19.2.1 菱形(一)

菱形的定义
例1
设 计
性质 1
2
菱形的面积计算方法
练习
备课
活动
意见
教学
签字
后记
教学


星期
总第 41 课时
时间

19.2.2 菱形(二)
课型


1.探究菱形的判定方法,掌握菱形的判定定理。
学 目
2、运用菱形知识解决有关问题。
1.了解正方形的有关概念,理解正方形的性质、判定方法。 2、灵活运用正方形的有关知识解决实际问题。 3、体会各种特殊四边形间的联系,提高比较、归纳、分析能力。
重 点
目标 1、2
难 灵活理解、运用正方形的 点 判定方法
相关文档
最新文档