知识讲解二项式定理(理)(基础)110

合集下载

二项式定理

二项式定理

二项式定理一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)❶;(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n❷.2.二项式系数的性质(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量[例1] (1)(优质试题·全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( ) A.10B.20C.40D.80(2)(优质试题·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________.(3)(优质试题·甘肃检测)已知⎝⎛⎭⎪⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40.(2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. (3)⎝ ⎛⎭⎪⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎪⎫-a x r =C r 5(-a )r x 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1[解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r ,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量[例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( )A.-4B.-3C.3D.4(2)(优质试题·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n 2=1,得m +n =2,于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3. 法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.[答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量[例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( )A.10B.20C.30D.60(2)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎪⎫-2x k =(-2)k ·C k 6x 3-k .令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160[解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(优质试题·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝ ⎛⎭⎪⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝ ⎛⎭⎪⎫2x -1x 6的展开式的通项公式为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(优质试题·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝ ⎛⎭⎪⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝ ⎛⎭⎪⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝ ⎛⎭⎪⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝ ⎛⎭⎪⎫125=6322. 答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63xB.4xC.4x 6xD.4x或4x 6x(2)若⎝ ⎛⎭⎪⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和为2n ,即8<2n <32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎪⎫13x 2=63x . (2)⎝ ⎛⎭⎪⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝ ⎛⎭⎪⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8,在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28,又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,②①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可.2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中(1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2. (3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [题组训练]1.(优质试题·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,②①+②,得2(a 4+a 2+a 0)=-242,即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244,即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9,令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m )9·m 9=39,∴m (2+m )=3,∴m =-3或m =1.答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A.0B.1C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1, 又13整除52,所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.[答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( )A.1B.2C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________.解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910,∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1.答案:1[课时跟踪检测]A 级1.(优质试题·河北“五个一名校联盟”模拟)⎝ ⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝ ⎛⎭⎪⎫2x 23-r ·(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( ) A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-280解析:选A 取x =1,得二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝ ⎛⎭⎪⎫-2x r =C r 7·(-2)r ·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560. 4.(优质试题·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式。

二项式定理知识点

二项式定理知识点

二项式定理知识点二项式定理是高中数学中重要的基础概念之一,通常在代数学中广泛应用。

它的形式是 (a + b)^n,其中 a 和 b 是任意实数,n 是一个非负整数。

在这篇文章中,我将介绍二项式定理的基本概念、应用和一些有趣的性质。

首先,让我们来回顾一下二项式定理的基本表达式:(a + b)^n。

这个表达式展开后,会产生一系列项,每一项都可以表示为 a 和 b 的不同指数的乘积。

例如,当 n = 2 时,(a + b)^2 展开为 a^2 + 2ab + b^2。

当 n = 3 时,(a + b)^3 展开为 a^3 + 3a^2b + 3ab^2 + b^3,以此类推。

二项式定理的一个重要应用是计算组合数。

在组合数学中,把 n 个不同元素分成k(0 ≤ k ≤ n)个不同组合,可以用 C(n, k) 表示。

根据二项式定理,可以知道:C(n, 0) = 1C(n, 1) = nC(n, 2) = n(n-1)/2C(n, 3) = n(n-1)(n-2)/6...C(n, n-1) = nC(n, n) = 1通过二项式定理,我们可以推导出组合数的计算公式,从而在概率论、统计学和离散数学中进行各种计算和推理。

除了计算组合数,二项式定理还可以用于证明其他数学中的定理。

例如,它可以用于证明数学归纳法的原理。

当 n = k+1 时,我们可以利用二项式定理展开 (a + b)^(k+1),得到:(a + b)^(k+1) = (a + b) * (a + b)^k将 (a + b)^k 展开为 a^k + C(k, 1)a^(k-1)b + C(k, 2)a^(k-2)b^2 + ... +C(k, k-2)ab^(k-2) + C(k, k-1)ab^(k-1) + b^k。

然后将每一项与 (a + b) 相乘,我们可以得到:(a + b)^(k+1) = a^(k+1) + C(k, 1)a^kb + C(k, 2)a^(k-1)b^2 + ... + C(k,k-2)a^2b^(k-2) + C(k, k-1)ab^(k-1) + b^(k+1)。

高中数学二项式定理知识点总结

高中数学二项式定理知识点总结

高中数学二项式定理知识点总结二项式定理是高中数学中的重要知识点,它是代数中的一个基本定理,也是数学中的一个重要定理。

二项式定理在数学中有着广泛的应用,不仅在数学理论中有着重要的地位,而且在实际问题中也有着重要的应用价值。

本文将对高中数学二项式定理的知识点进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学知识点。

一、二项式定理的基本概念。

二项式定理是指对于任意实数a、b和非负整数n,都有以下公式成立:\((a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1} b^1 + C_n^2a^{n-2} b^2 + ... +C_n^na^0 b^n\)。

其中,\(C_n^k\)表示组合数,即从n个不同元素中取出k个元素的组合数,它的计算公式是:\(C_n^k = \frac{n!}{k!(n-k)!}\)。

二项式定理的基本概念就是利用组合数的性质,将二项式展开成多项式的形式,从而方便进行计算和运用。

二、二项式定理的应用。

1. 多项式展开。

二项式定理可以方便地将一个二项式展开成多项式的形式,从而简化计算。

例如,对于(a+b)²和(a+b)³,可以利用二项式定理将其展开成多项式的形式,从而方便进行计算。

2. 组合数的计算。

二项式定理中的组合数\(C_n^k\)在实际问题中有着重要的应用,例如在概率论、统计学等领域中,经常需要计算从n个不同元素中取出k个元素的组合数,而二项式定理提供了一种方便快捷的计算方法。

3. 概率计算。

二项式定理在概率计算中有着重要的应用,例如在二项分布中,就涉及到了二项式定理的应用。

通过二项式定理,可以方便地计算出在n次独立重复试验中成功次数为k的概率。

三、二项式定理的推广。

除了普通的二项式定理外,还有二项式定理的推广形式,如多项式定理、负指数幂的二项式定理等。

这些推广形式在数学理论和实际问题中都有着重要的应用价值,可以进一步丰富和拓展二项式定理的应用领域。

二项式定理百科

二项式定理百科

二项式定理百科二项式定理(Binomial theorem)是数学中的一个重要定理,它描述了如何展开一个二项式的幂。

这个定理在代数、组合数学、概率论等领域都有广泛应用。

本文将详细介绍二项式定理及其应用。

一、二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,都有以下等式成立:$$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$$其中,$\binom{n}{k}$表示组合数,计算公式为$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$式中的$\binom{n}{k}$可以读作n选择k,它表示从n个元素中选择k个元素的组合数。

二项式系数$\binom{n}{k}$决定了二项式展开后各项的系数。

二、二项式定理的展开式通过二项式定理,可以将一个二项式的幂展开成多个项的和。

例如,对于$(a+b)^3$,应用二项式定理,展开式为:$$(a+b)^3=\binom{3}{0}a^3b^0+\binom{3}{1}a^2b^1+\binom{3}{2}a ^1b^2+\binom{3}{3}a^0b^3$$化简得:$$a^3+3a^2b+3ab^2+b^3$$可以看出,展开后的每一项的指数和为3,且系数由组合数$\binom{3}{k}$确定。

三、二项式定理的应用1. 代数应用二项式定理常用于代数运算中,特别是求解多项式的展开式和系数。

通过二项式定理,可以快速计算高次幂的二项式展开式,简化复杂计算过程。

同时,二项式定理也可用于证明其他代数恒等式。

2. 组合数学组合数学研究的是离散结构和计数问题。

二项式定理的组合数$\binom{n}{k}$用于计算从n个元素中选择k个元素的方法数。

这对于排列组合、概率计算等问题都具有重要意义。

3. 概率论在概率论中,二项分布是一种重要的离散概率分布,它描述了一系列独立重复实验中成功次数的概率分布。

二项式定理可以用于计算二项分布的概率,判断在一定概率下,事件发生k次的概率。

二项式定理

二项式定理

二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。

在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。

本文将介绍二项式定理的概念、基本公式以及一些常见的应用。

一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。

简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。

基本公式:根据二项式定理,我们可以得到二项式的展开式。

对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。

C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。

二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。

通过展开式,我们可以计算出结果,以及每一项的系数。

例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。

对于排列组合问题,可以使用组合数来解决。

而组合数又可以使用二项式定理来计算。

例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。

由于组合数可以用二项式定理来计算,我们可以直接得到结果。

知识讲解二项式定理(理)(基础)

知识讲解二项式定理(理)(基础)
C1r5 x 6
x

Tr
1
为有理项,∴
30
6
5r
Z
,
即 r 是 6 的倍数,又因为 0 r 15 ,所以 r =0,6,12
故展开式中的有理项为 T1 (1)0 C105 x5 x5 , T7 5005 , T13 420 x5 .
【总结升华】 使二项展开式的某一项为常数项,就是使这一项不含“变元”,一般采用令变元的指数为零的方法
如(a-b)n 的二项展开式的通项是Tr1 (1)r Cnr anrbr ,在这里对应项的二项式系数都是 Cnr ,但项的
系数是 (1)r Cnr ,可以看出,二项式系数与项的系数是不同的概念.
3. (a b c)n 展开式中 a pbqcr 的系数求法( p, q, r 0 的整数且 p q r n )
(4) a0 a2 a4
f (1) f (-1) 2
(5) a1 a3 a5
f (1) - f (-1) 2
3.利用二项式定理证明整除问题及余数的求法:
如:求证: 32n2 8n 9 能被 64 整除( n N * )
4.证明有关的不等式问题: 有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩
……
……
……
上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性 质。表中每行两端都是 1,而且除 1 以外的每一个数都等于它肩上的两个数的和。
用组合的思想方法理解(a+b)n 的展开式中 anrbr 的系数 Cnr 的意义:为了得到(a+b)n 展开式中 anrbr
n
N
*
),

知识讲解二项式定理(理)(基础)

知识讲解二项式定理(理)(基础)

二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。

式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅L L (*N n ∈) ②122(1)1n r r nn n n x C x C x C x x +=++++++L L要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。

要点诠释:(1)二项式(a+b)n的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。

关于二项式定理的知识点

关于二项式定理的知识点

关于二项式定理的知识点
嘿,朋友们!今天咱来聊聊超厉害的二项式定理呀!你可别小瞧它,这玩意儿用处大着呢!比如说,(展开 (a+b)^2 等于 a^2+2ab+b^2,这不就像搭积木一样,把不同的部分巧妙地组合起来了嘛!)二项式定理就像是一把神奇的钥匙,能打开好多数学问题的大门。

想象一下呀,我们面对一堆看似杂乱无章的式子,二项式定理就像个超级英雄闪亮登场,一下子就把它们变得井井有条啦!(好比 (a+b)^3 展开
后是a^3+3a^2b+3ab^2+b^3,多清楚呀!)它能帮我们快速找到规律,解决难题,这感觉是不是超棒的?
咱再想想那些复杂的概率问题,二项式定理也能派上大用场呢!(就像计算掷骰子多次后某个点数出现的概率,二项式定理就能助我们一臂之力呀!)它能让我们看清问题的本质,不再迷茫。

哎呀,反正二项式定理就是这么牛,它在数学世界里闪闪发光,为我们指引方向呀!怎么样,现在是不是对它特别感兴趣啦?是不是迫不及待想去深入了解它啦?
我的观点就是:二项式定理是数学中的一颗璀璨明珠,一定得好好掌握它!。

知识讲解 二项式定理(理)(基础)110

知识讲解 二项式定理(理)(基础)110

二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。

式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈)②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。

要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。

二项式定理知识点

二项式定理知识点

二项式定理知识点二项式定理是高中数学中的重要知识点,也是进一步学习数学分析、概率论和数学推理的基础。

它是关于多项式的一个重要的数学定理,通过二项式定理,我们可以用简洁的方式表示多项式展开的结果。

在本文中,我们将深入探讨二项式定理的概念、性质以及应用。

首先,让我们来了解什么是二项式。

二项式是指两个单项式之和的代数式,其中包含两个不同的变量,每个变量的指数均为非负整数。

例如,(a + b)就是一个二项式,其中a和b为变量,且指数分别为1和0。

根据二项式定理,我们可以将二项式展开为多项式。

二项式定理的表述如下:对于任意非负整数n和实数a、b,有(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n)a^0 b^n,其中C(n, k)表示组合数,计算公式为C(n, k) = n!/(k!(n-k)!)。

这个定理告诉我们,二项式(a + b)的展开式中的每一项都可以通过组合数进行系数的计算。

二项式定理的证明可以通过数学归纳法进行,但为了保持本文的简洁性,我将不涉及具体的证明过程。

而是着重介绍一些二项式定理的性质以及它的一些重要应用。

首先,二项式定理的性质之一是二项式展开式的系数的和等于2的n次方。

也就是说,展开式中每一项的系数相加,结果等于2的n次方。

这个性质可以通过将展开式中的每一项进行二项式系数的求和来证明。

二项式定理还可以用于计算多项式的平方、立方等高次幂。

通过使用二项式定理展开多项式的高次幂,我们可以更简洁地计算出结果。

另一个重要的应用是二项式定理在概率论中的应用。

在概率论中,我们经常需要计算一些事件的概率,而这些概率通常涉及到组合数的计算。

二项式定理为我们提供了一个快速计算组合数的方法,从而简化了概率计算的过程。

除此之外,二项式定理还在数学推理和数学分析中有重要的应用。

在数学推理中,我们经常需要进行代数式的变形和化简,而二项式定理可以帮助我们将复杂的代数式转化为更简单的形式。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理一、基本知识点1、二项式定理:0111()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1n +项(3)二项式系数:(0,1,2,,)rnr C n =叫做二项展开式中第1+r 项的二项式系数(4)系数:未知数前的常数叫做系数(注意系数不同于二项式系数)(4)通项:展开式的第1+r 项,即1(0,1,,)r n r rr nT C a b r n -+==3、展开式的特点(1)二项式系数都是组合数,依次为012,,,,,k nn n n n n C C C C C ⋅⋅⋅(2)指数的特点:① a 的指数 由0n → ( 降幂)。

② b 的指数由0n →(升幂)。

③ a 和b 的指数和为n 。

(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数,一般2n ≥。

4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=(2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值1122n n nnCC-+=(3)二项式系数的和:0122k n n nn n n n C C C C C +++⋅⋅⋅++⋅⋅⋅+= 变形式:1221k nn n n n n C C C C +++++=-奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=(4)奇数项的系数和与偶数项的系数和(注意不是二项式系数和):0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和(5)二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

高中数学二项式定理知识点总结

高中数学二项式定理知识点总结

高中数学二项式定理知识点总结一、二项式定理的定义二项式定理是代数学中的一个重要定理,它描述了一个二项式的整数次幂可以被展开为一系列项的和。

这个定理可以表示为:\( (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)其中,\( a \) 和 \( b \) 是任意实数或复数,\( n \) 是非负整数,\( \binom{n}{k} \) 是组合数,表示从 \( n \) 个不同元素中取出\( k \) 个元素的组合数。

二、组合数的计算组合数 \( \binom{n}{k} \) 可以通过以下公式计算:\( \binom{n}{k} = \frac{n!}{k!(n-k)!} \)其中,\( n! \) 表示 \( n \) 的阶乘,即 \( n \) 乘以所有小于\( n \) 的正整数的乘积。

三、二项式展开式的通项公式二项式定理中的第 \( k+1 \) 项(从 0 开始计数)可以表示为:\( T_{k+1} = \binom{n}{k} a^{n-k} b^k \)这个公式用于直接计算二项式展开式中的特定项。

四、二项式定理的性质1. 二项式定理适用于所有实数和复数的二项式。

2. 当 \( a = b = 1 \) 时,二项式定理可以用来计算 \( 2^n \)。

3. 二项式定理中的项数总是等于指数 \( n+1 \)。

4. 当 \( n \) 为奇数时,展开式中的中间项的系数是最大的。

五、二项式定理的应用1. 计算概率论中的概率组合问题。

2. 解决物理学中的组合问题,如碰撞问题。

3. 在代数中,用于简化多项式的乘法和开方运算。

4. 在几何学中,用于计算多边形的对称性质。

六、特殊情形1. 当 \( n = 0 \) 时,二项式定理简化为 \( (a + b)^0 = 1 \)。

2. 当 \( a = 1 \) 时,二项式定理可以用来计算 \( (1 + b)^n \)的值。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。

具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。

+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。

右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。

二项式定理的理解:1)二项展开式有n+1项。

2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。

3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。

通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。

+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。

二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。

具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。

通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。

它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。

三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。

二项式定理重点讲解

二项式定理重点讲解

重点讲解1.二项式定理(1)二项式定理※这个公式表示的定理叫做二项式定理.(2)二项式系数、二项式的通项在※式中它的右边的多项式叫做的二项展开式,其中的系数叫做二项式系数,式中的叫做二项展开式的通项,用表示,即通项为展开式的第项:(3)二项式展开式的各项幂指数二项式的展开式项数为项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n.②字母a的按降幂排列,从第一项开始,次数由n逐项减1直到零,字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)几点注意①通项是的展开式的第项,这里②二项式的项和的展开式的第项有是区别的,应用二项式定理时,其中的a和b是不能随便交换的.③注意二项式系数()与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是这个标准形式下而言的,如的二项展开式的通项公式是(只须把-b看成b代入二项式定理)这与是不同的,在这里对应项的二项式系数是相等的都是但项的系数一个是,一个是,可看出,二项式系数与项的系数是不同的概念.⑤设,则得公式.在解题时要经常用到.2.二项式系数的性质(1)杨辉三角形《九章算术》杨辉对于n是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用下表计算…………………1 1………………1 2 1……………1 3 3 1…………1 4 6 4 1………1 5 10 10 5 1……1 6 15 20 15 6 1……表中有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.”类似这样的表,早在我国宋朝数学家杨辉1261年所著出《详解九章算法》一书里就已出现,反映了我国古代数学发展的成就,显示了我国古代劳动人民的智慧和才能.如下图叫杨辉三角,由“杨辉三角”可直观地看出二项式系数的性质,同时当二项式乘方次数不大时,可借助于它直接写出各项的二项式系数.参看动画演示:杨辉三角(2)二项式系数的性质前面介绍了二项式系数,利用“杨辉三角”可以帮助我们观察二项式系数的性质.下面再从函数角度入手,研究一下二项式系数.展开式的二项式系数是:,从函数的角度看可以看成是r为自变量的函数,其定义域是:.当时,的图象为下图.这样我们利用“杨辉三角”和时的图象的直观来帮助我们研究二项式系数的性质.①对称性与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如…),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k依次取1,2,3,…等值时,的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n是偶数时,是奇数,展开式共有项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为.当n是奇数时,是偶数,展开式共有项,所以有中间两项.这两项的二项式系数相等并且最大,最大为③二项式系数的和为,即.④奇数项的二项式系数的和等于偶数项的二项式系数的和,即.。

二项式定理知识点总结资料

二项式定理知识点总结资料

二项式定理知识点总结资料
二项式定理是代数学中的一个重要定理,它用于计算任意正整数指数的二项式的展开式。

二项式定理的数学表达式为:
(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... +
C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n
其中,n为任意正整数,a和b为实数或变量,C(n,k)表示组合数,计算公式为:
C(n,k) = n! / (k! * (n-k)!)
该公式表示从n个不同元素中选择k个元素的组合数。

二项式定理的主要思想是将二项式展开为一系列的项,并且每一项的指数和为n,系数为组合数。

通过这种方式,可以计算出任意正整数指数的二项式的展开式。

二项式定理的应用包括:
1. 计算二项式系数。

通过使用二项式定理可以计算出任意两个数之和的平方的展开式,从而得到二项式系数的计算公式。

2. 计算多项式。

通过使用二项式定理可以计算出任意正整数指数的多项式的展开式,从而可以计算多项式的值。

3. 计算概率。

二项式定理可以用于概率计算中的二项分布,通过计算二项分布的概率可以进行概率统计。

4. 解决组合问题。

通过使用二项式定理可以解决组合问题,包括计算排列组合、计算不重复抽样、计算置换组合等。

二项式定理是代数学中的一项重要定理,它可以用于计算任意正整数指数的二项式的展开式,以及解决一系列与组合相关的问题。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结
二项式定理是一个关于排列组合计算的定理。

它是已知整数n和k,该定理对应于n个不同对象从中挑选k个对象,排列组合共有
$ C_{n}^{k}\\$种情况。

主要包括:
一、定义:
二项式定理定义为:令$ C_{n}^{k}\\$表示从n个不同的元素中取出k
个元素的所有可能组合,则有
$$C_{n}^{k}=\frac{n!}{k!(n-k)!}$$
二、特点:
(1)二项式有逆元素:$C_{n}^{k}=C_{n}^{n-k}$
(2)$C_{n}^{k}$是一个单调函数,即$k\gt n-k$时,$C_{n}^{k}$是一个单增函数,反之$C_{n}^{k}$是一个单减函数。

(3)$C_{n}^{0}=C_{n}^{n}=1$
三、应用:
二项式定理应用主要是赋予概率分布、抽样、计算机科学以及计算复
杂性等,它们在统计学上大量应用,其特点是一次可以抽取多个,也可以不抽取,以及抽取的元素之间的顺序无所谓,这都可以用二项式定理来解决;并且它也可以应用在记忆过程,以及各类技术中。

二项式定理知识点总结资料精选全文

二项式定理知识点总结资料精选全文

可编辑修改精选全文完整版
二项式定理知识点总结资料
二项式定理(Binomial Theorem)是一个数学定理,可以用来求解幂次方程。

它可以表示成以下形式:(a + b)^n = Σ_(k=0)^nC_n^ka^(n-k)b^k
其中,C_n^k表示组合数(Combinatorial Number),即从n个不同元素中取出k个元素的组合数。

二项式定理的应用包括但不限于:
1. 快速计算多项式的值:可以使用二项式定理快速计算多项式的值,如:
(x+y)^7=x^7+7x^6y+21x^5y^2+35x^4y^3+35x^3y^4+21x^2y ^5+7xy^6+y^7;
2. 求解极值问题:在求解极值问题时,二项式定理可以用来求解函数的极值;
3. 计算组合数:可以用二项式定理来计算组合数,如:C_n^k = n!/(k!*(n-k)!);
4. 计算排列数:可以用二项式定理来计算排列数,如:P_n^k = n!/(n-k)!
5. 求解方程:可以用二项式定理来求解方程,如:F(x)=(x+1)^2=x^2+2x+1。

知识讲解二项式定理(理)(基础)110

知识讲解二项式定理(理)(基础)110

二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。

式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈)②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。

要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识讲解二项式定理(理)(基础)110-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。

式中的r n r r n C a b -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr n T C a b -+=,其中的系数r n C (r=0,1,2,…,n )叫做二项式系数,2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1; (2)二项式系数:第r+1项的二项式系数为r n C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n n nn n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈) ②122(1)1n r rn nn n x C x C x C x x +=++++++要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是r n C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。

要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n r r n C a b -和(b+a)n 的二项展开式的第r+1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。

要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导。

在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数。

n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 1 2)(b a +……………………………………1 2 13)(b a +…………………………………1 3 3 1 4)(b a +………………………………1 4 6 4 1 5)(b a +……………………………1 5 10 10 5 1 6)(b a +…………………………1 6 15 20 15 6 1 …… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质。

表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和。

用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数r n C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()na b a b a b +++这n 个括号中取r 个b ,则这种取法种数为r n C ,即为n r r a b -的系数.2.()n a b +的展开式中各项的二项式系数0n C 、1n C 、2n C …n n C 具有如下性质:①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即rn n r n C C -=;②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n ,即012342n n nnn nn n C C C C C C ++++++=; ④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C 。

要点诠释:二项式系数与展开式的系数的区别:二项展开式中,第r+1项rr n r n b a C -的二项式系数是组合数r n C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等。

如(a -b)n 的二项展开式的通项是1(1)r r n r rr nT C a b -+=-,在这里对应项的二项式系数都是r n C ,但项的系数是(1)r rn C -,可以看出,二项式系数与项的系数是不同的概念.3.()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且p q r n ++=)rq q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决。

要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和。

二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立。

利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。

设2012()()n n n f x ax b a a x a x a x =+=++++ (1) 令x=0,则0(0)n a f b == (2)令x=1,则012(1)()n n a a a a f a b ++++==+(3)令x=-1,则0123(1)(1)()n n n a a a a a f a b -+-+-=-=-+(4)024(1)(-1)2f f a a a ++++=(5)135(1)-(-1)2f f a a a +++=3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈) 4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。

①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n)11(2+<【典型例题】类型一、求二项展开式的特定项或特定项的系数例1. 求41(1)x+的二项式的展开式.【思路点拨】 按照二项式的展开式或按通项依次写出每一项,但要注意符号. 【解析】解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x =++++.解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++.【总结升华】记准、记熟二项式(a+b)n 的展开式,是解答好与二项式定理有关问题的前提条件,对较复杂的二项式,有时先化简再展开会更简捷. 举一反三:【变式】求二项式52322x x ⎛⎫- ⎪⎝⎭的展开式.【答案】 (1)解法一:52322x x ⎛⎫- ⎪⎝⎭2305142332555522223333(2)(2)(2)(2)2222C x C x C x C x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4545552233(2)22C x C x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭52471018013540524332120832x x x x x x =-+-+-解法二:5352103(43)2232x x x x -⎛⎫-= ⎪⎝⎭0351342332332343455555555101[(4)(4)(3)(4)(3)(4)(3)(4)(3)(3)]32C x C x C x C x C x C x =+-+-+-+-+- 1512963101(10243840576043201620243)32x x x x x x=-+-+- 52471018013540524332120832x x x x x x =-+-+-。

例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数【思路点拨】先根据已知条件求出二项式的指数n ,然后再求展开式中含x 的项.因为题中条件和求解部分都涉及指定项问题,故选用通项公式.【解析】(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7(12)x +的展开式的第四项的系数是280.(2)∵91()x x -的展开式的通项是9921991()(1)r r r r r r r T C x C x x--+=-=-,∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =. 【总结升华】1.利用通项公式求给定项时避免出错的关键是弄清共有多少项,所求的是第几项,相应的r 是多少;2. 注意系数与二项式系数的区别;3. 在求解过程中要注意幂的运算公式的准确应用。

举一反三:【变式1】求5)2(b a +的展开式的第3项的二项式系数和系数;【答案】10,80;2510C =2323235(2)80T C a b a b =⋅⋅=【变式2】求(x 3-22x )5的展开式中x 5的系数; 【答案】(1)T r +1=r r r r r r x C xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2 故(-2)2r C 5=40为所求x 5的系数例3.(1)(2x 2-x1)6的展开式中的常数项;(2)求153)1(xx -的展开式中的有理项.【思路点拨】常数项就是项的幂指数为0的项,有理项,就是通项中x 的指数为正整数的项,可以根据二项式定理的通项公式求。

相关文档
最新文档