连接体问题专题用
专题05 连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)
专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。
专题16 连接体问题 2022届高中物理常考点归纳
专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。
(1)求放手后A、B一起运动中绳上的张力F T。
(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。
解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。
【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。
支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。
【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。
(补课专用)专题--连接体问题与弹簧
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】故选D . 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( ) 【解析】答案为BA .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)F=8N 。
(2)同理F=11N 。
【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】即:F 1=Fsinθ/4【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为:【解析】故B 正确。
连接体问题超级经典好题
F1
m1
FT
m2
F2
例3、地面光滑,mA=8kg、mB=2kg、 µ =0.5,当F=50N 时,A、B的加速度各为多大?
µ
A B
F
有相互作用力的系统
整体与隔离体法
【例2】A、B的质量分别为m1和m2,叠放置于光 滑的水平地面上,现用水平力拉A时,A、B一起 运动的最大加速度为a1,若用水平力改拉B时,A、 B一起运动的最大加速度为a2,则a1:a2等于: A 1:1 B m1:m2 C m2:m1 D m12:m22
连接体问题
1. 连接体:两个或两个以上的物体在相互作用力的关 联下参与运动的系统。连接体问题“连接”的本质是 物体之间的相互作用力。 (1)通过直接接触或介质连接的物体系统
(2)不直接接触的物体系统也可以构成连接体 2、连接体特点:
(1)连接体系统内的物体具有相同的速度和加速度
(2)系统内的物体具有不同的速度或不同的加速度
有相互作用力的系统
整体与隔离体法
【例1】放在水平桌面上的一木块,其质量为m ,在水平
向右的推力F作用下,向右运动,求木块的加速度为多 少?
A B
思考:求A对B的作用力大小。
A B
例、地面光滑,两物块质量分别为m1、m2,拉力F1和F2 方向相反,与轻线沿同一水平直线,且F1> F2,试求两 个物块运动过程中轻线的拉力FT。
m
M
例10、图中所有的接触面均光滑,当m1沿斜面下滑时,为 使斜面体保持静止,则对斜面体应施加多大的水平力F
?方向如何?斜面体受到地面的支持力多大?(图中的
字母均属于知量)
m2 m1
M
θ
有相互作用力的系统
整体与隔离体法
连接体问题专题详细讲解
题问连接体一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外二、外力和内力力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。
三、连接体问题的分析方法求加速度时可以把连接体作为一个整体。
运用连接体中的各物体如果加速度相同,1.整体法牛顿第二定律列方程求解。
必须隔离其中一个物体,对该物体应用牛顿第二.隔离法如果要求连接体间的相互作用力,2 定律求解,此法称为隔离法。
.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但3如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。
注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。
3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。
注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。
4.“整体法”和“隔离法”的选择;如果还要求物体之间的作用整体法”求各部分加速度相同的连结体的加速度或合外力时,优选考虑“,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不隔离法”力,再用“”。
同,一般都是选用“隔离法进行受隔离法”整体法”或“5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“力分析,再列方程求解。
针对训练沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。
连接体问题专题详细讲解
连接体问题专题详细讲解连接体问题连接体是由两个或两个以上物体相连接组成的物体系统,而隔离体则是其中某个物体隔离出来的物体。
在研究物体系时,受到系统外作用力的力被称为外力,而系统内各物体间的相互作用力则为内力。
在应用牛顿第二定律列方程时,不考虑内力,但如果将物体隔离出来作为研究对象,内力将转换为隔离体的外力。
针对连接体问题的分析方法,有整体法和隔离法。
整体法是将连接体作为一个整体来分析,适用于连接体中各物体加速度相同的情况。
而隔离法则是将其中一个物体隔离出来,对该物体应用牛顿第二定律求解,适用于要求连接体间相互作用力的情况。
整体法和隔离法是相对统一、相辅相成的,可以交叉使用。
对于简单连接体问题,可以采用以下分析方法。
连接体是由有相互作用的物体组成的具有相同大小加速度的整体。
整体法是将整个系统作为一个研究对象来分析,适用于系统中各部分物体的加速度大小方向相同的情况。
隔离法则是将系统中各个部分或某一部分隔离作为一个单独的研究对象来分析,适用于系统中各部分物体的加速度大小、方向相同或不相同的情况。
在选择整体法和隔离法时,应根据题目要求选择合适的方法进行分析,并在需要求物体间作用力时使用隔离法。
在针对训练时,需要根据题目给出的条件进行分析。
例如,当物体AB沿斜面下滑时,通过分析斜面是否光滑、粗糙等条件,可以判断杆受到的力是拉力还是压力。
在题目中给出的物体运动状态或过程有多个时,应对不同状态或过程使用整体法或隔离法进行受力分析,并列方程求解。
解析:物体m所受的力有重力mg和斜面对它的摩擦力f,因为物体m与车箱相对静止,所以它的加速度为0.根据牛顿第二定律,物体所受合力为0,即mg和f的合力为0.因为斜面的倾角为30°,所以斜面对m的重力分解为mgcos30°和mgsin30°,其中mgcos30°垂直于斜面,不参与m的运动,所以只考虑mgsin30°沿斜面方向的分量,即mg*sin30°=mg/2.因此,斜面对m的摩擦力f也等于mg/2,方向沿斜面向下。
专题三 牛二定律在连接体当中的应用
专题三牛二定律在连接体问题中的应用一、加速度相同的连接体问题做题思路:整体法求加速度,隔离法求内力例1.质量不等的两木块A、B,用跨过一轻质定滑轮的轻绳相连接,在图示情况下,木块A、B一起做匀速运动,若木块A、B的位置互相交换,则木块A运动的加速度为(木块A、B与桌面间的动摩擦因数均为μ,且μ<1,重力加速度为g,空气阻力,滑轮摩擦均不计)()A.(1﹣μ)gB.(1﹣μ2)gC.gD.与木块A、B的质量有关练习1.质量分别为M和m的物块形状大小均相同,将它们通过轻绳和光滑定滑轮连接,如图甲所示,绳子在各处均平行于倾角为α的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦.若互换两物块位置,按图乙放置,然后释放M,斜面仍保持静止.则下列说法正确的是()A.轻绳的拉力等于MgB.轻绳的拉力等于mgC.M运动加速度大小为(1﹣sinα)gD.M运动加速度大小为g例2.如图所示,轻质弹簧上端固定,下端连接一质量为m的重物,先由托盘M托住m,使弹簧比自然长度缩短L,然后托盘由静止开始以加速度a匀加速向下运动。
已知a<g,弹簧的劲度系数为k,求经过多少时间托盘M将与m分开。
练习2.如图所示,一弹簧一端固定在倾角为370的光滑斜面的低端,另一端栓住质量为m1=4kg 的物块P,Q为一质量为m2=8kg的重物,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给Q施加一个方向沿斜面向上的力F,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s时间内,F为变力,0.2s以后,F为恒力,已知sin37°=0.6,g=10m/s2.求:力F的最大值与最小值.二、加速度不同的连接体问题做题思路:若系统内部各物体的加速度不同,一般是整体法进行受力分析,隔离法使用牛二定律进行解题。
例3.如图所示,质量为M、倾角为θ的斜面放在水平地面上,斜面上有一质量为m的滑块沿斜面以加速度a加速下滑,若斜面始终保持静止,求:(1)滑块对斜面的压力;(2)地面对斜面的支持力;(3)地面对斜面的摩擦力.练习3.如图所示,质量为M的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,木板运动的加速度是多少?三、连接体中的临界极值问题做题思路:主要采用极限法,即把物理问题推向极端,从而使临界状态暴露出来,以临界状态作为突破口和切入点进行解题。
专题17 动力学中的连接体问题、临界极值问题-2025版高三物理一轮复习多维度导学与分层专练
2025届高三物理一轮复习多维度导学与分层专练专题17动力学中的连接体问题、临界极值问题导练目标导练内容目标1加速度相同的连接体问题目标2加速度不同的连接体问题目标3动力学中的临界极值问题【知识导学与典例导练】一、动力学中的连接体问题1.处理连接体问题的方法(1)整体法的选取原则及解题步骤①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。
②运用整体法解题的基本步骤:(2)隔离法的选取原则及解题步骤①当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。
②运用隔离法解题的基本步骤:第一步:明确研究对象或过程、状态。
第二步:将某个研究对象或某段运动过程、某个状态从系统或全过程中隔离出来。
第三步:画出某状态下的受力图或运动过程示意图。
第四步:选用适当的物理规律列方程求解。
2.加速度相同的连接体问题常见模型条件交叉内力公式模型一地面光滑,m 1和m 2具有共同加速度整体:()a m m F 211+=(F 1为m 1所受到的外力)隔离m 2:m 2和m 1之间绳的拉力T (内力)大小:21212F T m a m m m ==+(注:分子是m 2与作用在m 1上的外力F 1交叉相乘)模型二地面光滑,m 1和m 2具有共同加速度整体:()a m m F 212+=(F 2为m 2所受到的外力)隔离m 1:m 2和m 1之间绳的拉力T (内力)大小:12112F T m a m m m ==+(注:分子是m 1与作用在m 2上的外力F 2交叉相乘)模型三地面光滑,m 1和m 2具有共同加速度整体:()am m F F 2121+=-(F 2为m 2所受到的外力,F 1为m 1所受到的外力)隔离m 1:m 2和m 1之间绳的拉力T (内力)大小:11F T m a-=21122111Fm FmT F m am m+=-=+(注:分子是m2与作用在m1上的外力F1交叉相乘“加上”m1与作用在m2上的外力F2交叉相乘)模型四地面光滑,m1和m2具有共同加速度整体:()ammFF2121+=+隔离m1:内力T:11F T m a-=22111112-Fm FmT F m am m=-=+(注:分子是m2与作用在m1上的外力F1交叉相乘“减去”m1与作用在m2上的外力F2交叉相乘)模型五地面不光滑,m1和m2具有共同加速度类似于模型三:对m1把(F1-f1)的合力记作F1’;对m2把(F2+f2)的合力记作F2’,则有:整体:()ammFF2121+=-’’隔离m1:12211112F mT m FF m am m+=-=+’’’(注:F1’和F2’分别为两个物体除内力以外的各自所受所有外力的合力,等同于模型三中的F1和F2,公式形式相同)模型六地面不光滑,m1和m2具有共同加速度类似于模型三:水平外力分别是m1受到的F1和m2受到的摩擦力f2,此种情况的水平内力为物体间的摩擦力F f。
高考物理专题20动力学中的连接体问题练习(含解析)
专题20 动力学中的连接体问题1.同一方向的连接体问题:这类问题通常具有相同的加速度,解题时一般采用先整体后隔离的方法.2.不同方向的连接体问题:由跨过定滑轮的绳相连的两个物体,不在同一直线上运动,加速度大小相等,但方向不同,也可采用整体法或隔离法求解.1.(2020·湖南长沙市长沙县第六中学月考)如图1,斜面光滑且固定在地面上,A 、B 两物体一起靠惯性沿光滑斜面下滑,下列判断正确的是( )图1A .图甲中两物体之间的绳中存在弹力B .图乙中两物体之间存在弹力C .图丙中两物体之间既有摩擦力,又有弹力D .图丁中两物体之间既有摩擦力,又有弹力 答案 C解析 图甲:整体法分析,根据(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F T +m 1g sin θ=m 1a ,解得绳的拉力F T =0,故A 错误;图乙:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F N +m 1g sin θ=m 1a ,解得两物体之间的弹力F N =0,故B 错误;图丙:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,解得加速度沿斜面向下,隔离A ,将加速度分解到竖直和水平方向,根据牛顿第二定律可知,题图丙中两物体之间既有摩擦力,又有弹力,故C 正确;图丁:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F f +m 1g sin θ=m 1a ,解得:F f =0,故D 错误.2.(2020·湖南长沙市模拟)如图2所示,光滑水平面上,质量分别为m 、M 的木块A 、B 在水平恒力F 作用下一起以加速度a 向右做匀加速直线运动,木块间的水平轻质弹簧劲度系数为k ,原长为L 0,则此时木块A 、B 间的距离为( )图2A .L 0+MakB .L 0+ma kC .L 0+MFk M +mD .L 0+F -mak答案 B解析 以A 、B 整体为研究对象,加速度为:a =FM +m,隔离A 木块,弹簧的弹力:F 弹=ma=k Δx ,则弹簧的长度L =L 0+ma k =L 0+mFk M +m,故选B.3.(2020·辽宁沈阳东北育才学校月考)如图3所示,质量分别为m A 、m B 的A 、B 两物块紧靠在一起放在倾角为θ的固定斜面上,两物块与斜面间的动摩擦因数相同,用始终平行于斜面向上的恒力F 推A ,使它们沿斜面匀加速上升,为了减小A 、B 间的压力,可行的办法是( )图3A .减小倾角θB .减小B 的质量C .减小A 的质量D .换粗糙程度小的斜面答案 B解析 由牛顿第二定律得,对A 和B 整体有F -(m A +m B )g sin θ-μ(m A +m B )g cos θ=(m A +m B )a ,对B 有F 1-m B g sin θ-μm B g cos θ=m B a ,联立解得F 1=m B m A +m BF ,故减小B 的质量可减小A 、B 间的压力,B 正确,A 、C 、D 错误.4.(多选)如图4,水平地面上有三个靠在一起的物块P 、Q 和R ,质量分别为m 、2m 和3m ,物块与地面间的动摩擦因数都为μ.用大小为F 的水平外力推动物块P ,记R 和Q 之间相互作用力与Q 与P 之间相互作用力大小之比为k .下列判断正确的是( )图4A .若μ≠0,则k =56B .若μ≠0,则k =35C .若μ=0,则k =12D .若μ=0,则k =35答案 BD5.(多选)(2020·湖北鄂东南联盟模拟)如图5所示,A 物体的质量是B 物体的k 倍.A 物体放在光滑的水平桌面上通过轻绳与B 物体相连,两物体释放后运动的加速度为a 1,轻绳的拉力为F T1;若将两物体互换位置,释放后运动的加速度为a 2,轻绳的拉力为F T2.不计滑轮摩擦和空气阻力,则( )图5A.a1∶a2=1∶k B.a1∶a2=1∶1C.F T1∶F T2=1∶k D.F T1∶F T2=1∶1答案AD解析由牛顿第二定律m B g=(m A+m B)a1,F T1=m A a1,同理两物体互换位置,则m A g=(m A+m B)a2,F T2=m B a2,解得a1∶a2=m B∶m A=1∶k,F T1∶F T2=1∶1,故A、D正确.6.(2020·江苏七市第二次调研)如图6所示,车厢水平底板上放置质量为M的物块,物块上固定竖直轻杆,质量为m的球用细线系在杆上O点.当车厢在水平面上沿直线加速运动时,球和物块相对车厢静止,细线偏离竖直方向的角度为θ,此时车厢底板对物块的摩擦力为F f、支持力为F N,已知重力加速度为g,则( )图6A.F f=Mg sin θB.F f=Mg tan θC.F N=(M+m)g D.F N=Mg答案 C解析以m为研究对象,受力如图甲所示由牛顿第二定律得mg tan θ=ma,解得a=g tan θ以M、m整体为研究对象,受力如图乙所示在竖直方向上,由平衡条件有F N=(M+m)g在水平方向上,由牛顿第二定律有F f=(M+m)a=(M+m)g tan θ,故C正确,A、B、D错误.7.(2020·安徽安庆市三模)如图7所示,质量为M的木块置于小车光滑的水平上表面,跨过光滑定滑轮的细绳一端水平连接木块,另一端竖直悬挂质量为m的物块,且m贴着小车光滑竖直右壁,当小车水平向右做加速度为a的匀加速运动时,M、m能与小车保持相对静止,则加速度a、细绳的拉力F T及m所受合力F为( )图7A .a =mg MB .F T =mMgm +MC .F =0D .F =m a 2+g 2答案 A解析 以物块为研究对象,竖直方向根据平衡条件可得细绳的拉力:F T =mg ;对木块水平方向根据牛顿第二定律可得:F T =Ma ,解得:a =mg M,故A 正确,B 错误;以物块为研究对象,竖直方向受力平衡,则物块受到的合力F =ma ,故C 、D 错误.8.(多选)质量分别为M 和m 的物块a 、b 形状、大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图8甲所示,绳子平行于倾角为α的斜面,a 恰好能静止在斜面上,不考虑两物块与斜面之间的摩擦,若互换两物块位置,按图乙放置,然后释放a ,斜面仍保持静止,关于互换位置之后下列说法正确的是( )图8A .轻绳的拉力等于mgB .轻绳的拉力等于MgC .a 运动的加速度大小为(1-sin α)gD .a 运动的加速度大小为M -mMg 答案 ACD解析 按图甲放置时,对a 由平衡条件可知Mg sin α=F T ,对b 有F T ′=mg ,F T =F T ′,则有Mg sinα=mg ;按图乙放置时,对a 由牛顿第二定律可知Mg -F T1=Ma ,对b 有F T2-mg sin α=ma ,F T1=F T2,则有Mg -mg sin α=(M +m )a ,联立解得a =(1-sin α)g ,故C 正确;由于Mg sin α=mg ,所以a =(1-sin α)g =(1-mgMg )g =M -mMg ,故D 正确;将F T2-mg sin α=ma 和a =(1-sin α)g ,联立解得F T2=mg ,故A 正确,B 错误.。
连接体问题专项训练
对B物体 由牛顿第二定律: FAB=mBa(2) 由(1)、(2)得
FAB=
mB F mA mB
FN
F G
FN FAB
G
例2:如图所示,光滑水平面上有两物体m1与m2用细线 连接,在力F的作用下一起向左运动,求细线所受的拉
力?
F
例3、如图所示,两个质量相同的物体1和2紧靠在一起,放在光滑 水平桌面上,分别受到水平推力的作用,且,则1与2之间作用力大 小为 ?
(2)若力作用在A上,求A、B间的水平作用 力?
A
F
B
谢谢
例1:在光滑的水平面上放置着紧靠在一起 的两个物体A和B(如图),它们的质量分 别为mA、mB。当用水平恒力F推物体A时, 问:
⑴A、B两物体的加速度多大?
⑵A物体对B物体的作用力多大?
(3)若AB与地面的摩擦系数均为μ,则A物体对B物体 的作用力多大?
解:对A、B整体 由牛顿第二定律: F=(mA+mB)a(1)
例4、如图所示质量为m和M A、B、B物体之间的力大小为?
BA
F
Α )α
例5:如图所示,木块A质量为1kg,木块B 质量为2kg,叠放在光滑的水平地面上, AB之间摩擦系数为0.3:
(1)今用水平力F为3N作用于B,保持AB相
对静止,求A、B间的水平作用力?
连接体问题专项训练答案
连接体问题专项训练答案1.【答案】C【解析】根据题意可知第2节车厢对第3节车厢的牵引力为F ,因为每节车厢质量相等,阻力相同,故第2节对第3节车厢根据牛顿第二定律有3838F f ma ,设倒数第3节车厢对倒数第2节车厢的牵引力为F 1,则根据牛顿第二定律有122F f ma ,联立解得119F F 。
故选C 。
2.【答案】B 【解析】刚撤去外力F 时,由牛顿第二定律,对A 、B 组成的整体有F =2ma 1,对物体A 有F N -mg =ma 1,联立解得F N =F 2+mg ,选项A 错误;弹簧弹力等于F 时,对A 、B 组成的整体有F -2mg =2ma 2,对物体A 有F N -mg =ma 2,联立解得F N =F 2,选项B 正确;当A 、B 恰好分离时,A 、B 间相互作用力为0,对A 有mg =ma ,a =g ,B 的加速度也为g ,根据牛顿第二定律分析可知弹簧恰好恢复到原长,选项C 、D 错误。
3.【答案】A【解析】隔离小球,可知小球的加速度方向沿斜面向下,大小为g sin θ,小球稳定后,支架系统的加速度与小球的加速度相同,对支架系统进行分析,只有斜面光滑,支架系统的加速度才是g sin θ,所以A 正确,B 错误.隔离斜面体,斜面体受到的力有自身重力、地面的支持力、支架系统对它垂直斜面向下的压力,因斜面体始终保持静止,则斜面体还应受到地面对它水平向左的摩擦力,C 、D 错误.4.【答案】C.【解析】:将a 、b 看做一个整体,加速度a =F a +F b m a +m b,单独对a 进行分析,设a 、b 间的作用力为F ab ,则a =F a +F ab m a =F a +F b m a +m b ,即F ab =F b m a -F a m b m a +m b,由于不知道m a 与m b 的大小关系,故F ab 可能为正,可能为负,也可能等于0.5.【答案】A【解析】:.A 、B 相对静止,即两物体的加速度相同,以A 、B 整体为研究对象分析受力可知,系统的加速度为g sin θ,故A 正确;再以B 为研究对象进行受力分析,如图,根据平行四边形法则可知,绳子的方向与斜面垂直,拉力大小等于G cos θ,故B 、C 、D 错误.6.【答案】C.【解析】:根据v -t 图线的斜率表示加速度,可知滑块被释放后,先做加速度逐渐减小的加速直线运动,弹簧弹力与摩擦力相等时速度最大,此时加速度为零,随后加速度反向增加,从弹簧恢复原长时到滑块停止运动,加速度不变,A 、B 错误;由题中图象知,滑块脱离弹簧后的加速度大小a 1=Δv Δt =1.50.3m/s 2=5 m/s 2,由牛顿第二定律得摩擦力大小为F f =μmg =ma 1=2×5 N =10 N ,刚释放时滑块的加速度为a 2=Δv ′Δt ′=30.1m/s 2=30 m/s 2,此时滑块的加速度最大,D 错误;由牛顿第二定律得kx -F f =ma 2,代入数据解得k =175 N/m ,C 正确.7.【答案】B【解析】:三个物块靠在一起,将以相同加速度向右运动,根据牛顿第二定律有F -μ(m +2m+3m )g =(m +2m +3m )a ,解得加速度a =F -6μmg 6m.隔离R 进行受力分析,根据牛顿第二定律有F 1-3μmg =3ma ,解得R 和Q 之间相互作用力大小F 1=3ma +3μmg =12F ;隔离P 进行受力分析,根据牛顿第二定律有F -F 2-μmg =ma ,可得Q 与P 之间相互作用力大小F 2=F-μmg -ma =56F .所以k =F 1F 2=12F 56F =35,由于k 值与μ是否为0无关,故B 正确、D 错误. 8.【答案】B【解析】由于整体匀速下滑,假设上面一个为大人,以大人为研究对象有Mg sin θ=f 1+T ,杆的弹力为T ,以小孩为研究对象有mg sin θ+T =f 2。
连接体问题专题详细讲解
连接体问题一, 连接体及隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
假如把其中某个物体隔离出来,该物体即为隔离体。
二, 外力和内力假如以物体系为探讨对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
假如把物体隔离出来作为探讨对象,则这些内力将转换为隔离体的外力。
三, 连接体问题的分析方法1.整体法连接体中的各物体假如加速度相同,求加速度时可以把连接体作为一个整体。
运用牛顿第二定律列方程求解。
2.隔离法假如要求连接体间的相互作用力,必需隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法及隔离法是相对统一,相辅相成的。
原来单用隔离法就可以解决的连接体问题,但假如这两种方法交叉运用,则处理问题就更加便利。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个探讨对象来分析(即当做一个质点来考虑)。
留意:此方法适用于系统中各部分物体的加速度大小方向相同状况。
解决这个问题的最好方法是假设法。
即假定,若斜面光滑,示为:a=g sinθ-μg cosθ,明显,若a, b两物体及斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍旧不受力,若μA>μB,则a A<a B,A, B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。
〖答案〗(1)斜面光滑杆既不受拉力,也不受压力(2)斜面粗糙μA>μB杆不受拉力,受压力斜面粗糙μA<μB杆受拉力,不受压力类型二, “假设法”分析物体受力【例题2】在一正方形的小盒内装一圆球,盒及球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化(提示:令T不为零,用整体法和隔离法分析)()A.N变小,T变大; B.N变小,T为零;C.N变小,T变小; D.N不变,T变大。
专题:连接体问题(整体法和隔离法)
专题:连接体问题(整体法和隔离法)一、什么是连接体问题特征:两物体紧靠着或者依靠一根细绳(一根弹簧)相连接后一起做匀加速运动(1)用细线连接的物体系(2)相互挤压在一起的物体系(3)用弹簧连接的物体系二、连接体问题如何处理1.对整体写牛顿第二定律2.把其中任意一个物体隔离写牛顿第二定律三、常见的连接体问题的类型1.计算连接体的加速度2.计算连接体之间的拉力大小3.根据绳子的最大拉力判断水平拉力F的大小4.放在不同平面上判断拉力的变化、加速度的变化5.两个相反方向的力作用与两个物体上,撤去其中一个力后判断物体加速度变化和绳子拉力变化6.在连接体上的某个物体上再放一个物体判断拉力的变化、加速度的变化7.三个物体的连接体问题【典型例题剖析】例1:如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平力F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N11计算:(1)计算N1的大小(2)若将F作用在物体B上,AB间的相互作用力N2变为多少?(3)计算N 1与N 2之和,N 1与N 2之比(4)若物体A 、B 与地面的动摩擦因数为μ,分析AB 的加速度如何变化,AB 之间相互作用力如何变化?例2:如图所示,置于水平地面上的相同材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,下列说法正确的是( )A .地面光滑时,绳子拉力大小等于mFm 0+mB .地面不光滑时,绳子拉力大小等于mFm 0+mC .地面不光滑时,绳子拉力大于mFm 0+mD .地面不光滑时,绳子拉力小于mFm 0+m答案 AB例3:(多选)如图所示,质量为ml 的物体和质量为m 2的物体,放在光滑水平面上,用仅能承受6N 的拉力的线相连。
m l =2kg ,m 2=3kg 。
现用水平拉力F 拉物体m l 或m 2,使物体运动起来且不致把绳拉断,则F 的大小和方向应为( ) A .10N ,水平向右拉物体m 2B .10N ,水平向左拉物体m 1C .15N ,水平向右拉物体m 2D .15N ,水平向左拉物体m 1 答案:BC例4:如图所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.0kg 、m B =2.0kg ,它们与地面间的动摩擦因数均为μ=0.10。
高中物理连接体问题精选(含答案解析)
题型一 整体法与隔离法的应用例题1 如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg 。
现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为A 、5m g 3μB 、4m g 3μC 、2m g3μ D 、mg 3μ变式1 如图所示的三个物体A 、B 、C,其质量分别为m 1、m 2、m 3,带有滑轮的物体B 放在光滑平面上,滑轮和所有接触面间的摩擦及绳子的质量均不计.为使三物体间无相对运动,则水平推力的大小应为F =__________2.如图,质量为2m 的物块A 与水平地面的摩擦可忽略不计,质量为m 的物块B 与地面的动摩擦因数为μ,在已知水平推力F 的作用下,A 、B 做加速运动,A 对B 的作用力为多少?3.如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?4.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中,小球1和小球2均带正电,电量分别为q 1和q 2〔q 1>q 2。
将细线拉直并使之与电场方向平行,如图所示。
若将两小球同时从静止状态释放,则释放后细线中的张力T 为〔不计重力及两小球间的库 仑力〔A .121()2T q q E =- B .12()T q q E =- C .121()2T q q E =+ D .12()T q q E =+ 5.如图所示,光滑水平面上放置质量分别为m 、2m 和3m 的三个木块,其中质量为2m 和3m 的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为F T 。
现用水平拉力F 拉质量为3m 的木块,使三个木块以同一加速度运动,则以下说法正确的是〔A .质量为2m 的木块受到四个力的作用B .当F 逐渐增大到F T 时,轻绳刚好被拉断C .当F 逐渐增大到1.5F T 时,轻绳还不会被拉断D .轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为13F T 题型二 通过摩擦力的连接体问题例题2 如图所示,在高出水平地面h = 1.8m 的光滑平台上放置一质量M = 2kg 、由两种不同材料连成一体的薄板A ,其右段长度l 2 = 0.2m 且表面光滑,左段表面粗糙。
斜面连接体问题专题分析PPT课件
答案:AD
-
7
列说法中正确的是 ( . 物块m将沿斜面加速下滑;
C. 地面对斜面M有向左的摩擦力;
D. 地面对物体M的支持力等于 (Mm)g
-
5
练习
• 如图,斜劈A静止放置在水平地面上。 质量为m的物体B在外力F1和F2的共同作 用下沿斜劈表面向下运动。当F1方向水 平向右,F2方向沿斜劈的表面向下时斜
FN1
F f1 F fco s m cg 2 o m ssg ic no
F N 1F N s in m sg ic n os
-
3
• 拓展: 若自由释放的滑块能在斜面上 以加速度a匀加速下滑,再求题中四问
-
4
如图所示,在粗糙水平面上的斜面体质量为M,一 质量为m的物块恰能沿木块斜面匀速下滑,若对物块 施以水平向右的拉力F,物块仍能沿斜面运动。则下
劈受到地面的摩擦力方向向左。则下列
说法中正确的是
-
6
• A.若同时撤去F1和F2,物体B的加速度方向 一定沿斜面向下
• B.若只撤去F1,在物体B仍向下运动的过程 中,A所受地面摩擦力方向可能向右
• C.若只撤去F2,在物体B仍向下运动的过程 中,A所受地面摩擦力方向可能向右
• D.若只撤去F2,在物体B仍向下运动的过程
斜面连接体问题专题分析
• 例题:如图所示,在水平地面上静止着一质量为M 倾角为θ的斜面,质量为m的滑块能在斜面上匀速 下滑。求
• (1)求斜面与物体间的动摩擦因数
• (2)斜面对滑块的作用力大小与方向
• (3)斜面是否受到地面摩擦力,如果受到方向向 左还是向右?
• (4)斜面对地面压力多大?
-
2
Ff1
连接体问题——高考物理热点模型(解析版)
连接体问题模型概述1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.常见类型①物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度②轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.③轻杆连接体:轻杆平动时,连接体具有相同的平动速度和加速度.④弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.方法:整体法与隔离法,正确选取研究对象是解题的关键.①整体法:若连接体内各物体具有相同的加速度,且不需要求系统内各物体之间的作用力,则可以把它们看作一个整体,根据牛顿第二定律,已知合外力则可求出加速度,已知加速度则可求出合外力.②隔离法:若连接体内各物体的加速度不相同,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.4.力的“分配”地面光滑两物块在力F 作用下一起运动,系统的加速度与每个物块的加速度相同,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 弹=m 2m 1+m 2F ,若作用于m 2上,则F 弹=m 1m 1+m 2F 。
此“分配”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且无论物体系统处于平面、斜面还是竖直方向,此“分配”都成立。
5.关联速度连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
下面三图中A 、B 两物体速度和加速度大小相等,方向不同。
关联速度连接体做加速运动时,由于加速度的方向不同,一般分别选取研究对象,对两物体分别列牛顿第二定律方程,用隔离法求解加速度及相互作用力。
高中物理连接体问题习题汇总
高中物理连接体问题汇总一、选择题(共5题)1、质量分别是m 和 2 m 的两个物体用一根轻质弹簧连接后再用细绳悬挂,m在上,2m在下,细绳连接在m上,并悬挂于天花板。
稳定后将细绳剪断,则剪断的瞬间,下列说法正确的是(g 是重力加速度)()A .质量为m 的物体加速度是 0B .质量为2 m 的物体加速度是gC .质量为m 的物体加速度是 3 gD .质量为2 m 的物体加速度是 3 g2、质量为 3kg 的物体 A 静止于竖直的轻弹簧上,质量为2kg 的物体 B 用细线悬挂,A 、B 间相互接触但无压力,取重力加速度g=10N/kg。
某时刻将细线剪断,则细线剪断瞬间()A .弹簧的弹力大小为50NB . A 的加速度为零C . B 对 A 的压力大小为12ND . B 的加速度大小为5m/s23、A 、 B 两木块间连一轻弹簧,A在上B在下, A 、 B 质量相等,一起静止地放在一块光滑木板上,重力加速度为g 。
若将此木板突然抽去,在此瞬间, A 、 B 两木块的加速度分别是()A .aA =0, aB=2gB .aA =g, aB=gC .aA =0, aB=0D .aA =g,aB=2g4、如图所示,光滑水平面上有叠放在一起的长方形物体 A 和 B ,A在上,B在下,质量均为m ,它们之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现在物体 A 上施加一水平外力F ,下列说法不正确的是()A .B 受到的摩擦力可能等于F/2B . B 受到的摩擦力一定等于μmgC .当 F=5μmg/3时, A 、 B 还没相对滑动D .当F=7μmg/3时, A 、 B 一定相对滑动5、质量为1KG的木板静止在光滑水平面上,一个小木块(可视为质点)质量也为1KG,以初速度V=4m/s从木板的左端开始向右滑,木块与木板之间的动摩擦因数为 0.2 ,要使木块不会从木板右端滑落,则木板的长度至少为()A .5mB .4mC .3mD .2m二、填空题(共2题)1、如图所示,质量分别为 10kg 和5kg 的长方形物体A 和B 静止叠放在水平桌面上。
专题_连接体问题
F a ① nm
F
1 2 3
………
n
作用在每个小立方体上的合力
F F0 ma ② n
灵活选择研究对象,整体法和隔离法相结合;根据力产生的效果(加速 度)进行受力分析是高中物理重点掌握的受力分析的方法。
1.物体A和B的质量分别为1.0kg和2.0kg,用F=12N 的水平力推动A,使A和B一起沿着水平面运动,A和 B与水平面间的动摩擦因数均为0.2,求A对B的弹力。 (g取10m/s2)
F (m1 m2 ) g sin (m1 m2 )a1 ① N1 m2 g sin m2a1 ② m
m 2 联立③④式解出两物体之间的作用力 N 2 F m1 m2 重要推论:两个物体通过绳子或直接接触构成连接体,两个物体间的相
互作用力与在水平面和斜面上运动无关,也与存在不存在摩擦力无关。
【解析】(1)设木板和物块的加速度分别为a和a’,在t时刻木板和 物块的速度分别为vt和v’t ,木板和物块之间摩擦力的大小为f,依 牛顿第二定律、运动学公式和摩擦定律得 当
vt vt
f ma
f mg
vt2 vt1 a(t2 t1 )
F f (2m)a
整体法求加速度,隔离法求相互作用力.
当各部分加速度不同时,一般采用“隔离法”. 也可以采 用“整体法”解题.
F合=ma 1 ma 2F合x=ma 1x ma 2x F合y=ma 1 y ma 2y
5. 解题关键:灵活选择研究对象,整体法和隔离法相结合。对 研究对象认真受力分析和运动分析.
F (m1 m2 ) g sin (m1 m2 ) g cos (m1 m2 )a2 ③ N2 m2 g sin m2 g cos m2a2 ④
专题_连接体问题
例:质量M,长L的木板放在光滑斜 面上,为使木板相对斜面静止,质量 为m的人应以多大的加速度在木板上 跑?若使人相对斜面静止,则人在木 板上跑动时,木板加速度是多大?
整体法求加速度(优先),隔离法求相互作用力
A
B:mg-T=ma
B
A:
T=Ma
M 1 T mg mg m M m 1 M
M m时,T m g
P 例2.如图,一细线的一端固定于倾角为450的 光滑楔形滑块A的顶端P处, 细 线的另一端 拴以质量为m的小球, ⑴.当滑块至少以多大 a 加速度向左运动时,小球对滑块的压力为零? ⑵.当滑块以加速度a=2g向左运动时,线中张 力多大? a0 解:⑴根据牛顿第二定律得 450
连结体问题分析
一.连接体:一些(由斜面、绳子、轻杆等)通过相互作 用连接在一起的物体系统。 它们一般有着力学或者运动学方面的联系。 二.连接体问题的常见图景 1.按连接的形式 a.依靠绳子或弹簧的弹力相连接
A B
F
A
θ
B
a
b.依靠相互的挤压(压力)相联系
m1 m2 m1
m2
F
F m 1
m
2
c.依靠摩擦相联系(叠加体)
三.连接体的解法:
1.整体法与隔离法
.a.隔离法:分别对每一个物体列动力学方程(组),一 般总是可以解题。 b.整体法:当系统有共同的加速度时,可使用整体法。 整体方程的优势是解(共同的)加速度非常容易。
隔离法是解连接体问题的根本方法。而在解隔离方程 组时,隐含着牛顿第三定律的内容(作用与反作用的 大小关系),所以连接体问题牛顿第二定律和牛顿第 三定律结合的典型应用。
m1 m2
F
实际中的连接体都是上述三种典型方式的组合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
牛顿运动定律的应用----连接体问题专题
一、连接体概述
两个或两个以上物体相互连接参与运动的系统称为连接体。
如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。
如下图所示:连接体一般具有相同的运动情况(速度、加速度)。
二、连接体的分类
根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
1.接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2.轻绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;
3.轻弹簧连接:两个物体通过弹簧的作用连接在一起;
三、连接体的运动特点
轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
四、处理连接体问题的基本方法
1.内力和外力:(1)系统:相互作用的物体称为系统。
系统由两
个或两个以上的物体组成。
(2)系统内部物体间的相互作用力叫内力,系统外部物体对系统
内物体的作用力叫外力。
2.整体法:是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析的方法。
3.隔离程中隔离出
五、整
实际上则需要交替而定。
1.求内
2.求外
3.当系将绳等效在【典例1】m施加一个大小为多大(2)两物(3)若两大?
(2)在
(3)试
受到的拉力?
练习2、如图所示,质量为m1和m2的两个物块(m1>m2)用一根不可伸长的轻绳跨过一个光滑的小定滑轮相连,开始时用手托住m1,系统处于静止
状态,求放手后二者的加速度大小和绳子上的拉力大小。
(不计空
气阻力)
【典例3】如图所示,两个质量分别为m1=3kg、m2=2kg的物体置于
光滑的水平面上,中间用轻质弹簧测力计连接。
两个大小分别为F1=30N、F2=20N的水平拉力分别作用在m1、m2上,则( )
A.弹簧测力计的示数是50N
B.弹簧测力计的示数是24N
C.突然撤去F2的瞬间,m2的加速度大小为4m/s2
D.突然撤去F2的瞬间,m1的加
速度大小为10m/s2
课后练习
1.(多选)如图所示,水平地面上有两块完全相同的木块A、B,水平推力F作
用在木块A上,用F AB表示木块A、B间的相互作用力,下
列说法可能正确的是( )
A.若地面是完全光滑的,则F AB=F
B.若地面是完全光滑的,则F AB=F/2
C.若地面是有摩擦的,且木块A、B未被推动,可能F AB=F /3
D.若地面是有摩擦的,且木块A、B被推动,则F AB=F/2
2.(多选)如图所示,在光滑地面上,水平外力F拉动小车和木块一起做无相对滑
动的加速运动,小车质量是M ,木块质量是m,力大小是F,
加速度大小是a,木块和小车之间动摩擦因数是μ,则在
这个过程中,木块受到的摩擦力大小是()
A.μmg
B.
C.μ(M+m)g
D.ma
3.如图所示
运动。
Q的质
4.(多选)如
水平面
B间作
动时,
A.在
C.在
A.与斜面倾
C.与系统运
6.如图所示间用一轻弹述正确的是
D.若在只撤
7.如图所示
的固定光滑斜面下滑,Q 的上表面水平,P 、Q 之间的动摩擦因数为μ,则下列说法正确的是( )
A.P 处于超重状态
B.P 受到的摩擦力大小为μmg ,方向水平向右
C.P 受到的摩擦力大小为mg sin θcos θ,方向水平向左
D.P 受到的支持力大小为mg sin2θ
8.(多选)如图所示,若滑轮P 可沿与水平面成θ角的绳索无摩擦地下滑,绳索处于绷紧状态,可认为是一直线,滑轮下面挂个重为G 的物体Q ,若滑轮和物体下滑时不振动,则下列说法正确的是()
A 、Q 有加速度一定小于gsin θ
B 、悬线所受拉力为Gsin θ
C 、悬线所受拉力为Gcos θ
D 、悬线一定与绳索垂直
9.(多选)如图所示,两个物体中间用一个不计质量的轻杆相连,A 、B 质量分别为m 1和m 2,它们与斜面间的动摩擦因数分别为?1和?2。
当它们在斜面上加速下滑时,关于杆的受力情况,以下说法中正确的是:()
A.若?1>?2,则杆一定受到压力。
B.若?1=?2,m 1<m 2,则杆受到压力。
C.若?1=?2,m 1>m 2,则杆受到压力。
D.若?1=?2,则杆的两端既不受拉力也不受压力。
10.如图4所示,A 、B 两物体的质量分别为m A =2.0kg 、m B =4.0kg 。
物体A 与桌面间的动摩擦因数为0.2,当轻轻释放B 后,求:(1)物体A 受到绳子的拉力多大? (2)物体A 沿桌面滑行的加速度是多少?(取g=10m/s 2) θ
P
Q。