用放缩法证明方法与技巧
巧用放缩法证明数列不等式
证明数列不等式问题一般较为复杂.解答这类问题的常用方法是放缩法,通常要灵活运用数列的定义、性质、通项公式、前n 项公式对不等式进行变形、化简,再运用不等式的性质对数列不等式进行适当的放缩.而证明数列不等式的关键是对不等式进合理的放缩,下面重点谈一谈运用放缩法证明数列不等式的几个技巧.一、通过裂项进行放缩有些数列不等式中的各项为分式,通过变形可裂为两项之差的形式,此时可利用裂项求和法来求得数列的和,再对其进行放缩,从而证明不等式.有时数列的通项公式不能直接裂项,可先将其进行适当的放缩,再进行求和.例1.求证:∑k =1n1k2≤53.证明:因为1k 2=44k 2<44k 2-1=2æèöø12k -1-12k +1,所以∑k =1n 1k 2=1+∑k =2n 1k 2<1+∑k =2n2æèöø12k -1-12k +1=1+2æèöø13-15+15-17+⋯+12n -1-12n +1=1+2æèöø13-12n +1<1+23=53.该数列的通项公式为分式,可根据不等式的可加性和传递性,将其放缩44k 2-1,再将其裂项为2æèöø12k -1-12k +1,这样便可运用裂项相加法求得数列的和,运用放缩法快速证明不等式.二、利用基本不等式进行放缩若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.运用基本不等式可快速将两式的和或积放大或缩小.在运用基本不等式进行放缩时,要注意三个条件“一正”“二定”“三相等”.需根据已知的关系式或目标式,合理配凑出两式的和或积,并使其一为定值.在证明数列不等式时,有时要用到基本不等式的变形式,如a +b +c ≥3abc 3、a 21+a 22+⋯+a 2nn≥a 1a 2⋯a n n 等,对所要证明的不等式进行放缩.例2.设S n =1×2+2×3+⋯+n ()n +1,求证:n ()n +12<S n <()n +122.证明:设a k =k ()k +1(k =1,2,⋯,n ),因为k <k ()k +1<k +k +12=k +12,所以∑k =1n k <∑k =1n k ()k +1<∑k =1n(k +12),即n ()n +12<S n <n ()n +12+n 2<()n +122.该数列中含有根式,很难快速求得数列的和,于是将其通项看作两式的积,构造出两式的和式,便可利用基本不等式将数列中的每一项进行放缩,再根据等差数列的前n 项和公式进行求解,即可证明不等式.三、根据数列的单调性进行放缩数列具有单调性,所以在证明数列不等式时,可根据不等式的特点找出其中的通项公式,通过作差或作商来判断数列的单调性.若a n ≥a n +1,则该数列单调递增,若a n ≤a n +1,则该数列单调递减,即可利用数列的单调性来放缩不等式.例3.求证:12≤1n +1+1n +2+⋯+1n +n <710(n ∈N *).证明:令S n =1n +1+1n +2+⋯+1n +n ,则S n +1-S n =æèöø1n +2+1n +3+⋯+1n +n +1n +n +1-æèöø1n +1+1n +2+⋯+1n +n =14æèöøn +12()n +1>0.可知数列{}S n 单调递增,因此S n ≥S 1=12.又因为S n +1-S n =14æèöøn +12()n +1<14æèöøn +14æèöøn +54=14×æèççççöø÷÷÷÷1n +14-1n +54=14n +1-14n +5,即S n +14n +1>S n +1+14n +5,可知数列{}S n +14n +1单调递减,所以S n +14n +1≤S 1+14+1=710.综上可得12≤S n <710,即12≤1n +1+1n +2+⋯+1n +n <710.总之,运用放缩法证明数列不等式,关键是对数列的通项公式、和式进行合理的放缩.同学们可根据目标不等式的结构特点,对通项公式进行裂项,也可利用基本不等式,还可以根据数列的单调性来进行放缩.(作者单位:江西省临川第二中学)解题宝典41。
专题10 放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型 方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n 项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型. 放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小. 放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解). 放缩的方法:(1)当我们要证明多项式M A <时,我们无法直接证明两者的大小,这时我们可以将多项式M 放大为1N ,当我们能够证明1N A <,也间接证明了M A <.切不可将M 缩小为2N ,即使能够证明2N A <,M 与A 的关系无法得证.(2)当我们要证明多项式M A >时,这时我们可以将多项式M 缩小为1N ,当我们能够证明1N A >,也间接证明了M A >.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1. 常见的放缩形式:(1)()()21111211n n n n n n<=-≥--; (2)()2111111n n n n n >=-++;(3)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭; (5(()2121n n n n n n n n==--≥+-+; (6(211n n n n n n n =>=++++;(7222212111212122n n n n nn n n n ==--++-++-++; (8)()()()()()()()1211222211212121212122212121nn n n n n n n n n n n n ---=<==----------()2n ≥;(12)()()()111121122121212121n nn n n n n ---<=-≥-----.类型一:裂项放缩 【经典例题1】求证22221111.....2123n ++++< 【解析】因为()()2211111211n n n n n n n n <==-≥---,所以2222222211111111111111..........11.....=22123122332231n n n n n n ++++<++++=+-+-++--<----,所以原式得证. 为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证222211117 (1234)n ++++< 【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以222222221111111111111111........11....1231213112324351n n n n ⎛⎫++++<++++=+-+-+-+- ⎪----⎝⎭11117=112214n n ⎛⎫++--< ⎪+⎝⎭,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证222211115 (1233)n ++++<【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以 222222222111111111111111111........1....12312311222435461n n n n ⎛⎫++++<++++=++-+-+-++- ⎪---⎝⎭11111151115=1=422313213n n n n ⎛⎫⎛⎫+++---+< ⎪ ⎪++⎝⎭⎝⎭,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知2,2n n n a b n ==,设1n n nc a b =+,求证:1243n c c c +++<.【解析】已知2,2n n na b n ==,因为 222441122(21)2(21)(21)(21)2121n c n n n n n n n n n n ⎛⎫===<=- ⎪+++-+-+⎝⎭所以1221111112224233557212133132n c c c n n n ⎛⎫+++<+-+-++-=+-< ⎪-++⎝⎭,故不等式得证.【经典例题3】已知数列{}n a 满足11a =,*11(2,)n n n a a n n n--≥∈=N , (1)求n a ;(2)若数列{}n b 满足113b =,*121()n n n b b n a ++∈=N ,求证:2512n b <. 【答案】(1)n a n =;(2)证明见解析. 【详解】 (1)由题意11n n a na n -=-(2n ≥), ∴321121231121n n n a a a na a n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=-,11a =也适合.所以n a n =(*n N ∈); (2)由已知1125312b =<,214251312b b =+=<,32214119252341212b b =+=+=<, 当3n ≥时,121111(1)1n n b b n n n n n+-=<=---, 因此1343541()()()n n n b b b b b b b b ++=+-+-++-1911111125125()()()12233411212n n n <+-+-++-=-<-, 则1212512n n b b n +=-< 综上,2512n b <.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解. 【经典例题4】证明:12311115 (212121213)n ++++<----【解析】令121n na =-,则1111212111212222n n n n n n n n a a a a ++++--=<=⇒<-- 又因为1211,3a a ==,由于不等式右边分母为3 ,因此从第三项开始放缩,得21121222111115321122312n n n a a a a a a a --⎛⎫- ⎪⎛⎫⎝⎭+++<++++=+<⎪⎝⎭-故不等式得证.【经典例题5】已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ;(2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 【答案】(1)证明见解析,2nn a n =⋅;(2)1(1)22n n S n +=-+;(3)证明见解析.【详解】(1)证明:1111122211222222n n n n n n nn n n n n na a a a a a ++++++-=-=+-=, ∴2n na ⎧⎫⎨⎬⎩⎭是首项为1112a =,公差为1的等差数列, ∴1(1)12nn a n n =+-=,∴2n n a n =⋅. (2)∵1231222322n nS n =⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, ∴234121222322n n S n +=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, 两式相减得:123122222n n n S n +-=+++⋅⋅⋅⋅⋅⋅-⋅,()1212212n n n n S +-=-⋅--,∴1(1)22n n S n +=-+.(3)证明:∵2n n a n =⋅,∴11(1)2n n a n ++=+⋅,∴1(2)2n n n a a n +-=+⋅,当*n N ∈时,22n +>,∴1(2)22n n n ++⋅>, ∴111(2)22n n n +<+⋅,∴21324311111n n a a a a a a a a ++++⋅⋅⋅⋅⋅⋅----234111112222n ++++⋅⋅⋅⋅⋅⋅< 111421111122212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-.【练习1】已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<. 【答案】(1)证明见解析;(2)证明见解析 【解析】(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.【练习2】已知数列{}n a 的前n 项和为n S ,且112n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:32n T <. 【答案】(1)()*1n a n n N =+∈.(2)见解析【解析】(1)当1n =时,111112S a a =+-,即12a =, 当2n ≥时,112n n n S na a =+-①,()1111112n n n S n a a ---=-+-②, ①-②,得:()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+, 11n n a a n n-∴=+,且112a=,∴数列1n a n ⎧⎫⎨⎬+⎩⎭是以每一项均为1的常数列,则11n a n =+,即()*1n a n n N =+∈;(2)由(1)得1n a n =+,()()2222211221n a n n n n n ∴=<=-+++, 11111111113113243522122n T n n n n ∴<-+-+-++-=+--<+++.【练习3】已知函数()32x f x x=-,数列{}n a 中,若1()n n a f a +=,且114a =.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)设数列{}n a 的前n 项和为n S ,求证:12n S <. 【答案】(1)见解析;(2)见解析 【解析】 (1)由函数()32x f x x=-,在数列{}n a 中,若1()n n a f a +=,得:132n n n a a a +=-, 上式两边都倒过来,可得:11n a +=32n na a -=3n a ﹣2,∴11n a +﹣1=3n a ﹣2﹣1=3n a ﹣3=3(1n a ﹣1).∵11a ﹣1=3.∴数列11n a ⎧⎫-⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)由(1),可知:11n a -=3n ,∴a n =131n +,n ∈N*.∵当n ∈N*时,不等式131n +<13n成立. ∴S n =a 1+a 2+…+a n =2121111111 (313131333)nn +++<++++++=11133113n⎛⎫⋅- ⎪⎝⎭-=12﹣12•13n<12.∴1S 2n <.【练习4】已知函数2()2f x x x =-,数列{}n a 的前n 项和为n S ,点(),n n P n S 均在函数()y f x =的图象上.若()132n n b a =+ (1)当2n ≥时,试比较1n b +与2nb 的大小;(2)记)*1n nc n N b =∈试证1240039c c c ++⋯+<. 【答案】(1)12bnn b +<;(2)证明见解析. 【详解】(1)2()2f x x x ∴=-,故22n S n n =-,当2n ≥时,123n n n a S S n -=-=-, 当1n =时,111a S ==-适合上式,因此()*23n a n n N =-∈.从而1,1,22nb nn n b n b n +==+=,当2n ≥时,()01211 1nn n n C C n =+=++⋯>+故122nb nn b +<=(2)1n n c b n=11c =,()*2(1),21n n n N n n n n n n =<=-∈≥++- )12400 (12212)32 (2)400399c c c +++<++++400139==.◆题型二:放缩法证明数列不等式之函数型 方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数()f n 的不等关系,即12()n a a a f n +++<或者数列前n 项积与函数()f n 的不等关系,即12n a a a ⋅⋅⋅<()f n 的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将()f n 看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对n a 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列*113,31,2n n a a a n N +==-∈ (1)若数列{}n b 满足12n n b a =-,求证:数列{}n b 是等比数列。
例谈放缩法证明不等式的基本策略
03
放缩法证明不等式的案例分析
案例一:利用逐步调整法证明不等式
总结词
详细描述
逐步调整法是一种通过逐步调整不等 式的两边,以达到证明不等式目的的 方法。
逐步调整法通常需要找到一个可调整 的不等式,通过逐步调整该不等式的 两边,使不等式的左边逐渐增大,右 边逐渐减小,从而证明原不等式成立 。
实例
例如。要证明 $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > \ln(n + 1)$。可以先从左边减去 $\frac{1}{n}$。再从右边加上 $\frac{1}{n}$
构造函数法
总结词
构造函数法是一种通过构造满足某种性质的函数或序列,从而证明不等式的方法。
详细描述
构造函数法的核心思想是,根据题目条件和目标形式构造一个满足特定性质的函数或序列。通过对这个函数或序列的分析 和计算,达到证明不等式的目的。构造函数法在函数不等式证明中较为常用。
示例
例如,在证明“当$x > 0$时,$e^{x} > x + 1$”时,可以使用构造函数法进行
• 示例:例如,在证明$\sqrt{2} < 1 + \frac{1}{n}$时,可以通过逐步调整法进行调整 • 首先,我们将不等式的两边同时加上$1 - \sqrt{2}$,得到$1 - \sqrt{2} < \frac{1}{n}(1 - \sqrt{2})$。 • 然后,我们将左边的不等式两边平方,得到$(1 - \sqrt{2})^{2} < \frac{1}{n}(1 - \sqrt{2})^{2}$。 • 进一步展开$(1 - \sqrt{2})^{2}$,得到$3 - 2\sqrt{2} < \frac{3}{n} - 2\sqrt{2}$。 • 最后,我们将右边的不等式两边除以$n$,得到$\frac{3}{n} < \frac{3}{n} + \frac{2\sqrt{2}}{n}$。 • 整理后,得到$\frac{3}{n} < 3 + 2\sqrt{2}$,从而证明了原不等式。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
高数放缩法技巧全总结
高数放缩法技巧全总结
高等数学中的放缩法是一种常用的求极限、证明不等式等问题的方法,它在解
题过程中具有非常重要的作用。
放缩法的核心思想是通过适当的变形和估计,将原问题转化为一个更容易处理的形式,从而简化解题过程。
下面我们就来总结一下高数放缩法的一些技巧和方法。
首先,对于一些复杂的不等式问题,我们可以尝试使用放缩法来简化证明过程。
例如,对于一些涉及三角函数的不等式,我们可以尝试将其转化为一个更简单的形式,然后再进行证明。
在这个过程中,我们需要灵活运用三角函数的性质和不等式的性质,找到合适的放缩方法,从而达到简化证明的目的。
其次,对于一些涉及极限的问题,放缩法同样可以发挥作用。
在求解极限的过
程中,我们可以通过放缩的方式,将原极限转化为一个更容易处理的形式,然后再进行求解。
这种方法在一些复杂的极限问题中尤其有效,可以大大简化求解过程,提高解题效率。
另外,放缩法还可以应用于一些数学建模和物理问题中。
在实际问题中,我们
经常会遇到一些复杂的模型和方程,通过放缩法,我们可以将原问题简化,从而更好地理解和解决实际问题。
总的来说,高数放缩法是一种非常重要的解题方法,它可以在不等式证明、极
限求解、数学建模等方面发挥重要作用。
在使用放缩法时,我们需要灵活运用数学知识,找到合适的放缩方法,从而简化解题过程,提高解题效率。
希望以上总结的放缩法技巧能够帮助大家更好地掌握这一解题方法,提升数学解题能力。
放缩法的注意问题以及解题策略
Ti
i 1
n
3 n 1 1 3 1 1 1 1 1 1 ( i i 1 ) ( 1 2 2 3 n n 1 ) 2 i 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1
=
3 1 1 3 ( 1 n 1 ) 2 2 1 2 1 2
∵a, b, c, dR+ ∴m
例 2、求证:(1) 证:
1 1 1 1 2 2 2 2 2 1 2 3 n
1 1 1 1 , 2 n(n 1) n 1 n n
∴
1 1 1 1 1 1 1 1 1 1 2 2 2 11 2 2 2 2 2 3 n 1 n n 1 2 3 n
a b c d 2 abd bca cd b d ac a b c d 证:记 m = abd bca cd b d ac
例 1、若 a, b, c, dR+,求证: 1
a b c d 1 abcd abca cd ab d abc a b c d m 2 , ∴1 < m < 2 即原式成立 ab ab cd d c
例 5、 在数列 {a n }中,已知a1 2, a n 1
(I)求数列 {a n } 的通项公式;
2a n an 1
(II)求证: a1 ( a1 1) a 2 ( a 2 1) a n ( a n 1) 3 解:(1)数列 {a n }的通项公式是a n
n
n n2 n n2 2 2; n2 n n2 n
(4)二项式定理放缩:如 2 1 2n 1( n 3) ; ( 5)舍掉(或加进)一些项,如: | an a1 || a2 a1 | | a3 a2 | | an an 1 | ( n 2) 。 例题选用
放缩法技巧全总结
放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。
这种技巧广泛应用于数学竞赛和问题求解中。
以下是放缩法的几个常见技巧和应用总结。
1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。
如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。
例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。
这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。
2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。
常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。
应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。
3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。
通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。
例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。
4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。
通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。
例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。
可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。
5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。
通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。
例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。
放缩法技巧全总结
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13)3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
放缩法技巧及经典例题讲解
放缩法技巧及经典例题讲解 一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2)<>11>n >=(3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<=(5)若,,a b m R +∈,则,a a a a mb b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(10) 12112-+<<++k k k k k【经典回放】例1、设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n nS na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n+-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 例2:【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S 分析:(1)此时我们不妨设)(2)1(1B An a B n A a n n ++=++++即BA An a a n n +-+=+21与已知条件式比较系数得.0,1=-=B A )(2)1(1n a n a n n -=--∴+又}{,211n a a n -∴=-是首项为2,公比为2的等比数列。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
高考数学难点---数列放缩法技巧总结
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
放缩法证明数列型不等式的注意问题以及解题策略
放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。
处理数列型不等式最重要要的方法为放缩法。
放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。
对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。
1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。
3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。
4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。
这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。
一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
放缩法证明不等式例题
放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。
所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。
放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。
二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。
数学所有不等式放缩技巧及证明方法
文档收集于互联网,已重新整理排版word 版本可编辑•欢迎下载支持.高考数学所有不等式放缩技巧及证明方法一、裂项放缩畀 2 15例1.⑴求芥门 --------- 7的值; (2)求证:>2 7T V —・A=1 4* — 1Ar = l k3例2・⑴求证:1 +丄+丄+・・・+ —>1-一!一> 2)32 52⑵Li ), 6 2(2n-1)1 1 1 1 114 16 364n 2 2 4n⑶求证丄+12+空+」"•…⑵i2 2-4 2-4-6 2-4-6••…2n例 3•求证: ---- - ---- <i + l +l + ... + -L<-(n +1)( 2/1 + 1)4 9 ir 3例4・(2008年全国一卷)设函数f ⑴二X-H1U.数列仇}满足0<q<l ・% 明:畋+】>b.例 5.已知",加 e 他,兀 > -1,S,” 二 r n + T +3川 + …+ 心求证:/严 < (m +1)5,, <(〃 + 1严 -1例 6.已知® = 4" - T , T n= ------ 二 ----- ,求证:£+◎+◎人 < —.a { + a 2 + ・• • + a n2例7.已知坷=1, £ = < W (mi,"Z),求证:亠*亠+ •..+亠>逅(耐®訓) W - l(n = 2k 、k wZ) 护2 ・x 3 化・x 5.. 4丁 /、 In 2a In 3a In n a hr -n-l例 9.求证——<^—^^>2)例 10.求证:—+ - + ・・・ + —< ln(n + 1) < 1 + —4-・・• +」■2 3 77 + 1 2 n例 11.求证:(1 + \(1 +、•….(1 + ^-Xe 和(1 + ;)(1 + 厶)•….(1 + 点)<辰 2! 3! n\ 9 81 3" 例 12•求证:(1 +1 x 2) • (1 + 2 x 3) ••…[1 + n(n +1)] > 严I12例14.已知4=1。
放缩法在不等式证明中的应用
得
x=-
2 3
,则 - 2 3
<x3 <0, 故
-
2 3
+4 <
x1+x2+x3<0+4,即
10 3
<x1+x2+x3<4,故
x1+x2+x3
的取值范围是(10 ,4)。 3
评注 等价转化法,往往可以使问题化繁
为简、化抽象为具体、化未知为已知、化陌生为
熟悉。使用等价转化法解题的关键在于明确转
化的方向和目标,把握数学知识的内在联系。
总之,填空题的解题方法不拘一格,灵活
多样,除了上述所说的三种方法外,还有构造
法、数形结合法、归纳推理法、综合分析法等。
在平时的解题练习中,同学们应立足实际,根
据题目要求,灵活选用恰当的方法,准确、快
速、巧妙解题。
(作者单位:江苏省盐城市田家炳中学)
思维之锥
得出该函数在区间内为单调递增函数,所以有:
姨 n +姨n+1 2姨 n 姨 n +姨n-1
还有不等式放缩、构造数列放缩和运用二项
姨 n -姨n-1 。
式定理放缩等方法。同学们应在平时多加积 数
三、运用部分放缩解题
例 3 已知二次函数 (f x)满足 (f -1)=0,
且对任意
x∈R,x≤(f x)≤
1 2
(x2+1)恒成立。
累,掌握好放缩法的规律,只有理解其思维过 学 程,才能触类旁通,在解题中适当灵活地运用 篇 这种方法。
2(姨 n -姨n-1 )
=2 ( 姨 n -
(姨 n +姨n-1 )(姨 n -姨n-1 )
姨n-1 ),所以有:1+ 1 + 1 +…+ 1
姨2 姨3
姨n
<2 (姨 1 - 姨 0 + 姨 2 - 姨 1 +…+ 姨n-1 -
数列放缩法在证明中的应用
数列放缩法在证明中的应用[解题策略]放缩法是不等式证明的重要方法,其中的放缩技巧既有模式可循但更有创意之变,如何灵活运用放缩法解题是衡量解题者思维好坏的标杆. 常见的放缩形式有:(1)1n 2的放缩: 1n 2<1nn -1=1n -1-1n (n ≥2), 1n 2>1n n +1=1n -1n +1, 1n 2<1n 2-14=1n -12-1n +12; (2)1n !的放缩: 1n !=11·2·3·…·n <1nn -1=1n -1-1n (n ≥2), 1n !=11.2.3.....n <11.2.2.. (2)=12n -1(n ≥2); (3)1n的放缩: 1n =22n >2n +n +1=2(n +1-n ),1n =22n <2n +n -1=2(n -n -1);(4)真分式b a的放缩: 若a >b >0,m >0,则b a <b +m a +m. 另外,利用重要不等式放缩、导数应用中有关ln x 型的放缩(如:ln(1+x )<x ,x >0)等也是常见的放缩方式.利用放缩法证明不等式的难点是放缩的“度”不好把握,放大了或放小了都得不出所证不等式,这样需要回头调整,留一项或几项不放缩逐步试验向所证结论靠扰,下面举例说明.例1 设n ∈N *,求证:∑i =1n1i 2<6136. 分析 当n ≥2时,1n 2<1n n -1=1n -1-1n , 所以112+122+132+ (1)2 <1+11·2+12·3+…+1n -1n=1+⎝ ⎛⎭⎪⎫1-12+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2, 而2>6136,放大了,若从第三项开始放缩如何呢? 当n ≥3时,112+122+132+ (1)2 <1+122+12·3+13·4+…+1n -1n=1+122+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74, 而74>6136,仍放大了,若从第四项开始放缩呢? 当n ≥4时,112+122+132+…+1n 2<1+122+132+13·4+…+1n -1n=1+122+132+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+19+13-1n =6136-1n <6136,恰好证得结果. 又易知当n =1,2,3时,不等式显然成立.因此, 1i 2<6136. 例2 设n ∈N *,求证:n n +12< k k +1<n +122. 分析 因为kk +1>k 2=k , 所以∑k =1n k k +1> =n n +12,左边得证. 又因为kk +1<k +12=k +1, 所以 k k +1< (k +1)=n n +32,n n +32≥n +122,放大了,得不到所证结论,于是应该作调整.事实上,k k +1< k 2+k +14=k +12, 所以∑k =1n kk +1< ⎝⎛⎭⎪⎫k +12 =n n +12+n 2=n 2+2n 2<n +122. 故n n +12< k k +1<n +122. 例3 求证:16<1k <17. 证明 因为1k =22k <2k +k -1=2(k -k -1), 所以 1k <1+2(2-1)+2(3-2)+…+2(80-79)=280-1<281-1=17.又1k =22k >2k +1+k =2(k +1-k ),所以 1k >2(2-1)+2(3-2)+…+2(81-80) =281-2=16.故16< 1k <17.评注 在证明1k <17时,对第一项没有进行放缩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、常见的放缩法技巧 1、基本不等式、柯西不等式、排序不等式放缩
b bm (m 0, a b) . 2、糖水不等式放缩: a am
3、添(减)项放缩 4、先放缩,后裂项(或先裂项再放缩) 5、逐项放大或缩小:
三、常用公式
1 1 1 1. 2 k (k 1) k k (k 1)
0, a t a, a t a
n 1 n , 2 n n n 1 , n 1 1 n 1 , n(n 1) n 2 n 1 1 1 1 1 1 1 (3) 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 (4) 2( n 1 n ) 2( n n 1) n 1 n n n n n n 1 a a a am , (5)若 a, b, m R ,则 b bm b b 1 1 1 1 1 1 1 2 n 1 (6) 1 2! 3! n! 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( ) ( ) (7) (因为 ) 22 32 n2 2 2 3 n 1 n n 2 (n 1)n 1 1 1 1 1 1 1 n 1 (7) n 1 n 2 n 3 2n n 1 n 1 n 1 n 1 1 1 1 1 1 1 1 n 1 或 n 1 n 2 n 3 2n 2n 2n 2n 2n 2 1 1 1 1 1 1 n n 等等。 (8) 1 2 3 n n n n n
一、放缩法原理 为了证明不等式 A B , 我们可以找一个或多个中间变量 C 作比较, 即若能判定 A C, C B 同时成立, 那么 A B 显然正确。 所谓 “放” 即把 A 放大到 C,再把 C 放大到 B;反之,由 B 缩小经过 C 而变到 A, 则称为“缩” ,统称为放缩法。放缩是一种技巧性较强的不等变形,必 须时刻注意放缩的跨度,做到“放不能过头,缩不能不及” 。
2.
2 k k 1
k
1 k
2 k k 1
3. 2
k 2 ( k 4) 2k ( k 2 )
பைடு நூலகம்
4. 1 2 3 k
1 1 1 1 5. k! 2 ( ! k! k 1)
6.
ab a b
常用的放缩技巧
(1)若 t (2)