高中数学 2.2.2第1课时课时同步练习 新人教A版选修2-1
2020-2021学年高中数学人教A版选修1-1习题:2.2.2 双曲线的简单几何性质 Word版含
2.2.2双曲线的简单几何性质课后篇巩固提升基础巩固1.双曲线=1的左焦点与右顶点之间的距离等于()A.6B.8C.9D.10(-5,0),右顶点(3,0),所以左焦点与右顶点之间的距离等于8.2.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为()A.x2-y2=1B.x2-y2=2C.x2-y2=D.x2-y2=,设双曲线方程为=1(a>0),则c=a,一条渐近线为y=x,∴,∴a2=2.∴双曲线方程为x2-y2=2.3.若实数k满足0<k<9,则曲线=1与曲线=1的()A.焦距相同B.实半轴长相等C.虚半轴长相等D.离心率相等0<k<9,则9-k>0,即曲线=1为焦点在x轴上的双曲线,焦点坐标为(,0);25-k>0,即曲线=1为焦点在x轴上的双曲线,焦点坐标为(,0),故两曲线的焦距相同,故选A.4.下列双曲线中,不是以2x±3y=0为渐近线的是()A.=1B.=1C.=1D.=1项中的双曲线=1,焦点在x轴上,渐近线方程为y=±x,不是2x±3y=0.5.两正数a,b的等差中项为,等比中项为,且a>b,则双曲线=1的离心率e为()A. B. C. D.a,b的等差中项为,等比中项为,所以解得因为a>b,所以所以e=.故选D.6.(2019江苏高考)在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.双曲线x2-=1(b>0)过点(3,4),∴32-=1,解得b2=2,即b=或b=-(舍去).∵a=1,且双曲线的焦点在x轴上,∴双曲线的渐近线方程为y=±x.±x7.已知双曲线=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的标准方程为.=2,c=5,所以c2=a2+b2=5a2=25,解得a2=5,b2=20,所以所求双曲线的方程为=1.18.若一条双曲线与-y2=1有共同渐近线,且与椭圆=1有相同的焦点,则此双曲线的方程为.=1得a2=20,b2=2,所以c2=20-2=18,得c=3.设与双曲线-y2=1有相同渐近线的双曲线方程为-y2=λ(λ≠0),因为所求双曲线的焦点在x轴上,则λ>0,双曲线方程化为=1,根据椭圆和双曲线共焦点,所以有8λ+λ=18,解得λ=2,所以所求双曲线的方程为=1.19.椭圆与双曲线有共同的焦点F1(0,-5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,试求椭圆的方程与双曲线的方程.F1(0,-5),F2(0,5),可设椭圆方程为=1(a2>25),双曲线方程为=1(0<b<5),点P(3,4)在椭圆上,所以=1,得a2=40,双曲线过点P(3,4)的渐近线为y=x,即4=×3,所以b2=16,故椭圆方程为=1,双曲线方程为=1.10.已知双曲线=1的右焦点为(2,0).(1)求双曲线的方程;(2)求双曲线的渐近线与直线x=-2围成的三角形的面积.∵双曲线的右焦点的坐标为(2,0),且双曲线的方程为=1,∴c2=a2+b2=3+b2=4,∴b2=1,∴双曲线的方程为-y2=1.(2)∵a=,b=1,∴双曲线的渐近线方程为y=±x.令x=-2,则y=±,设直线x=-2与双曲线的渐近线的交点为A,B,则|AB|=.记双曲线的渐近线与直线x=-2围成的三角形的面积为S,则S=×2=.能力提升1.我们把离心率之差的绝对值小于的两条双曲线称为“相近双曲线”.已知双曲线C:=1,则下列双曲线中与C是“相近双曲线”的是()A.x2-y2=1B.x2-=1C.y2-2x2=1D.=1C的离心率为2,对于A,其离心率为,不符合题意;对于B,其离心率为,符合题意;对于C,其离心率为,不符合题意;对于D,其离心率为3,不符合题意.故选B.2.若在双曲线=1(a>0,b>0)的右支上,到原点O和右焦点F的距离相等的点有两个,则双曲线的离心率的取值范围是()A.e>B.1<e<C.e>2D.1<e<2O和右焦点F距离相等的点在线段OF的垂直平分线上,其方程为x=.依题意,在双曲线=1(a>0,b>0)的右支上到原点O和右焦点F距离相等的点有两个,所以直线x=与右支有两个交点,故应满足>a,即>2,得e>2,故选C.3.已知a>b>0,若椭圆=1与双曲线=1的离心率之积为,则双曲线的渐近线方程为.,得,解得,所以双曲线的渐近线方程为y=±x,即x±y=0.±y=04.若中心在原点,焦点在坐标轴上的双曲线的一条渐近线经过点(8,-6),则其离心率等于.y=kx,由-6=8k,得k=-,所以渐近线方程为y=±x.若焦点在x轴上,则,于是离心率e=;若焦点在y轴上,则,于是离心率e=.5.求适合下列条件的双曲线的标准方程:(1)焦点在y轴上,虚轴长为8,离心率为e=;(2)经过点C(-),且与双曲线=1有共同的渐近线.设所求双曲线的标准方程为=1(a>0,b>0),则2b=8,e=,从而b=4,,代入c2=a2+b2,得a2=9,故方程为=1.(2)由题意可设所求双曲线方程为=λ(λ≠0),将点C(-)的坐标代入,得=λ,解得λ=,所以所求双曲线的标准方程为=1.6.已知椭圆C1的中心在原点,离心率为,焦点在x轴上且长轴长为10.过双曲线C2:=1(a>0,b>0)的右焦点F2作垂直于x轴的直线交双曲线C2于M,N两点.(1)求椭圆C1的标准方程;(2)若双曲线C2与椭圆C1有公共的焦点,且以MN为直径的圆恰好过双曲线的左顶点A,求双曲线C2的标准方程.设椭圆C1的标准方程为=1(a1>b1>0),根据题意得2a1=10,则a1=5.又e1=,∴c1=4,b1=3,∴椭圆C1的标准方程为=1.(2)设双曲线的右焦点F2(c,0),将x=c代入双曲线方程,得y=±,∴|MN|=.∵以MN为直径的圆恰好过双曲线的左顶点A,且|AF2|=a+c,∴a+c=,即a2+ac=b2=c2-a2,整理得2a2+ac-c2=0,即有e2-e-2=0.又e>1,∴e=2.又双曲线C2与椭圆C1有公共的焦点,∴c=4,∴a2=4,b2=12,∴双曲线C2的标准方程为=1.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--第1课时椭圆的简单几何性质及其应用
2.2.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质及其应用基础过关练题组一 椭圆的性质及应用1.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.x 2+y24=1 2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√3 3.(2019陕西宝鸡高二上学期期末)把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线分别交椭圆的上半部分于点P 1,P 2,…,P 7,F 是左焦点,则|P 1F|+|P 2F|+…+|P 7F|等于( ) A.21 B.28 C.35 D.424.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA=π4,若AB=4,BC=√2,则椭圆的两个焦点之间的距离为 .题组二 与椭圆离心率有关的问题5.已知椭圆的两个焦点和短轴的两个端点恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.13 B.12C.√33D.√226.已知焦点在y 轴上的椭圆mx 2+y 2=1的离心率为√32,则m 的值为( )A.1B.2C.3D.4 7.已知焦点在x轴上的椭圆方程为x 2a2+y 2=1(a>0),过焦点作垂直于x轴的直线交椭圆于A,B 两点,且|AB|=1,则该椭圆的离心率为( ) A.√32B.12C.√154D.√338.已知椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F 1,右顶点为A,点B 在椭圆上,且BF 1⊥x 轴,直线AB 与y 轴交于点P,其中AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为 .题组三 与椭圆有关的范围问题 9.若点O 和点F分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 的最大值为( ) A.2 B.3 C.6 D.8 10.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a>b>0)的两个焦点,若椭圆上存在一点P,使得∠F 1PF 2=60°,则椭圆的离心率e 的取值范围是( ) A.[√22,1) B.(0,√22)C.[12,1) D.[12,√22) 11.已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|PA|的最小值为 .12.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率e=√22,连接椭圆的四个顶点所得四边形的面积为4√2. (1)求椭圆C 的标准方程;(2)设A,B 是直线l:x=2√2上的不同两点,若AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求|AB|的最小值.能力提升练一、选择题1.(2019辽宁抚顺六校期末联考,★★☆)已知椭圆x 2+y 2b 2+1=1(b>0)的离心率为√1010,则b 等于( )A.3B.13C.910D.3√10102.(2019山西大同高三开学考试,★★☆)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为√22,过F 1的直线l交C 于A,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为( )A.x 236+y 218=1B.x 216+y 210=1 C.x 24+y 22=1 D.x 216+y 28=1 3.(2020重庆沙坪坝高二期末,★★☆)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,经过原点的直线l 与椭圆E 交于P,Q 两点,若|PF|=2|QF|,且∠PFQ=120°,则椭圆E 的离心率为( ) A.√33 B.12C.13D.√224.(2019黑龙江大庆四中高二上学期期中,★★★)已知点P(x,y)(x≠0,y≠0)是椭圆x 216+y 28=1上的一个动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗ |的取值范围为( ) A.[0,3) B.(0,2√2) C.[2√2,3) D.[0,4]二、填空题5.(2019皖西南联盟高二期末联考,★★☆)阿基米德不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为.6.(2019河北石家庄二中高二月考,★★☆)已知椭圆x 2a2+y2b2=1(a>b>0),点P是椭圆上且在第一象限的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.三、解答题7.(2019河北张家口高三开学考试,★★☆)设F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,M是C上且在第一象限内的一点,且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b的值.8.(★★★)如图,F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,AF1=F1F2.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40√3,求a,b的值.答案全解全析 基础过关练1.A 依题意得a=2,a+c=3,故c=1,b=√22-12=√3,故所求椭圆的标准方程是x 24+y 23=1.2.B 过椭圆焦点的最长弦为长轴,其长度为4,最短弦为垂直于长轴的弦.易知c=1,将x=1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y=±32,所以最短弦的长为2×32=3.故选B.3.C 设椭圆的右焦点为F',则由椭圆的定义得|P 1F|+|P 1F'|=10,由椭圆的对称性,知|P 1F'|=|P 7F|,∴|P 1F|+|P 7F|=10.同理,|P 2F|+|P 6F|=10,|P 3F|+|P 5F|=10.又|P 4F|=5,∴|P 1F|+|P 2F|+…+|P 7F|=35. 4.答案4√63解析 不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题意知2a=4,∴a=2. ∵∠CBA=π4,BC=√2,∴不妨设点C 的坐标为(-1,1). ∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c=2√63,则椭圆的两个焦点之间的距离为4√63. 5.D 依题意得椭圆的焦距和短轴长相等,故b=c,∴a 2-c 2=c 2,∴e=√22. 6.D 将椭圆的方程化为标准形式为y 2+x 21m=1,由题意得a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e=ca =√1-1m =√32,∴m=4.7.A 易知椭圆的焦点坐标为(±√a 2-1,0),∵|AB|=1,∴当x=±√a 2-1时,y=±12.不妨设A (√a 2-1,12),则a 2-1a 2+14=1,解得a=2,∴椭圆的离心率为e=√a 2-1a=√32.故选A.8.答案 12解析 如图,易知△ABF 1∽△APO, 则|AP ||AB |=|AO ||AF 1|,即23=aa+c ,所以a=2c,所以e=c a =12.9.C 由题意得F(-1,0),设点P(x 0,y 0),则y 02=3(1-x 024)(-2≤x 0≤2),OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+y 02=x 02+x 0+y 02=x 02+x 0+3(1-x 024)=14(x 0+2)2+2,当x 0=2时,OP⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 10. C 在△PF 1F 2中,设|PF 1|=m,|PF 2|=n,则m+n=2a,根据余弦定理,得(2c)2=m 2+n 2-2mncos 60°,整理得(m+n)2-3mn=4c 2,所以3mn=4a 2-4c 2, 所以4a 2-4c 2=3mn≤3(m+n 2)2=3a 2(当且仅当m=n 时,等号成立),即a 2≤4c 2,故e 2=c 2a 2≥14,又0<e<1, 所以12≤e<1.11.答案 2解析 设P(x,y),则|PA|=√x 2+(y -5)2=√x 2+y 2-10y +25. 因为点P 为椭圆x 2+2y 2=98上的一点,所以x 2=98-2y 2,-7≤y≤7,则|PA|=√98-2y 2+y 2-10y +25 =√-(y +5)2+148, 因为-7≤y≤7,所以当y=7时,|PA|min =2. 12.解析 (1)由题意得{ e =c a =√22,a 2=b 2+c 2,12×2a ×2b =4√2,解得{a =2,b =√2,c =√2.所以椭圆的标准方程为x 24+y 22=1.(2)由(1)知,F 1(-√2,0),F 2(√2,0),设直线l:x=2√2上的不同两点A,B 的坐标分别为(2√2,y 1),(2√2,y 2),则AF 1⃗⃗⃗⃗⃗⃗⃗ =(-3√2,-y 1),BF 2⃗⃗⃗⃗⃗⃗⃗ =(-√2,-y 2),由AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,得y 1y 2+6=0, 即y 2=-6y 1,不妨设y 1>0,则|AB|=|y 1-y 2|=y 1+6y 1≥2√6,当且仅当y 1=√6,y 2=-√6时等号成立,所以|AB|的最小值是2√6.能力提升练一、选择题1.B 易知b 2+1>1,由题意得(b 2+1)-1b 2+1=b 2b 2+1=110,解得b=13或b=-13(舍去),故选B.2.D 由△ABF 2的周长为16,得|BF 2|+|AF 2|+|BF 1|+|AF 1|=16,根据椭圆的性质,得4a=16,即a=4.又椭圆的离心率为√22,即c a =√22,所以c=2√2,b 2=a 2-c 2=8,则椭圆C 的方程为x 216+y 28=1.3.A 如图,设椭圆的右焦点为F',连接PF',QF',根据椭圆的对称性知,线段FF'与线段PQ 在点O 处互相平分,所以四边形PFQF'为平行四边形,∴|FQ|=|PF'|,∠FPF'=60°.根据椭圆的定义,得|PF|+|PF'|=2a,又|PF|=2|QF|,∴|PF'|=23a,|PF|=43a,而|FF'|=2c.在△F'PF 中,由余弦定理,得(2c)2=(23a)2+(43a)2-2×23a×43a×cos 60°,即c 2a2=13,∴椭圆的离心率e=c a =√33.4.B 如图,延长PF 2,F 1M 交于点N,则△PF 1N 为等腰三角形,M 为F 1N 的中点,|OM ⃗⃗⃗⃗⃗⃗ |=12|F 2N ⃗⃗⃗⃗⃗⃗⃗ |=12(|PN ⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |)=12·||PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ ||.由图可知,当P 在短轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最小值,此时|OM⃗⃗⃗⃗⃗⃗ |=0,当P 在长轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最大值,此时|OM ⃗⃗⃗⃗⃗⃗ |=2√2,但点P 不能在坐标轴上,所以|OM⃗⃗⃗⃗⃗⃗ |的取值范围为(0,2√2).二、填空题 5.答案y 225+x 216=1解析 设椭圆C 的标准方程为y 2a 2+x 2b 2=1(a>b>0),则椭圆C 的面积为S=πab=20π,又e=√1-b 2a 2=35,解得a 2=25,b 2=16.所以椭圆C 的标准方程为y 225+x 216=1.6.答案√32解析 如图,延长F 2A 交F 1P 的延长线于点M.由题意可知|PM|=|PF 2|,由椭圆的定义可知|PF 1|+|PF 2|=2a, 则|PF 1|+|PM|=|MF 1|=2a. 易知OA 是△F 1F 2M 的中位线, ∴|OA|=12|MF 1|=a. 又|OA|=2b,∴2b=a,则a 2=4b 2=4(a 2-c 2), 即c 2=34a 2,∴e 2=34,又e∈(0,1),∴e=√32.三、解答题 7.解析 (1)根据c=√a 2-b 2及题设知M (c ,b 2a ),由k MN =k MF 1=34,得b 2a-0c -(-c )=34,即2b 2=3ac.将b 2=a 2-c 2代入,得2c 2+3ac-2a 2=0,即2e 2+3e-2=0,解得e=12或e=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,设直线MF 1与y 轴的交点为D,则D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|, 则F 1D ⃗⃗⃗⃗⃗⃗⃗ =2NF 1⃗⃗⃗⃗⃗⃗⃗ .设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c ,-2y 1=2,即{x 1=-32c ,y 1=-1, 代入C 的方程,得9c 24a 2+1b 2=1.② 由①②及a 2=b 2+c 2得9(a 2-4a )4a 2+14a =1,解得a=7,则b=√4a =2√7. 8.解析 (1)∵AF 1=F 1F 2, ∴a=2c,∴e=c a =12.(2)设|BF 2|=m,则|BF 1|=2a-m.∵AF 1=F 1F 2=AF 2,∴△AF 1F 2是等边三角形, ∴∠F 1F 2B=180°-∠F 1F 2A=180°-60°=120°.在△BF 1F 2中,|BF 1|2=|BF 2|2+|F 1F 2|2-2|BF 2||F 1F 2|cos∠F 1F 2B,即(2a-m)2=m 2+a 2-2am×(-12), ∴m=35a. ∵△AF 1B 的面积S=12|BA||F 1A|sin 60° =12×(a +35a)×a×√32=40√3,∴a=10,∴c=5,b=5√3.。
(人教A版)高中数学选修1-2(全册)课时同步练习汇总
(人教A版)高中数学选修1-2(全册)课时同步练习汇总[课时作业][A组基础巩固]1.观察下列各式:72=49,73=343,74=2401,…,则72 015的末两位数字为()A.01B.43C.07 D.49解析:因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.答案:B2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( ) A .a 1a 2a 3…a 9=29 B .a 1+a 2+…+a 9=29 C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:等比数列中积――→类比等差数列中的和 ∴a 1+a 2+…+a 9=2×9. 答案:D4.定义A *B ,B *C ,C *D ,D *B 依次对应4个图形:那么4个图表中,可以表示A *D ,A *C 的分别是( ) A .(1),(2)B .(1),(3)C .(2),(4)D .(1),(4)解析:由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4). 答案:C5.n 个连续自然数按规律排列下表:根据规律,从2 015到2 017箭头的方向依次为( ) A .↓→ B .→↑ C .↑→D .→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2015到2 017为→↓,故应选D. 答案:D6.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.解析:观察知第n 个三角形数为1+2+3+…+n =n (n +1)2,∴第7个三角形数为7×(7+1)2=28.答案:287.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18.答案:1∶88.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n -1,故f n (x )=x(2n -1)x +2n .答案:x(2n -1)x +2n9.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系, 给出正确结论.解析:由平面直角三角形类比空间三棱锥由边垂直――→类比侧面垂直.直角三角形的“直角边长、斜边长”类比“三棱锥的侧面积、底面积”,因此类比的结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ABD 两两相互垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.10.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,…),试归纳出这个数列的通项公式.解析:当n =1时,a 1=1 当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为:a n =1n(n =1,2,…). [B 组 能力提升]1.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 100=-a ,S 100=2b -a B .a 100=-b ,S 100=2b -a C . a 100=-b ,S 100=b -a D .a 100=-a ,S 100=b -a解析:∵a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b . 且a 7=a 6-a 5=a ,a 8=b ,…,∴数列{a n }具有周期性,周期为6,且S 6=0 则a 100=a 4=-a ,S 100=S 4=2b -a . 答案:A2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任意两条棱的夹角相等; ②各个面是全等的正三角形,相邻的两个面所成的二面角相等; ③各个面是全等的正三角形,同一顶点上的任意两条棱的夹角相等; ④各棱长相等,相邻的两个面所成的二面角相等. A .①④ B .①② C .①③D .③④解析:类比推理的原则是:类比前后保持类比规则的一致性,而③④违背了这一原则,只有①②符合. 答案:B3.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…我们可以得出推广结论:x +axn ≥n +1(n ∈N *),则a =________.解析:由观察可得:x +a x n =n x xx n n n ++个式子+axn ≥(n +1)·n +1x n ·x n ·…x n ·a x n =(n +1)·n +1a n n =n +1,则a =n n . 答案:n n4.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.解析:观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是:若m ,n ∈R +,则当m +n =20时,有m +n <210.答案:若m ,n ∈R +,则当m +n =20时,有m +n <210 5.观察下列等式:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想? 并证明你的猜想.解析:由①②知,两角相差30°,运算结果为34,猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+sin α⎝⎛⎭⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.6.已知椭圆具有以下性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m ,n )、(x ,y ),则 N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).[课时作业] [A 组 基础巩固]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:函数f (x )=sin(x 2+1)不是正弦函数,故小前提不正确. 答案:C2.已知△ABC 中,∠A =30°,∠B =60°,求证a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B ,∴a <b ,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提. 答案:B3.“因为四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 答案:B4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式 解析:B 、C 、D 是合情推理,A 为演绎推理. 答案:A5.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( ) A .类比推理 B .归纳推理 C .演绎推理D .一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式. 答案:C6.下面几种推理:①两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°;②某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人; ③由平面三角形的性质,推测空间四面体的性质;④在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式其中是演绎推理的是________.解析:①是三段论,②④是归纳推理,③是类比推理. 答案:①7.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧ a >0,Δ≤0,⇒⎩⎪⎨⎪⎧ a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知实数a 的取值范围是[0,2]. 答案:[0,2]8.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义时,a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论方法知应为log2x-2≥0.答案:log2x-2≥09.如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥F A,求证:ED =AF.证明:同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥F A,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提ED和AF为平行四边形的一组对边,小前提所以ED=AF.结论10.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,求证:af(b)<bf(a).证明:构造函数F(x)=xf(x),则F′(x)=xf′(x)+f(x).由题设条件知F (x)=xf(x)在(0,+∞)上单调递减.若0<a<b,则F(a)>F(b),即af(a)>bf(b).又f(x)是定义在(0,+∞)上的非负可导函数,∴af(a)<bf(a),且bf(b)>af(b).所以bf(a)>af(b).[B组能力提升]1.设a >0,b >0,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( ) A .大前提 B .小前提 C .结论D .无错误解析:小前提中“x >0”条件不一定成立,不满足利用基本不等式的条件. 答案:B2.已知函数f (x )=|sin x |的图象与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,令A =12sin2α,B =1+α24α,则( )A .A >B B .A <BC .A =BD .A 与B 的大小不确定解析:作y =kx 及f (x )=|sin x |的图象依题意,设y =kx 与y =f (x )相切于点M 设M (α,|sin α|),α∈(π,32π).由导数的几何意义,f ′(α)=|sin α|α,则-cos α=-sin αα,∴α=tan α. 由A =12sin 2α=sin 2α+cos 2α4sin αcos α=tan 2α+14tan α∴A =1+α24α=B .答案:C3.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是________.解析:写成三段论的形式:不等式两边同除以一个正数,不等号方向不变大前提 (a 2+a +1)x >3,a 2+a +1>0小前提 x >3a 2+a +1结论 答案:不等式两边同除以一个正数,不等号方向不变.4.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R),则f (2 016)=________.解析:令y =1得4f (x )·f (1)=f (x +1)+f (x -1),即f (x )=f (x +1)+f (x -1)① 令x 取x +1则f (x +1)=f (x +2)+f (x )②由①②得f (x )=f (x +2)+f (x )+f (x -1),即f (x -1)=-f (x +2) ∴f (x )=-f (x +3), ∴f (x +3)=-f (x +6),∴f (x )=f (x +6),即f (x )周期为6, ∴f (2 016)=f (6×336+0)=f (0)对4f (x )f (y )=f (x +y )+f (x -y ),令x =1,y =0,得4f (1)f (0)=2f (1), ∴f (0)=12,即f (2 016)=12.答案:125.已知y =f (x )在(0,+∞)上有意义,单调递增,且满足f (2)=1,f (xy )=f (x )+f (y ), (1)求证:f (x 2)=2f (x ). (2)求f (1)的值.(3)若f (x )+f (x +3)≤2,求x 的取值范围. 证明:(1)∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞). ∴f (x 2)=f (x ·x )=f (x )+f (x )=2f (x ). (2)令x =1,则f (1)=2f (1)∴f (1)=0. (3)∵f (x )+f (x +3)=f [x (x +3)],且f (4)=2. 又f (x )在(0,+∞)上单调递增.所以⎩⎪⎨⎪⎧x >0,x +3>0,x (x +3)≤4,解得0<x ≤1.6.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n }是等比数列.(2)求数列{a n }的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 证明:(1)∵a n +1=4a n -3n +1 ∴a n +1-(n +1)=4a n -4n ,n ∈N *. 又a 1-1=1所以数列{a n -n }是首项为1,公比为4的等比数列. (2)由(1)可知,a n -n =4n -1,于是a n =4n -1+n 故S n =4n -13+n (n +1)2.(3)S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎡⎦⎤4n -13+n (n +1)2. =-12(3n 2+n -4)=-12(3n +4)(n -1)≤0,故S n +1≤4S n 对任意n ∈N *恒成立.[课时作业] [A 组 基础巩固]1.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:“cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos 2θ”中应用了( ) A .分析法 B .综合法C .分析法和综合法综合使用D .间接证法 答案:B2.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1bD .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a =-f (a )=-b .答案:B3.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ,则证明的依据应是( ) A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔(a -c )·(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.在不等边△ABC 中,a 为最大边,要想得到 A 为钝角的结论,对三边a ,b ,c 应满足的条件,判断正确的是( ) A .a 2<b 2+c 2 B .a 2=b 2+c 2 C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:要想得到A 为钝角,只需cos A <0,因为cos A =b 2+c 2-a 22bc ,所以只需b 2+c 2-a 2<0,即b 2+c 2<a 2. 答案:C5.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( ) A .a >b B .a <b C .a =bD .a ≤b解析:a =lg 2+lg 5=1,b =e x ,当x <0时,0<b <1. ∴a >b . 答案:A 6.已知sin x =55,x ∈(π2,3π2),则tan(x -π4)=________. 解析:∵sin x =55,x ∈(π2,3π2),∴cos x =- 45, ∴tan x =-12,∴tan(x -π4)=tan x -11+tan x =-3.答案:-37.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b8.设a >0,b >0,则下面两式的大小关系为lg(1+ab )________12[lg(1+a )+lg(1+b )].解析:∵(1+ab )2-(1+a )(1+b )=1+2ab +ab -1-a -b -ab =2ab -(a +b )=-(a -b )2≤0,∴(1+ab )2≤(1+a )(1+b ),∴lg(1+ab )≤12[lg(1+a )+lg(1+b )].答案:≤9.设a ,b 大于0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明:要证a 3+b 3>a 2b +ab 2成立, 即需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因a +b >0,故只需证a 2-ab +b 2>ab 成立, 即需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立. 故原不等式a 3+b 3>a 2b +ab 2成立.10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f (x +12)为偶函数.证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称. ∴f (x +1)=f (-x ) ,则y =f (x )的图象关于x =12对称,∴-b 2a =12,∴a =-b .则f (x )=ax 2-ax +c =a (x -12)2+c -a4,∴f (x +12)=ax 2+c -a4为偶函数.[B 组 能力提升]1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B2.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B3.如图,在直四棱柱A 1B 1C 1D 1-ABCD (侧棱与底面垂直)中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 解析:要证明A 1C ⊥B 1D 1, 只需证明B 1D 1⊥平面A 1C 1C , 因为CC 1⊥B 1D 1,只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1, 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)4.如果不等式|x -a |<1成立的充分非必要条件是12<x <32,则实数a 的取值范围是________.解析:|x -a |<1⇔a -1<x <a +1,由题意知(12,32)⊆(a -1,a +1),则有⎩⎨⎧a -1≤12a +1≥32(且等号不同时成立),解得12≤a ≤32.答案:12≤a ≤325.在△ABC 中,三个内角A ,B ,C 对应的边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明:由A ,B ,C 成等差数列,有2B =A +C . ① 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π. ② 由①②,得B =π3. ③由a ,b ,c 成等比数列,有b 2=ac . ④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac . 再由④,得a 2+c 2-ac =ac , 即(a -c )2=0,因此a =c , 从而有A =C . ⑤由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形.6.设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.解析:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即a n +1n +1-a n n=1,又a 22-a 11=1,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(3)证明:当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1(n -1)n =1n -1-1n,此时1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.[课时作业] [A 组 基础巩固]1.用反证法证明:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( ) A .a ,b ,c 都是偶数 B .a ,b ,c 都是奇数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.” 答案:D2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾∴a ,b ,c 中至少有一个不小于12.答案:D3.(1)已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2,(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1,以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确 C .(1)的假设正确;(2)的假设错误 D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2;(2)的假设正确. 答案:D4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2解析:假设a +1b ,b +1c ,c +1a都小于2则a +1b <2,b +1c <2,c +1a <2∴a +1b +b +1c +c +1a <6,①又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c ≥2.∴a +1b +b +1c +c +1a ≥6.②故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a 至少有一个不小于2.答案:D5.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至少有一个大于60° D .假设三内角至多有两个大于60°解析:三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°. 答案:B6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:显然①、②不能推出,③中a +b >2能推出“a ,b 中至少有一个大于1”否则a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾.④中取a =-2,b =0,推不出. 答案:③8.用反证法证明质数有无限多个的过程如下:假设________.设全体质数为p 1,p 2,…,p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1,p 2,…,p n .故p 要么是质数,要么含有________的质因数.这表明,除质数p 1,p 2,…,p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个. 解析:由反证法的步骤可得.答案:质数只有有限多个 除p 1,p 2,…,p n 之外9.用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行. 证明:由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立. 10.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1,解之得12<x 0<2,这与x 0<0矛盾,所以假设不成立.故方程f (x )=0没有负实根.[B 组 能力提升]1.已知直线a ,b 为异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线D .不可能是相交直线解析:假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 答案:C2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 解析:“a 、b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为03.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n . 答案:04.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14,证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,所以1-a >0.由基本不等式(1-a )+b 2≥(1-a )b >12同理(1-b )+c 2>12,(1-c )+a 2>12以上三个不等式相加(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32. 这是不可能的.故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.5.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明数列{c n }不是等比数列. 证明:假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q ,所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1 =a n b n ⎝⎛⎭⎫p q +q p , 即2=p q +q p.②当p ,q 异号时,p q +qp <0,与②相矛盾;当p ,q 同号时,由于p ≠q , 所以p q +qp >2,与②相矛盾.故数列{c n }不是等比数列.章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R)是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R)是周期函数. A .①②③B .③②①C.②③①D.②①③解析:显然②是大前提,①是小前提,③是结论.答案:D2.用反证法证明命题“2+3是无理数”时,假设正确的是()A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数解析:假设应为“2+3不是无理数”,即“2+3是有理数”.答案:D3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32……得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.答案:D4.求证:3+7<2 5.证明:因为3+7和25都是正数,所以为了证明3+7<25,只需证明(3+7)2<(25)2,展开得10+221<20,即21<5,只需证明21<25.因为21<25成立,所以不等式3+7<25成立.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:结合证明特征可知,上述证明过程用了分析法,其属于直接证明法.答案:B5.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1,2,3,4号位置上,第1次前后排动物互换位置,第2次左右列互换座位,…,这样交替进行下去,那么第2 014次互换座位后,小兔的位置对应的是()开始第1次第2次第3次A.编号1 B.编号2C.编号3 D.编号4解析:由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,所以第2 012次互换座位后的结果与最初的位置相同,故小兔坐在第3号座位上.答案:C6.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为m=(-1,-2,1)的平面的方程为()A.x+2y-z-2=0 B.x-2y-z-2=0C.x+2y+z-2=0 D.x+2y+z+2=0解析:所求的平面方程为-1×(x-1)+(-2)×(y-2)+1×(z-3)=0.化简得x+2y-z-2=0.答案:A7.用反证法证明命题“若a2+b2=0,则a,b全为0(a,b∈R)”,其反设正确的是() A.a,b至少有一个不为0B .a ,b 至少有一个为0C .a ,b 全不为0D .a ,b 中只有一个为0解析:“a ,b 全为0”的反设应为“a ,b 不全为0”,即“a ,b 至少有一个不为0”. 答案:A8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2解析:归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2. 答案:C9.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:在等比数列{a n }中,q =2≠1, 设首项为a 1≠0,则S 4=a 1(1-q 4)1-q =15a 1,又a 2=a 1q =2a 1, 故S 4a 2=15a 12a 1=152. 答案:C10.下列不等式中一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R) 解析:A 项中,因为x 2+14≥x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x ; B 项中sin x +1sin x≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.答案:C二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)11.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP 12.2+23=2 23, 3+38=3 38, 4+415=4 415……若 6+a b=6 a b(a ,b 均为实数),猜想,a =________,b =________.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律,由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+ab中:a =6,b =62-1=35,即a =6,b =35. 答案:6 35 13.观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为____________.解析:观察等号左边可知,左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数也增加1,依次为1,2,3,…,n ,指数都是2,符号正负交替出现,可以用(-1)n+1表示;等号的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为(-1)n +1·n (n +1)2,所以第n 个式子可为:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)214. 已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.若定义在区间D 上的函数f (x )对于 D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________. 解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:332三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解:由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.17.(12分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式. 解析:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22,f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x (23-1)x +23,…,由此归纳可得f n(x )=x(2n -1)x +2n(x >0). 18.(12分)设函数f (x )=lg |x |,若0<a <b ,且f (a )>f (b ). 证明:0<ab <1. 证明:f (x )=lg |x |=⎩⎪⎨⎪⎧lg x ,(x ≥1),-lg x ,(0<x <1). ∵0<a <b ,f (a )>f (b ).∴a 、b 不能同时在区间[1,+∞)上, 又由于0<a <b ,故必有a ∈(0,1). 若b ∈(0,1),显然有0<ab <1; 若b ∈(1,+∞),由f (a )-f (b )>0, 有-lg a -lg b >0, ∴lg(ab )<0,∴0<ab <1.19.(12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c 成等差数列. (1)比较b a与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角. 解析:(1) b a< cb.证明如下: 要证b a< c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c≥2 1ac,∴b 2≤ac . 又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:解法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac >0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.解法二:假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c >1b >0,则1a +1c >1b +1b =2b ,这与1a +1c =2b 矛盾,故假设不成立. 所以角B 不可能是钝角.20.(13分)(2016·高考全国卷Ⅲ)设函数f (x )=αcos 2x +(α-1)·(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)解:当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).故A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1, 则A 是|g (t )|在[-1,1]上的最大值, g (-1)=α,g (1)=3α-2, 且当t =1-α4α时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-α4a =-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|, 所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-α4α.又⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α-|g (-1)|=(1-α)(1+7α)8α>0.所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .21.(14分)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.解析:(1)证明:当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1.又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明:1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12.[课时作业] [A 组 基础巩固]1.若复数2-b i(b ∈R)的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 答案:D2.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:直接法.∵a +bi =a -b i 为纯虚数,∴必有a =0,b ≠0,而ab =0时有a =0或b =0,∴由a =0, b ≠0⇒ab =0,反之不成立.∴“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.答案:B3.已知复数z =1a -1+(a 2-1)i 是实数,则实数a 的值为( )A .1或-1B .1C .-1D .0或-1解析:因为复数z =1a -1+(a 2-1)i 是实数,且a 为实数,则⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a =-1.答案:C4.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3解析:由1+2i =(a -b )+(a +b )i 可得⎩⎪⎨⎪⎧a -b =1,a +b =2,解得a =32,b =12.答案:A5.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的为( ) A .4 B .-1 C .4或-1D .1或6解析:由题意⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 答案:B6.已知x 2-x -6x +1=(x 2-2x -3) i(x ∈R),则x =________.解析:∵x ∈R ,∴x 2-x -6x +1∈R ,。
高中数学新人教A版选修2-1课件:习题课——充分条件与必要条件的综合应用
若A是B的必要不充分条件,则A是条件,B是结论,且B⇒A,但
A B;
若A是B的充要条件,则A是条件,B是结论,且A⇒B,B⇒A.
2.若A的充分不必要条件是B,则B是条件,A是结论,且B⇒A,
但A B;
若A的必要不充分条件是B,则B是条件,A是结论,且A⇒B,但
B A;
若A的充要条件是B,则B是条件,A是结论,且A⇒B,B⇒A.
真子集,故选B.
(2)由x(x-2)<0得0<x<2,因为(0,2)⫋[-1,+∞),所以“x∈[-1,+∞)”是“不
等式x(x-2)<0成立”的一个必要不充分条件.
答案(1)B (2)B
课堂篇探究学习
探究一
探究二
当堂检测
延伸探究将本例(1)改为“x2-4x<0”是“(x+1)·(x-5)≤0”的什么条件?
解析由a>c且b>c可推得a+b>2c,但当a+b>2c时,不一定能推得a>c
且b>c,故选D.
答案D
2.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是(
)
1
1
A.m>1 或 m<4
B.4<m<1
C.m<
D.m>1
1
4
解析方程 x2+y2+4mx-2y+5m=0 表示圆时,有 16m2+4-20m>0,解得
答案(-∞,-8]
大或缩小,得到相应的充分不必要条件或必要不充分条件.
2.如果p是q的充分不必要条件,那么p并不是唯一的,可以有多个;
人教a版高中数学选修2-1全册同步练习及单元检测含答案
⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。
2.1曲线方程-人教A版高中数学选修2-1课时练习
高二年级(数学)学科习题卷曲线方程 一、选择题:1.已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( ) A .满足方程f (x ,y )=0的点都在曲线C 上 B .方程f (x ,y )=0是曲线C 的方程 C .方程f (x ,y )=0所表示的曲线不一定是C D .以上说法都正确2.方程(x 2-4)(y 2-4)=0表示的图形是 ( )A .两条直线B .四条直线C .两个点D .四个点3.方程(x 2-4)2+(y 2-4)2=0表示的图形是A .两个点B .四个点C .两条直线D .四条直线4.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足||2||AC BC =,则点C 的轨迹方程为 ( )A .22610x y x +++=B .22610x y x +-+=C .2210103x y x +-+= D .2210103x y x +++=5.方程x +|y -1|=0表示的曲线是 ( )6.已知A (1,0),B (-1,0),动点M 满足|MA |-|MB |=2,则点M 的轨迹方程是( ) A .011()y x =-≤≤ B .0(1)y x =≥ C .1)0(y x =≤- D .0(||1)y x =≥7.已知A (-2,0)、B (2,0),△ABC 的面积为10,则顶点C 的轨迹是( )A .一个点B .两个点C .一条直线D .两条直线二、填空题:8.等腰三角形底边的两个顶点是B (2,1),C (0,-3),则另一顶点A 的轨迹方程是______________. 9.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足:4OP OA ⋅=,则动点P 的轨迹方程为______________.10.已知O 为坐标原点,动点M 在椭圆C :2215x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足5NP NM =,则点P 的轨迹方程为______________.三、解答题:11.已知A 、B 分别是直线y x =和y x =上的两个动点,线段AB 的长为P 是AB 的中点,求动点P 的轨迹C 的方程.12.已知点P (2,2),圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及POM △的面积.13.两个定点(2,2),(0,2)P Q -,长为2的线段AB 在直线y x =上移动,求直线PA ,QB 的交点M 的轨迹方程。
2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程
第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。
人教版A版高中数学高二版选修2-1课时作业 双曲线的简单几何性质(2)
第二章 2.3 课时作业20一、选择题1.如下图,ax -y +b =0和bx 2+ay 2=ab (ab ≠0)所表示的曲线只可能是( )解析:直线方程可化为y =ax +b ,曲线方程可化为x 2a +y 2b =1,若a >0,b >0,则曲线表示椭圆,故A 不正确.关于B 、D ,由椭圆知直线斜率应满足a >0,而由B ,D 知直线斜率均为负值,故B ,D 不正确.由C 可知a >0,b <0.答案:C2.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.2B. 3C.3+12D.5+12解析:设双曲线方程为x 2a 2-y 2b 2=1(a ,b >0),不妨设一个焦点为F (c,0),虚轴端点为B (0,b ),则k FB =-bc .又渐近线的斜率为±b a ,所以由直线垂直关系得-b c ·b a =-1(-ba 显然不符合),即b 2=ac ,又c 2-a 2=b 2,故c 2-a 2=ac ,两边同除以a 2,得方程e 2-e -1=0,解得e =5+12(舍负).答案:D3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1解析:设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=-12b 2-15a 2=4b 25a2.又直线AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2.代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线的标准方程是x 24-y 25=1. 答案:B4.[2013·浙江省学军中学期中考试]如图,F 1、F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线与C 的左、右两支分别交于A 、B 两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为( )A. 13B. 15C. 2D. 3解析:本题主要考查双曲线的几何性质.∵|AB |∶|BF 2|∶|AF 2|=3∶4∶5,不妨令|AB |=3,|BF 2|=4,|AF 2|=5,∵|AB |2+|BF 2|2=|AF 2|2,∴∠ABF 2=90°,又由双曲线的定义得:|BF 1|-|BF 2|=2a ,|AF 2|-|AF 1|=2a ,∴|AF 1|+3-4=5-|AF 1|,∴|AF 1|=3,∴2a =|AF 2|-|AF 1|=2,∴a =1,|BF 1|=6.在Rt △BF 1F 2中,|F 1F 2|2=|BF 1|2+|BF 2|2=36+16=52,又|F 1F 2|2=4c 2,∴4c 2=52,∴c =13,∴双曲线的离心率e =ca=13,故选A.答案:A 二、填空题5.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于__________.解析:当直线l 与双曲线的渐近线平行时,与双曲线的右支有唯一交点,直线l 的斜率为±1.答案:±16.直线3x -y +3=0被双曲线x 2-y 2=1截得的弦AB 的长为__________.解析:由⎩⎪⎨⎪⎧3x -y +3=0,x 2-y 2=1,消去y ,得x 2+3x +2=0.得x 1=-1,x 2=-2,又3x -y +3=0 ∴当x =-1时,y =0, 当x =-2时,y =- 3. ∴AB =(-1+2)2+(0+3)2=2.答案:27.已知双曲线中心在原点,且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-23,则此双曲线的方程是__________.解析:设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),依题意c =7.∴方程可化为x 2a 2-y 27-a 2=1.由⎩⎨⎧x 2a 2-y 27-a 2=1,y =x -1,得(7-2a 2)x 2+2a 2x -8a 2+a 4=0. 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2a 27-2a 2.∵x 1+x 22=-23,∴-a 27-2a 2=-23,解得a 2=2. ∴双曲线的方程为x 22-y 25=1.答案:x 22-y 25=1三、解答题8.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点. (1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点?解:由⎩⎪⎨⎪⎧y =ax +13x 2-y 2=1,得(3-a 2)x 2-2ax -2=0,Δ=4a 2-4(3-a 2)(-2)=24-4a 2>0, ∴a ∈(-6,6).设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2. (1)|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+a 2)[(x 1+x 2)2-4x 1x 2]= (1+a 2)[(2a 3-a 2)2+83-a 2]=2(1+a 2)(6-a 2)|3-a 2|.(2)由题意知,OA ⊥OB ,则x 1x 2+y 1y 2=0, ∴x 1x 2+(ax 1+1)(ax 2+1)=0. 即(1+a 2)x 1x 2+a (x 1+x 2)+1=0, ∴(1+a 2)·-23-a 2+a ·2a 3-a 2+1=0,解得a =±1.即a =±1时,以AB 为直径的圆经过坐标原点.9.[2013·东北育才学校模考]双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A ,B 两点,交x 轴于点Q (点Q 与C 的顶点不重合).当PQ →=λ1QA →=λ2QB →,且λ1+λ2=-83时,求点Q 的坐标.解:由椭圆x 28+y 24=1求得两焦点为(-2,0),(2,0),∴对于双曲线C :c =2,设双曲线方程为x 2a 2-y 2b 2=1,又y =3x 为双曲线C 的一条渐近线,∴ba=3,又因为a 2+b 2=c 2,可以解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.(2)由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:y =kx +4,A (x 1,y 1),B (x 2,y 2), 则Q (-4k,0),∵PQ →=λ1QA →,∴(-4k ,-4)=λ1(x 1+4k ,y 1),∴⎩⎪⎨⎪⎧-4k =λ1(x 1+4k )-4=λ1y 1⇒⎩⎨⎧x 1=-4kλ1-4k y 1=-4λ1∵A (x 1,y 1)在双曲线C 上,∴16k 2(1+λ1λ1)2-163λ21-1=0,∴(16-k 2)λ21+32λ1+16-163k 2=0. 同理有:(16-k 2)λ22+32λ2+16-163k 2=0. 若16-k 2=0,则直线l 过顶点,不合题意,∴16-k 2≠0, ∴λ1,λ2是二次方程(16-k 2)x 2+32x +16-163k 2=0的两根,∴λ1+λ2=32k 2-16=-83,∴k 2=4,此时Δ>0,∴k =±2. ∴所求Q 的坐标为(±2,0).。
【优化方案】2012高中数学 第2章2.2.2第一课时椭圆的简单几何性质课件 新人教A版选修2-1
求椭圆的离心率 求椭圆的离心率的常见思路:一是先求 , , 求椭圆的离心率的常见思路:一是先求a,c, 再计算e;二是依据条件中的关系,结合有关 再计算 ;二是依据条件中的关系, 知识和a、 、 的关系 构造关于e的方程 的关系, 的方程, 知识和 、b、c的关系,构造关于 的方程,再 求解.注意 的范围 的范围: 求解.注意e的范围:0<e<1.
互动探究1 互动探究
若本例中椭圆方程变为: 若本例中椭圆方程变为:“4x2+y2
=1”,试求解. ” 试求解.
y 2 x2 1 解:已知方程为 + =1,所以 a=1,b= ,c , = , = 1 1 2 4 = 3 1 1- = ,因此,椭圆的长轴的长和短轴的 因此, - 4 2
c 3 长分别为 = 长分别为 2a=2,2b=1,离心率 e=a= ,两个 = , = 2 焦点分别为 个顶点是
x2 . 2=1(a>b>0). b c 2 由已知得 e=a= ,2b=8 5, = = , 3 a 2- b 2 4 c ∴ 2= 2 = ,b2=80. 9 a a
2
∴a2=144. y y x x ∴所求椭圆的标准方程为 + =1 或 + 144 80 144 80 =1. y2 x2 (2) 设 椭 圆 方 程 为 2 + 2 = a b 1(a>b>0).如图所示,△A1FA2 为 .如图所示, 等腰直角三角形, OF 等腰直角三角形, 为斜边 A1A2 的中线(高 , 的中线 高),且|OF|=c,|A1A2|= = , = 2 2 2 2b,∴c=b=4,∴a =b +c =32,故所求椭圆 , , = = , x2 y 2 的方程为 + =1. 32 16
为直角三角形, 由 AF1 ⊥ AF2 知 △ AF1F2 为直角三角形 , 且 ∠ AF2F1=60°. 由椭圆定义, 由椭圆定义,知|AF1|+|AF2|=2a,|F1F2|=2c.则 + = , = 则 在 Rt△AF1F2 中,由∠AF2F1=60°得|AF2|=c, △ 得 = , |AF1|= 3c,所以|AF1|+|AF2|=2a=( 3+1)·c, ,所以 = + = = + , c 所以离心率 e=a= 3-1. = -
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
人教版 高中数学【选修 2-1】2.1曲线与方程课后习题
人教版高中数学精品资料【优化设计】高中数学 2.1曲线与方程课后习题新人教A版选修2-1课时演练·促提升A组1.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“曲线C上的点的坐标都是方程f(x,y)=0的解”时,不一定能得到“方程f(x,y)=0是曲线C的方程”,但反之,如果“方程f(x,y)=0是曲线C的方程”,必能得出“曲线C上的点的坐标都是f(x,y)=0的解”.答案:B2.方程y=3x-2(x≥1)表示的曲线为()A.一条直线B.一条射线C.一条线段D.不能确定解析:方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.答案:B3.曲线xy=2与直线y=x的交点是()A.()B.(-,-)C.()或(-,-)D.不存在解析:由解得即交点坐标为()或(-,-).答案:C4.如图所示的曲线方程是()A.|x|-y=0B.x-|y|=0C.-1=0D.-1=0解析:∵(0,0)点在曲线上,∴C,D不正确.∵x≥0,y∈R,∴B正确.答案:B5.一动点C在曲线x2+y2=1上移动时,它和定点B(3,0)连线的中点P的轨迹方程是()A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.+y2=1解析:设C(x0,y0),P(x,y).依题意有所以因为点C(x0,y0)在曲线x2+y2=1上,所以(2x-3)2+(2y)2=1,即点P的轨迹方程为(2x-3)2+4y2=1.答案:C6.如果方程ax2+by2=4的曲线过点A(0,-2),B,则a=,b=.解析:由已知解得答案:4 17.已知动点M到点A(9,0)的距离是M到点B(1,0)的距离的3倍,则动点M的轨迹方程是.解析:设M(x,y),则|MA|=,|MB|=.由|MA|=3|MB|,得=3,化简得x2+y2=9.答案:x2+y2=98.已知曲线C的方程是y2-xy+2x+k=0.(1)若点(1,-1)在曲线C上,求k的值;(2)当k=0时,判断曲线C是否关于x轴、y轴、原点对称?解:(1)因为点(1,-1)在曲线C上,所以(-1)2-1×(-1)+2×1+k=0,解得k=-4.(2)当k=0时,曲线C的方程为y2-xy+2x=0.以-x代替x,y不变,方程化为y2+xy-2x=0,所以曲线C不关于y轴对称;以-y代替y,x不变,方程化为y2+xy+2x=0,所以曲线C不关于x轴对称;同时以-x代替x,-y代替y,方程化为(-y)2-(-x)(-y)+2(-x)=0,即y2-xy-2x=0,所以曲线C不关于原点对称.9.已知两点A(,0),B(-,0),点P为平面内一动点,过点P作y轴的垂线,垂足为Q,且=2,求动点P的轨迹方程.解:设动点P的坐标为(x,y),则点Q的坐标为(0,y).于是=(-x,0),=(-x,-y),=(--x,-y),=x2-2+y2.由=2,得x2-2+y2=2x2,即y2-x2=2.故动点P的轨迹方程为y2-x2=2.B组1.方程x2+xy=x表示的曲线是()A.一个点B.一条直线C.两条直线D.一个点和一条直线解析:∵x2+xy=x可化为x(x+y-1)=0,即x=0或x+y-1=0,∴原方程表示两条直线.答案:C2.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:|AB|==5.∵S△ABC=|AB|·h=10,∴h=4,即顶点C到AB所在直线的距离为4,易求AB所在直线的方程为4x-3y+4=0.设点C(x,y),则=h=4,∴4x-3y+4=±20.故选B.答案:B3.方程|x|+|y|=1所表示的曲线C围成的图形的面积为.解析:方程|x|+|y|=1所表示的曲线C围成的图形是正方形ABCD(如图),其边长为.故方程|x|+|y|=1所表示的曲线C围成的图形的面积为2.答案:24.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.解法一:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).解法二:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则A(-a,0),B(a,0).∵∠ACB=90°,∴点C在以AB为直径的圆上.∵以AB为直径的圆的方程为x2+y2=a2,又∵C与A,B不重合,∴x≠±a.∴顶点C的轨迹方程为x2+y2=a2(x≠±a).5.若直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.解:将y=kx+1代入mx2+5y2-5m=0,得(m+5k2)x2+10kx+5(1-m)=0.由题意得,该方程对k∈R总有实数解,∴Δ=20m(m-1+5k2)≥0对k∈R恒成立.∵m>0,∴m≥1-5k2恒成立.∵1-5k2≤1,∴m≥1.故m的取值范围是[1,+∞).6.已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,P是AB的中点.求动点P的轨迹C的方程.解:设P(x,y),A(x1,y1),B(x2,y2).∵P是线段AB的中点,∴∵A,B分别是直线y=x和y=-x上的点,∴y1=x1,y2=-x2,∴又∵|AB|=2,∴(x1-x2)2+(y1-y2)2=12.∴12y2+x2=12.∴动点P的轨迹方程为+y2=1.。
人教A版高中数学选修2-1课时练习-曲线与方程
课时练习(六) 曲线与方程(建议用时:60分钟)一、选择题1.“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [“曲线C 的方程是f (x ,y )=0”包括“曲线C 上的点的坐标都是方程f (x ,y )=0的解”和“以方程f (x ,y )=0的解为坐标的点都在曲线C 上”两个方面,所以“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的必要不充分条件,故选B .]2.如图所示,方程y =|x |x2表示的曲线是( )A B C DB[因为y =|x |x 2=⎩⎪⎨⎪⎧1x,x >0,-1x ,x <0,所以函数值恒为正,且在(-∞,0)上单调递增,在(0,+∞)上单调递减.故选B .]3.到坐标原点的距离是到x 轴距离2倍的点的轨迹方程是( ) A .y =±3x B .y =33x C .x 2-3y 2=1D .x 2-3y 2=0D [设点的坐标为(x ,y ),则x 2+y 2=2|y |,整理得x 2-3y 2=0.]4.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点M 的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1C [设M (x ,y ),则P (2x,2y +1). ∵P 在曲线2x 2-y =0上, ∴2×(2x )2-(2y +1)=0, 即8x 2-2y -1=0, 即2y =8x 2-1,故选C .]5.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2D [如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥P A ,且|MA |=1,又∵|P A |=1, ∴|PM |=|MA |2+|P A |2 =2. 即|PM |2=2, ∴(x -1)2+y 2=2.] 二、填空题6.方程(x -1)2+y -2=0表示的是________. 点(1,2) [由题意知,⎩⎨⎧ x -1=0,y -2=0,即⎩⎨⎧x =1,y =2.所以方程(x -1)2+y -2=0表示点(1,2).]7.设命题甲:点P 的坐标适合方程f (x ,y )=0,命题乙:点P 在曲线C 上,命题丙:点Q 坐标不适合f (x ,y )=0,命题丁:点Q 不在曲线C 上,已知甲是乙的必要条件,但不是充分条件,那么丙是丁的________条件.充分不必要 [由甲是乙的必要不充分条件知,曲线C 是方程f (x ,y )=0的曲线的一部分,则丙⇒丁,但丁丙,因此丙是丁的充分不必要条件.]8.已知定点F (1,0),动点P 在y 轴上运动,点M 在x 轴上,且PM →·PF →=0,延长MP 到点N ,使得|PM →|=|PN →|,则点N 的轨迹方程是________.y 2=4x [由于|PM →|=|PN →|,则P 为MN 的中点.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,由PM →·PF →=0,得⎝ ⎛⎭⎪⎫-x ,-y 2·⎝ ⎛⎭⎪⎫1,-y 2=0,所以(-x )·1+⎝ ⎛⎭⎪⎫-y 2·⎝ ⎛⎭⎪⎫-y 2=0,则y 2=4x ,即点N 的轨迹方程是y 2=4x .]三、解答题9.已知方程x 2+4x -1=y .(1)判断点P (-1,-4),Q (-3,2)是否在此方程表示的曲线上; (2)若点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,求实数m 的值;(3)求该方程表示的曲线与曲线y =2x +7的交点的坐标.[解] (1)因为(-1)2+4×(-1)-1=-4,(-3)2+4×(-3)-1≠2,所以点P 坐标适合方程,点Q 坐标不适合方程,即点P 在曲线上,点Q 不在曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,所以⎝ ⎛⎭⎪⎫m 22+4×m 2-1=m -1,即m 2+4m =0,解得m =0或m =-4.(3)联立⎩⎨⎧x 2+4x -1=y ,y =2x +7,消去y ,得x 2+4x -1=2x +7,即x 2+2x -8=0,解得x 1=2,x 2=-4,于是y 1=11,y 2=-1,故两曲线的交点坐标为(2,11)和(-4,-1).10.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.[解] 法一:设弦的中点为P (x ,y ), 则另一端点为(2x,2y )在圆(x -1)2+y 2=1上,故(2x -1)2+4y 2=1, 即⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1). 法二:如图所示,设所作弦的中点为P (x ,y ),连接CP ,则CP ⊥OP ,|OC |=1,OC 的中点M ⎝ ⎛⎭⎪⎫12,0,所以动点P 的轨迹是以点M 为圆心,以OC 为直径的圆, 故轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14.又因为点P 不能与点O 重合,所以0<x ≤1. 故所作弦的中点的轨迹方程为 ⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1).1.方程x (x 2+y 2-1)=0和x 2+(x 2+y 2-1)2=0所表示的图形是( ) A .前后两者都是一条直线和一个圆 B .前后两者都是两个点C .前者是一条直线和一个圆,后者是两个点D .前者是两点,后者是一条直线和一个圆C [x (x 2+y 2-1)=0⇔x =0或x 2+y 2=1,表示直线x =0和圆x 2+y 2=1.x 2+(x 2+y 2-1)2=0⇔⎩⎨⎧ x =0x 2+y 2-1=0⇔⎩⎨⎧x =0y =±1,表示点(0,1),(0,-1).]2.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A .32x 2+3y 2=1(x >0,y >0)B .32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)A [设A (a,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a ,b 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).]3.已知定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,则点M 的轨迹方程为________.x 2+y 2=9 [作出图象如图所示,根据直角三角形的性质可知 |OM |=12|AB |=3.所以M 的轨迹是以原点O 为圆心,以3为半径的圆, 故点M 的轨迹方程为x 2+y 2=9.]4.一动点到y 轴距离比到点(2,0)的距离小2,则此动点的轨迹方程为________. y 2=8x (x ≥0)或y =0(x <0) [设动点P (x ,y ),则由条件,得(x -2)2+y 2=|x |+2,两边同时平方,得y 2=4x +4|x |,当x ≥0时,y 2=8x ;当x <0时,y =0,所以动点的轨迹方程为y 2=8x (x ≥0)或y =0(x <0).]5.过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.[解]法一:如图,设点M的坐标为(x,y),∵M为线段AB的中点,∴A点的坐标为(2x,0),B点的坐标为(0,2y).∵l1⊥l2,且l1,l2过点P(2,4),∴P A⊥PB,即k P A·k PB=-1,而k P A=4-02-2x=21-x(x≠1),k PB=4-2y2-0=2-y1,∴21-x·2-y1=-1(x≠1),整理得x+2y-5=0(x≠1).∵当x=1时,A,B的坐标分别为(2,0),(0,4),∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.综上所述,点M的轨迹方程是x+2y-5=0.法二:设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连接PM(如图).∵l1⊥l2,∴2|PM|=|AB|.而|PM|=(x-2)2+(y-4)2,|AB|=(2x)2+(2y)2,∴2(x-2)2+(y-4)2=4x2+4y2,化简得x+2y-5=0,即为所求的点M的轨迹方程.。
高中数学 第二章 圆锥曲线与方程 2.2 椭圆预习案 新人教A版选修2-1(2021年整理)
山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A 版选修2-1的全部内容。
2.2 椭圆§2.2。
1 椭圆及其标准方程(一)【教学目标】1.知识与技能:掌握椭圆的定义;了解椭圆标准方程的推导过程,熟记椭圆标准方程;会根据条件求椭圆的标准方程;掌握椭圆方程中的参数a、b、c的关系.2。
过程与方法:借助课件展示椭圆轨迹的产生,让学生经历椭圆的形成过程,师生共同推导标准方程,体会坐标法在平面解析几何中的应用,感受数学推理的严密.3.情感态度价值观:椭圆的定义及标准方程是本章的重点,也是高考经常涉及的考点;体会数与形的内在联系和完美统一,激发学生的求知欲.【预习任务】阅读教材P38—40,回答:1.(1)写出椭圆的定义.椭圆的焦点、焦距,椭圆定义中,有哪些特别注意事项;(2)若常数=|F1F2|,则动点的轨迹是什么?;若常数<|F1F2|,则动点的轨迹是否存在?2.建立适当坐标系,推导椭圆的标准方程.3.根据椭圆的标准方程如何确定焦点所在的位置?4.找出右图中能表示a,b,c的所有线段.写出a,b,c 的关系式并体会它们的大小关系.B ACDF1F2【自主检测】1。
已知两点A(0,—3)、B(0,3),由下列条件,分别写出点M的轨迹方程(1)|MA|+|MB|=8 (2) |MA|+|MB|=62.课本P42练习1,2,3【组内互检】椭圆的定义.椭圆的焦点、焦距及标准方程§2.2。
高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案
第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
数学人教A版选修2-1优化课件:第二章 2.2 2.2.2 第1课时 椭圆的简单几何性质
考纲定位
重难突破
1.掌握椭圆的对称性、范围、
顶点、离心率等简单性质. 重点:椭圆的范围、对称性、离
2.能用椭圆的简单性质求椭 心率等几何性质.
圆方程.
难点:利用几何性质分析解决有
3.能用椭圆的简单性质分析 关问题.
解决有关问题.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/9
最新中小学教学课件
29
谢谢欣赏!
2019/7/9
最新中小学教学课件
[典例 3] 若椭圆的短轴为 AB,它的一个焦点为 F,则满足三角形 ABF 为等边
三角形的椭圆的离心率是________. [解析] 若三角形 ABF 为等边三角形,则有 2b=a,即 a2=4b2
=4(a2-c2),所以 4c2=3a2,即 e2=34,所以 e= 23,所以椭圆的
离心率为 23.
二、听思路。
思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
高中数学 2.2.1课时同步练习 新人教A版选修2-1
第2章 2.2.1一、选择题(每小题5分,共20分)1.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8解析: 依题意有⎩⎪⎨⎪⎧ 25-m >0m +9>0m +9>25-m ,解得8<m <25,即实数m 的取值范围是8<m <25,故选B.答案: B2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( )A.x 24+y 23=1B.x 24+y 2=1C.y 24+x 23=1D.y 24+x 2=1解析: c =1,a =2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1.答案: A3.已知(0,-4)是椭圆3kx 2+ky 2=1的一个焦点,则实数k 的值是( )A .6 B.16C .24 D.124解析: ∵3kx 2+ky 2=1,∴x 213k +y 21k=1.又∵(0,-4)是椭圆的一个焦点,∴a 2=1k ,b 2=13k ,c 2=a 2-b 2=1k -13k =23k =16,∴k =124.答案: D4.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→·PF 2→=0,则△F 1PF 2的面积为() A .12 B .10C .9D .8解析: ∵PF 1→·PF 2→=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a .又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧ |PF 1|2+|PF 2|2=64 ①|PF 1|+|PF 2|=10 ②②2-①,得2|PF 1|·|PF 2|=102-64,∴|PF 1|·|PF 2|=18,∴△F 1PF 2的面积为9.答案: C二、填空题(每小题5分,共10分)5.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________. 解析: 由椭圆标准方程得a =3,b =2,则c =a 2-b 2=7,|F 1F 2|=2c =27.由椭圆的定义得|PF 2|=2a -|PF 1|=2.在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=42+22-2722×4×2=-12, 所以∠F 1PF 2=120°.答案: 2 120°6.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________.解析: 椭圆的左焦点F 为(-1,0),设P (x ,y ),则x 24+y 23=1, OP →·FP →=(x ,y )·(x +1,y )=x (x +1)+y 2=14x 2+x +3 =14(x +2)2+2 ∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.答案: 6三、解答题(每小题10分,共20分)7.求适合下列条件的椭圆的标准方程:(1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2. 解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆经过点(2,0)和(0,1)∴⎩⎪⎨⎪⎧ 22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧ a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1. (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2,∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36.∴所求椭圆的标准方程是y 2100+x 236=1. 8.已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM →=2MP ′→,求点M 的轨迹.解析: 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y .因为P (x 0,y 0)在圆x 2+y 2=9上,所以x 20+y 20=9.将x 0=x ,y 0=3y 代入,得x 2+9y 2=9,即x 29+y 2=1. 所以点M 的轨迹是一个椭圆.尖子生题库☆☆☆9.(10分)已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程. 解析: 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0). ∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0, 而F 1A →=(-4+c,3),F 2A →=(-4-c,3), ∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|=-4+52+32+-4-52+32=10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15. ∴所求椭圆的标准方程为x 240+y 215=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2 A. 4 + 3 =1
x2 y2 B.16+ 4 =1
x2 y2 C.16+12=1
x2 y2 D.16+ 3 =1
解析: 由题意知 4a=16,即 a=4,
3 又∵e= 2 ,∴c=2 3, ∴b2=a2-c2=16-12=4,
x2 y2 ∴椭圆的标准方程为16+ 4 =1.
答案: B
3 5.已知椭圆 G 的中心在坐标原点,长轴在 x 轴上,离心率为 2 ,且 G 上一点到两个焦 点的距离之和为 12,则椭圆 G 的方程为______________.
x2 y2 解析: 依题意设椭圆的方程为a2+b2=1(a>b>0), ∵椭圆上一点到其两个焦点的距离之和为 12, ∴2a=12,即 a=6.
( )2
c2 4b2
c, b
则 M 3 ,代入椭圆方程,得a2+9b2=1,
c2 5 所以a2=9,
c5
5
所以a= 3 ,即 e= 3 .
尖子生题库☆☆☆
x2 y2 9.(10 分)设 P(x,y)是椭圆25+16=1 上的点且 P 的纵坐标 y≠0,点 A(-5,0)、B(5,0),
试判断 kPA·kPB 是否为定值?若是定值,求出该定值;若不是定值,请说明理由.
解析: 由椭圆中 a>b,a>c=3,且一个顶点坐标为(0,2)知 b=2,b2=4,且椭圆焦
x2 y2 点在 x 轴上,a2=b2+c2=13.故所求椭圆的标准方程为13+ 4 =1.故选 D.
答案: D x2 y2
2.椭圆25+ 9 =1 上的点 P 到椭圆左焦点的最大距离和最小距离分别是( )
-2-
3 整理得 5e2+2e-3=0,e=5或 e=-1(舍去).
3 答案: 5
三、解答题(每小题 10 分,共 20 分)
x2 y2
6
7.已知椭圆a2+b2=1(a>b>0)的离心率 e= 3 .过点 A(0,-b)和 B(a,0)的直线与原点
3
的距离为 2 ,求椭圆的标准方程.
c a2-b2 6 解析: e=a= a = 3 ,
坐标等于右焦点的横坐标,其纵坐标等于短半轴长的3,求椭圆的离
心率.
解析: 方法一:设椭圆的长半轴、短半轴、半焦距长分别为 a,b,c,则焦点为
( )2
c, b F1(-c,0),F2(c,0).M 点的坐标为 3 ,
则△MF1F2 为直角三角形.
在 Rt△MF1F2 中,|F1F2|2+|MF2|2=|MF1|2,
4.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( )
1
3
A.2
B. 2
-1-
3 C. 4
6 D. 4
解析: 依题意,△BF1F2 是正三角形,
∵在 Rt△OBF2 中,|OF2|=c,|BF2|=a,∠OF2B=60°, c1
∴acos 60°=c,∴a=2, 1
即椭圆的离心率 e=2,故选 A. 答案: A 二、填空题(每小题 5 分,共 10 分)
4 即 4c2+9b2=|MF1|2.
4 4c2+ b22而|MF1|+|源自F2|=9 +3b=2a,
整理得 3c2=3a2-2ab.
又 c2=a2-b2,所以 3b=2a.
-3-
b2 4 所以a2=9.
c2 a2-b2 b2 5 ∴e2=a2= a2 =1-a2=9,
5
∴e= 3 .
x2 y2 方法二:设椭圆方程为a2+b2=1(a>b>0),
3 ∵椭圆的离心率为 2 ,
a2-b2 3 ∴ a =2,
36-b2 3 ∴ 6 =2, ∴b2=9,
x2 y2 ∴椭圆 G 的方程为36+ 9 =1.
x2 y2 答案: 36+ 9 =1 6.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ________. 解析: 设椭圆的长轴、短轴、焦距分别为 2a,2b,2c, 由题意可得 2a+2c=4b,a+c=2b,又 b= a2-c2, 所以 a+c=2 a2-c2,
把 y2=16× 25 代入 kPA·kPB=x2-25,得
25-x2
16 ×
25
16
kPA·kPB= x2-25 =-25.
16
所以 kPA·kPB 为定值,这个定值是-25.
-4-
A.8,2
B.5,4
C.9,1
D.5,1
解析: 因为 a=5,c=4,所以最大距离为 a+c=9,最小距离为 a-c=1.
答案: C
x2 y2 3.已知 F1、F2 为椭圆a2+b2=1(a>b>0)的两个焦点,过 F2 作椭圆的弦 AB,若△AF1B 的
3 周长为 16,椭圆离心率 e= 2 ,则椭圆的方程是( )
a2-b2 2 ∴ a2 =3,
∴a2=3b2,即 a= 3b.
xy 过 A(0,-b),B(a,0)的直线为a-b=1. 把 a= 3b 代入,即 x- 3y- 3b=0,
|- 3b|
3
又由点到直线的距离公式得 1+- 32= 2 ,
解得 b=1,∴a= 3,
x2 ∴所求方程为 3 +y2=1.
8.如图所示,F1,F2 分别为椭圆的左、右焦点,椭圆上点 M 的横 2
解析: 因为点 P 的纵坐标 y≠0,所以 x≠±5.设 P(x,y).
y
y
所以 kPA=x+5,kPB=x-5.
yy
y2
所以 kPA·kPB=x+5·x-5=x2-25.
x2 y2
因为点 P 在椭圆25+16=1 上,
( )x2
25-x2
1-
所以 y2=16× 25 =16× 25 .
25-x2
y2
第 2 章 2.2.2 第 1 课时
一、选择题(每小题 5 分,共 20 分)
1.一个顶点的坐标为(0,2),焦距的一半为 3 的椭圆的标准方程为( )
x2 y2 A. 4 + 9 =1
x2 y2 B. 9 + 4 =1
x2 y2 C. 4 +13=1
x2 y2 D.13+ 4 =1