模板时间序列分析模型实例.ppt
合集下载
时间序列分析模型课件(PPT108张)
确定性时序分析的目的
• 克服其它因素的影响,单纯测度出某一个 确定性因素对序列的影响 • 推断出各种确定性因素彼此之间的相互作 用关系及它们对序列的综合影响
4-3-2 时间序列趋势分析
• 目的
–有些时间序列具有非常显著的趋势,我们分析 的目的就是要找到序列中的这种趋势,并利用 这种趋势对序列的发展作出合理的预测
随机性变化分析: AR、MA、ARMA模型
Cramer分解定理(1961)
• 任何一个时间序列 { x t }都可以分解为两部分的叠 加:其中一部分是由多项式决定的确定性趋势成 分,另一部分是平稳的零均值误差成分,即
x t t t
d j0
jt j
(B)at
随机性影响
确定性影响
对两个分解定理的理解
(2)季节性周期变化 受季节更替等因素影响,序列依一固 定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化 周期不固定的波动变化。
(4)随机性变化
由许多不确定因素引起的序列变化。 随机性变化分析: AR、MA、ARMA模型
确定性变化分析 时间序列分析
趋势变化分析 周期变化分析 循环变化分析
(1 )
0 1 , 2 j
j0
2 ~ WN ( 0 , (2) t )
( V , ) 0 , t s (3 ) E t s
确定性序列与随机序列的定义
• 对任意序列 而言,令 序列值作线性回归 关于q期之前的
2 ( t ) q 其中{ t } 为回归残差序列, Var
参数估计方法
线性最小二乘估计
Tt ab
t
a ln a b ln b
b t T t a
时间序列模型及应用案例PPT课件
10
2020/1/10
11
2020/1/10
算法的原理
在 SQL Server 2008 中,Microsoft 时序算法同时使用 ARTxp 算法和另一种算法 ARIMA。ARTXp 算法针对短期 预测进行了优化,因此可预测序列中下一个可能的值。 ARIMA 算法针对长期预测进行了优化。
默认情况下,Microsoft 时序算法在分析模式和进行预测时 混合使用这两种算法。该算法使用相同的数据为两个单独的 模型定型:一个模型采用 ARTxp 算法,另一个模型采用 ARIMA 算法。然后,该算法结合这两个模型的结源自来产生 可变数量时间段的最佳预测。
12
2020/1/10
时序模型的数据要求
4
2020/1/10
• 对序列的未来趋势做预测 ※
※ • 分解序列的主要趋势成分,季节变化成分 • 对理论性模型与数据进行拟合度检验,以
※ 讨论模型能够正确表示所观测的对象
5
2020/1/10
二.时序的构成
趋势成份T
• 长期因素导致的变动,如人口的变动,技术的进步
周期成份C
• 连续观测值规则地落在趋势线的上方或者下方 • 超过一年的有规则的模型都属于时序的周期成分
简而言之,要求分析数据序列必须含有时间序列,并且 序列值为连续,要求分析数据序列存在唯一标示值,其 实也就说传统意义上面的主键。
13
2020/1/10
处理过程: (1)新建解决方案,然后数据源,然后数据源视图 (2)预览数据,分析源数据结构内容 这里我们需要对要分析的数据进行分析,先看看里面有那些
时间序列模型
1
2020/1/10
提纲
一.时序的基本概念 二.时序的构成 三.时序的预测 四.时序的应用
时间序列分析教材PPT49页
第二节 时间序列的描述性分析
三、时间序列的速度分析
指事物变化的快慢程度。描述事物变化 的快慢程度指标有: 发展速度 增长速度 平均发展速度 平均增长速度
第二节 时间序列的描述性分析
(一)发展速度
描述了事物在报告期相对于基期发展的倍数。
发展速度=报告期水平/基期水平
在具体计算时,根据基期水平的不同,发展速度分为: 环比发展速度=报告期水平/前期水平
1. 绝对数时间序列的序时平均数
绝对数时间序列有时期时间序列和时点 时间序列,故其有两种序时平均数。 (1)时期时间序列的序时平均数 (2)时点时间序列的序时平均数
第二节 时间序列的描述性分析
(1)时期时间序列的序时平均数
时期时间序列具有可加性,相加后等于 现象在一段时期内的总量,所以计算序时 平均数采用简单算术平均法。
第二节 时间序列的描述性分析
二、时间序列的水平分析
水平分析是指对事物变化的状态进行的 分析,描述事物发展变化的指标有: 发展水平 序时平均数 增长量 平均增长量
第二节 时间序列的描述性分析
(一)发展水平
时间序列数据本身就描述了事物的发展水平。
时间
2010年 2011年 2012年 2013年 2014年 2015年
指不同时间上的平均指标按时间顺序排列而成 的数据列,其反映了事物平均水平的发展情况。
如:平均工资时间序列 与相对数时间序列类似,由于其比较的基数不 同,平均数时间序列也不具有可加性。
第一节 时间序列的基本概念
三、时间序列的编制原则
保证时间序列中各项观察值具有可比性: 1.时间(长度或间隔)一致 2.范围一致 3.内容、计算口径和计算方法一致
第一节 时间序列的基本概念
时间序列分析教材(PPT 113页)
反映现象在较长一段时间内总的发展变动程度,也称为发展 总速度。
9-29
发展速度(续)
二者关系:
定基发展速度=相应时期的环比发展速度之积。 相邻两定基发展速度之商=相应的环比发展速度。
yt y1 y2 ... yt
y0 y0 y1
yt 1
yt yt1 yt y0 y0 yt1
为了消除季节变动因素的影响,可计算:
根据表9-1中各年年末人口数,计算2001~2010年这 10年间的平均人口数。
解:
由不连续时点序列计算平均发展水平的计算公式是有假 定条件的。实际中,计算结果通常只是近似值。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
8
8
9-28
二、时间序列分析的速度指标
(一)发展速度=报告期水平/基期水平
说明现象在观察期内发展变化的相对程度; 有环比发展速度与定基发展速度之分
环比发展速度=报告期水平/上期水平 yi / yi1
反映现象逐期发展变动的程度,也可称为逐期发展速度。
定基发展速度=报告期水平/固定基期水平 yt / y0
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397 3609 3818 4089
9-11
三、时间序列的编制原则
保证时间序列中各项数据的可比性,是 编制时间序列的基本原则。
(一) 时间一致 (二) 总体范围一致 (三) 经济内容、计算口径和计算方法一致
9-12
18
35%
16
30%
14
12
25%
10
20%
9-29
发展速度(续)
二者关系:
定基发展速度=相应时期的环比发展速度之积。 相邻两定基发展速度之商=相应的环比发展速度。
yt y1 y2 ... yt
y0 y0 y1
yt 1
yt yt1 yt y0 y0 yt1
为了消除季节变动因素的影响,可计算:
根据表9-1中各年年末人口数,计算2001~2010年这 10年间的平均人口数。
解:
由不连续时点序列计算平均发展水平的计算公式是有假 定条件的。实际中,计算结果通常只是近似值。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
8
8
9-28
二、时间序列分析的速度指标
(一)发展速度=报告期水平/基期水平
说明现象在观察期内发展变化的相对程度; 有环比发展速度与定基发展速度之分
环比发展速度=报告期水平/上期水平 yi / yi1
反映现象逐期发展变动的程度,也可称为逐期发展速度。
定基发展速度=报告期水平/固定基期水平 yt / y0
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397 3609 3818 4089
9-11
三、时间序列的编制原则
保证时间序列中各项数据的可比性,是 编制时间序列的基本原则。
(一) 时间一致 (二) 总体范围一致 (三) 经济内容、计算口径和计算方法一致
9-12
18
35%
16
30%
14
12
25%
10
20%
第9时间序列分析(共30张PPT)
计算季节比率
▲计算口径可比
(2)原数列各项数据除以移动平均序列对应时间的数据,得消
9.3 时间序列趋势变动分析 ▲计算方法可比
对序列逐项递移的方式,对原序列递移的 (1)计算平均项数等于季节周期L的移动平均数,以消除季节
●对循环规律作科学预测
消除时间序列中的不规则变动和其他变动,揭示出时间序列的长期趋势
方程
Yˆt a bt
其中
b
n tY t Y n t2 ( t)2
a Y bt Yt b t
n
n
三、测定长期趋势的非线性趋势模型法
(1)抛物线型
Yˆt abtct2
(2)指数曲线型 参考作法:
Yˆt a b t
(1)定性分析
(2)描绘散布图
(3)分析序列的数据特征
(4)分段拟合
1. 平均发展水平——序时平均数
时期数列
a a 1 a 2 a n a
n
n
序时平均数
绝对数序列
时点序列
aa1 2a2f1a2 2a3n f 2 1 an 12 anfn 1
fi
i 1
相对数或平均数序列
计算序时平均数
ca b
三、时间序列的速度分析
发展速度
发 展 速 度报 基 告 期 期 水 水 平 平aa0i
9.1 时间序列的对比分析
一、时间序列及其分类 二、时间序列的平均水平 三、时间序列的速度分析
一、时间序列及其分类
什么是时间数列?
按时间顺序记录并排列的数据序列称时间序列
时间数列的基本要素:
§所属的时间范围 §反映数量特征的
数值
140 120 100
80 60 40 20 0
时间序列分析教材(PPT 171页)
fn
ai fi
i 1 n
fi
i 1
9 - 25
统计学
STA[T例IST]I某CS厂成品仓库库存变动时登记如下
日期
1
6
10
库存量(台) 38(a1) 42(a2) 39(a3)
25 37(a4)
试求该仓库该月的平均库存量
31 41(a5)
x xf a af
f
f
a 38 5 42 4 39 15 37 6 411 5 4 15 6 1
统月计初 学
一
二
三
四
S库TA存TI量ST(IC台S ) 38(a1) 42(a2) 39(a3) 37(a4)
五 41(a5)
38 42 1 42 39 1 39 37 1
a 2
2
2
111
x xf f
(a1 a2 ) (a2 a3 ) (a3 a4 )
2
2
2
3
x
f
时间 库存量 a 间隔 f
1/1—31/1 38—42 1
1 2
a1
a2
a3
1 2
a4
39.5(台)
4 1
1/2—28/2 42—39 1
1/3—31/3 39—37 1
——
3
a
912-a218
a2
a3
1 2
an
n 1
首尾折半法 n指标值个数 n1时间长度
统计学
STA(TIS4TI)CS间隔不等的间断时点资料
一季
二季
统计学
STA3TI、STI作CS用
(1)描述现象的历史状况; (2)揭示现象的发展变化规律;
(3)外推预测。
时间序列分析教材(PPT 70张)
出现的,有很清楚的上升趋势。等间隔的峰值暗 示存在时间序列的周期成分。考虑到销售的季节 性,高峰典型地发生在假期期间,你不必对数据 中发现的年季节成分感到吃惊。 也有峰值似乎没有成为季节性模式的一部分,这 表示邻近的数据点显著偏离。这些点可能是异常 值,它可以而且应该由Expert Modeler解决。
返回
时间序列习题参考答案(17)
六、数据转换
返回
时间序列习题参考答案(18)
返回
时间序列习题参考答案(19)
七、预测1999年3月的男装销售量
返回
时间序列习题参考答案(20)
返回
时间序列习题参考答案(21)
预测表包含因变量序列男子服装销售量的预测值,其中两个预测因子为邮寄
商品目录的数量和用于订购的开放式电话线数量。该表还包含置信区间的上 (UCL)、下限(LCL)。 在影响销售量的邮寄商品目录的数量每月增加2000份,而电话数量还是按原 先变化规律的前提下,1999年3月时男装的销售量的预测值为21580.96。
返回
创建时间序列对话框
运行函数Lag时的结果说明
返回
序列图
Sequence Charts
返回
序列图过程
主对话框
返回
时间轴参考线对话框
返回
定义时间轴的格式对话框
返回
序列图应用实例输出
模型描述表
样品处理摘要
含有基准线的序列图
返回
建立时间序列模型
Create models
返回
时间序列建模提示框
返回
时间序列习题参考答案
1、 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的 方法是:指数平滑、自回归、综合移动平均及季节分解。 2、 先对数据进行必要的预处理和观察,直到它变成稳态后再用这些过程对其进行分析。 根据对数据建模前的预处理工作的先后顺序,将它分为三个步骤:首先,对有缺失值 的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平 稳性进行计算观察。 3、 修补缺失值可在Transform菜单的Replace Missing Values过程中进行。修补缺失值 的方法共有五种,它们分别是: ⑴、Series mean; ⑵、Mean of nearby points; ⑶、Median of nearby points; ⑷、Linear interpolation; ⑸、Linear trend at point。 4、 定义时间变量可在Data菜单的Define dates过程里实现。 5、 判断序列是否平稳可以看它的均数和方差是否不再随时间的变化而变化、自相关系数 是否只与时间间隔有关而与所处的时间无关。 6、在时间序列分析中,为检验时间序列的平稳性,经常要用一阶差分、二阶差分,有时为 选择一个合适的时间序列的模型还要对原时间序列数据进行对数转换或平方根转换等。 这就需要在已经建立的时间序列的数据库中,再建一个新的时间序列的变量。在SPSS 的Create Time Series中可根据现有的数字型时间序列变量的函数建立一个新的变量。
第十章时间序列pptPowerPointP
5.皮尔曲线
技术和经济的发展过程经历发生、发展、
成熟三个阶段。在发生阶段变化速度较缓慢;
在发展阶段变化速度加快;在成熟阶段变化速
度由趋向于缓慢;
▪ 其一般形式为:
Yt
L 1 aebt
其中,L为变量Yt的极限值, a,b为常数,t为时间变量
如电视机、手机普及率等。
k
4
3
2
1
-2
-1
1
2
如电视机、手机普及率等。
习惯上,令=1 w,则Yˆt1 Yt (1 )Yˆt
Yˆt1表示第t 1期的预测值;
称为平滑系数,是人为确定的权数;
Yˆt为第t期的预测值或修匀值;
10.3 季节变动分析
移动平均趋势剔除法
时间序列的趋势变动和季节变动同时存在,先将序列的趋势 剔除,再来测定季节变动
(1)根据时间序列的数据求出各期趋势值Vt
yˆt
1 N
( yt
ytN )
适用于: •近期预测
•预测目标的发展趋势变化不大
N 的选取:在实用上,一般用对过去数据预测的均方误
差S 来作为选取N 的准则。
例:我国近十年来糖的产量
年序
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
糖产量 三期移动平均 四期移动平均
通常表示为:y1, y2 ,..., yt ,..., yn
▪ 例:工农业总产值按年度顺序排列起来的数列; ▪ 某种商品销售量按季度或月度排列起来的数列;等等 ▪ 一个时间序列的形成受到许多因素的共同影响,为了分析
其成因及变动的规律,就需要对其进行分解。
时间序列中每一期的数据都是由不同的因素 同时发生作用的综合结果。
模板时间序列分析模型实例.ppt
项的线性函数,即可表示为
X t ut 1ut1 2ut2 L qutq 【3】
式【3】称为 q阶移动平均模型,记为MA( q )
注:实参数 1,2 ,L ,q 为移动平均系数,是待估参数
最新 文档
20
1 时间序列分析模型【ARMA模型 】简介
引入滞后算子,并令 (B) 11B 2B2 L qBq 则模型【3】可简写为
1、自回归【 AR 】模型
自回归序列 X t:
如果时间序列 X t 是它的前期值和随机项的线性 函数,即可表示为
X t 1 X t1 2 X t2 L p X t p ut 【1】
【1】式称为 p 阶自回归模型,记为AR( p )
注1:实参数 1,2 ,L , p 称为自回归系数,是待估参数.
注4:ARMA过程的平稳条件是滞后多最新项文式档 (B) 的根均在单位圆外
22
可逆条件是滞后多项式 (B) 的根都在单位圆外
1 时间序列分析模型【ARMA模型 】简介 二、随机时间序列的特性分析
1、时序特性的研究工具 (1)自相关 构成时间序列的每个序列值 Xt , Xt1, Xt2,L , Xtk 之间的简单
识时间序列的结构与特征,达到最小方差意义下的 最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Au最t新o-文re档gressive Moving Average)模型17
1 时间序列分析模型【ARMA模型 】简介
k 1
1 k 1, j j
j 1
k 1 k 2,3,L
k 其中 k 是滞后 期的自相关系数,
X t ut 1ut1 2ut2 L qutq 【3】
式【3】称为 q阶移动平均模型,记为MA( q )
注:实参数 1,2 ,L ,q 为移动平均系数,是待估参数
最新 文档
20
1 时间序列分析模型【ARMA模型 】简介
引入滞后算子,并令 (B) 11B 2B2 L qBq 则模型【3】可简写为
1、自回归【 AR 】模型
自回归序列 X t:
如果时间序列 X t 是它的前期值和随机项的线性 函数,即可表示为
X t 1 X t1 2 X t2 L p X t p ut 【1】
【1】式称为 p 阶自回归模型,记为AR( p )
注1:实参数 1,2 ,L , p 称为自回归系数,是待估参数.
注4:ARMA过程的平稳条件是滞后多最新项文式档 (B) 的根均在单位圆外
22
可逆条件是滞后多项式 (B) 的根都在单位圆外
1 时间序列分析模型【ARMA模型 】简介 二、随机时间序列的特性分析
1、时序特性的研究工具 (1)自相关 构成时间序列的每个序列值 Xt , Xt1, Xt2,L , Xtk 之间的简单
识时间序列的结构与特征,达到最小方差意义下的 最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Au最t新o-文re档gressive Moving Average)模型17
1 时间序列分析模型【ARMA模型 】简介
k 1
1 k 1, j j
j 1
k 1 k 2,3,L
k 其中 k 是滞后 期的自相关系数,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14 40 66 92 118 144 170 196 222 248
序號
最新 文档
6
STOCK
平稳性时间序列
❖ 由平稳随机过程产生的时间序列的性质:
概率分布函数不随时间的平移而变化,即:
P(Y1,Y2,… …,Yt)=P(Y1+m,Y2+m,… …, Yt+m) 期望值、方差和自协方差是不依赖于时间的常数,即:
最新 文档
4
平稳时间序列
2260
2240
2220
2200
SCORE
2180
2160 1
11 21 31 41 51 61 71 81 91
6
16 26 36 46 56 66 76 86 96
序號
最新 文档
5
非平稳时间序列
42 40 38 36 34
32 30
28
26 1
27 53 79 105 131 157 183 209 235
❖ 许多因素产生的影响不是瞬间的,而是持续几个时期或更 长时间,因此时间序列在不同时期的值往往存在较强的相 关关系
❖ 用自相关函数和偏自相关函数衡量时间序列中的自相关关 系
最新 文档
8
时间序列的自相关关系
❖ 自相关函数 随机过程的自相关函数 样本的自相关函数
❖ 偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
t 1
1 T
(Yt
__
Y )2
__
Y)
如果样本较大, 1 近似 1 ,上式可简化为:
T K
T
T K
—
—
(Yt Y )(Ytk Y )
ρ k t 1 T
—2
(Yt
Y) 最新 文档
11
t 1
样本自相关函数的性质
❖ 可以用来判断时间序列的平稳性
平稳性时间序列的样本自相关函数值随滞后期的延长很快趋 近于零
一、概 述
ARMA模型是一类常用的随机时间序列模型, 是一种精度较高的时间序列短期预测方法,其基本
t 思想是:某些时间序列是依赖于时间 的一族随机
变量,构成该时间序列的单个序列值虽然具有不确 定性,但整个序列的变化却有一定的规律性,可以 用相应的数学模型近似描述.
通过对该数学模型的分析研究,能够更本质地认
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
最新 文档
13
随机性时间序列模型的特点
❖ 建摸过程是一个反复实验的过程
❖ 借助自相关函数值和偏自相关函数值确定模型的类型
❖ 借助诊断性检验判断模型的实用性
最新 文档
14
时间序列最佳模型的确定
出发点:模型总类
选择暂时试用的模型
估计模型中的参数 诊断检验:模文档
15
最新 文档
9
自相关函数
❖ 对于平稳随机过程,滞后期为 K 的自相关函数定义为 滞后期为 K 的自协方差与方差之比
ρk
Cov(Yt ,Ytk ) Var(Yt )
γ γ
k 0
ρ
0
γ γ
0 0
;
ρ1
γ γ
1 0
;
最新 文档
ρ
2
γ γ
1 0
10
样本自相关函数
ρk
T
1 K
T K
__
(Yt Y )(Ytk
❖ 可以较好描述季节性变动或其他周期性波动的规律
如果季节变化的周期是 12 期,观测值 Yt 与 Yt+12,Yt+24, Yt+36之间存在较强自相关关系
因此,当 K=12,24,36,48,……时,样本自相关函数值 在绝对值上大于它周围的值
最新 文档
12
偏自相关函数值
❖ 滞后期为 K 的偏自相关函数值是指去掉 Y t+1,Y t+2,Y t+3, …… Y t+k-2,Y t+k-1 的影响之后,反映观测值Yt和Y t+k之间 相关关系的数值
E(Yt)=E(Yt+m) Var(Yt)= Var(Y t+m) Cov(Yt,Y t+k)= Cov(Y t+m,Y t+m+k) ❖ 随机性时间序列模型是以最时新间文序档 列的平稳性为基础建立的 7
随机性时间序列模型的特点
❖ 利用时间序列中的自相关关系进行分析和建摸
❖ 时间序列的自相关关系是指时间序列在不同时期观测值之 间的相关关系
识时间序列的结构与特征,达到最小方差意义下的 最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Au最t新o-文re档gressive Moving Average)模型17
1 时间序列分析模型【ARMA模型 】简介
1、自回归【 AR 】模型
自回归序列 X t:
如果时间序列 X t 是它的前期值和随机项的线性 函数,即可表示为
X t 1 X t1 2 X t2 L p X t p ut 【1】
【1】式称为 p 阶自回归模型,记为AR( p )
注1:实参数 1,2 ,L , p 称为自回归系数,是待估参数.
模型分类
❖ 总类模型 ❖ 移动平均模型 MA(q) (Moving Average) ❖ 自回归模型 AR(p) (Autoregression) ❖ 混合自回归移动平均模型 ARMA (p,q) ❖ 差分自回归-移动平均模型 ARIMA (p,d,q)
最新 文档
16
1 时间序列分析模型【ARMA模型 】简介
最新 文档
1
时间序列的分类
时间序列
平稳序列
非平稳序列
有趋势序列
最新 文档
复合型序列
2
随机性时间序列模型的特点
❖ 把时间序列数据作为由随机过程产生的样本来分析
❖ 多数影响时间序列的因素具有随机性质,因此时间序列的 变动具有随机性质
❖ 随机过程分为平稳随机过程和非平稳随机过程
由平稳随机过程产生的时间序列叫做平稳性时间序列 由非平稳随机过程产生的时间序列叫做非平稳性时间序列
最新 文档
3
❖ 平稳序列(stationary series)
基本上不存在趋势的序列,各观察值基本上在某个固 定的水平上波动
或虽有波动,但并不存在某种规律,而其波动可以看 成是随机的
❖ 非平稳序列 (non-stationary series)
有趋势的序列:线性的,非线性的
有趋势、季节性和周期性的复合型序列
时间序列分析模型
1 时间序列分析模型简介 一、时间序列分析模型概述
1、自回归模型 2、移动平均模型
3、自回归移动平均模型 二、随机时间序列的特性分析 三、模型的识别与建立 四、模型的预测 2 长江水质污染的发展趋势预测 【CUMCM 2005A】 一、问题分析 二、模型假设 三、模型建立
四、模型预测 五、结果分析 六、模型评价与改进